1

1 **TITLE**

Contaminated Sites and Indigenous Peoples in Canada and the United States: A Scoping Review
 3

4 AUTHORS AND AFFILIATIONS

- 5 Katherine Chong¹, Niladri Basu¹
- 6 ¹ Center for Indigenous Peoples' Nutrition and Environment, Faculty of Agricultural and
- 7 Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- 8

9 CORRESPONDING AUTHOR CONTACT

- 10 Niladri Basu
- 11 204- Center for Indigenous Peoples' Nutrition and Environment Building
- 12 21, 111 Lakeshore Road
- 13 Faculty of Agricultural and Environmental Sciences
- 14 McGill University
- 15 Sainte-Anne-de-Bellevue, Québec, Canada
- 16 H9X 3V9
- 17 niladri.basu@mcgill.ca
- 18 514-398-8642
- 19

20 **RUNNING TITLE**

- 21 Scoping Review of Contaminated Sites and Indigenous Peoples
- 22 23

24 ACKNOWLEDGEMENTS

- 25 We acknowledge funding support to KC from McGill University Faculty of Agricultural and
- 26 Environmental Sciences (Sustainable Agriculture Fellowship, Graduate Excellence Award) and
- the PURE CREATE program funded by Natural Sciences and Engineering Research Council of
- 28 Canada (NSERC). NB's contribution was supported by the Canada Research Chairs (CRC)
- 29 Program.

30

31 DECLARATION OF CONFLICTS OF INTEREST

- 32 The authors have no conflicts of interest to declare
- 33
- 34
- 35
- 36
- ~-
- 37
- 38
- 39
-
- 40
- 41

42 Abstract

- 43 Background: Indigenous communities in Canada and the US are disproportionately exposed to
- 44 contaminated sites, often arising from industrial and waste disposal activities. For instance,
- 45 \sim 34% of US EPA Superfund sites are of Native American interest, and \sim 29% of Canadian
- 46 federal contaminated sites are on Indigenous reserve land. Contaminated sites pose unique
- 47 challenges to many Indigenous peoples who consider the land as an integral part of food systems,
- 48 culture, and the economy. Federal management of contaminated sites is challenged by49 epistemological differences, regulatory barriers, and minimal scientific research.
- 49 epistemological differences, regulatory barriers, and minimal scientific research.
- 50 **Objectives:** This scoping review aimed to identify and map information on contaminated sites
- and Indigenous peoples in Canada and the US, namely: 1) the relationship between contaminated
- 52 sites and Indigenous people, and their land and food systems; 2) strategies, challenges, and
- 53 successes for contaminated sites assessment and management on Indigenous land; and 3)
- 54 Indigenous leadership and inclusion in contaminated site assessment and management.
- 55 **Methods:** Three streams of data were retrieved from January to March 2022: a systematic
- 56 literature search (key word groups: Indigenous people and contaminated sites); a grey literature
- search; and an analysis of federal contaminated site data (Canada's Federal Contaminated Sites
- 58 Inventory (FCSI) and US EPA's Superfund Database).
- **Results:** Our search yielded 49 peer-reviewed articles, 20 pieces of grey literature, and 8114
- 60 federal site records (1236 Superfund, 6878 FCSI), evidencing the contamination of the lands of
- 815 distinct Indigenous tribes and nations and the presence of 440 different contaminants or
- 62 contaminant groups. Minimal information is available on the potential health and ecological
- 63 effects, assessment and management of risks, and collaboration on contaminated site processes
- relative to the number of sites on or adjacent to Indigenous lands.
- **Discussion:** By integrating three diverse data streams we discovered a multi-disciplinary yet disparate body of information. The results point to a need to prioritize holism, efficiency, and Indigenous leadership in contaminated site assessment, management, and research. This should include a focus on community-specific approaches to site assessment and management; a re-
- conceptualization of risks related to sites that privileges Indigenous epistemologies; greater
 collaboration between networks such as the scientific community, Indigenous communities, and
- federal governments; and a re-evaluation of current management frameworks with Indigenous
- 72 leadership at the forefront.
- 73
- 74
- 75
- 76
- 77
- 78

3

79

80 **1. INTRODUCTION**

It is well known that pollution has profound effects on human and environmental health 81 82 (Landrigan et al., 2018). In Canada and the United States (US), contaminated sites that arise 83 from commercial, industrial, or waste disposal activities are a major source of pollution, with 84 contaminant concentrations that can often pose a human or environmental health hazard 85 (Contaminated Sites Management Working Group, 2000; EPA, 2021c). Federal Contaminated Sites (also termed "Superfund" or "Cleanups" in the US) are those which federal governments 86 87 are responsible for. These sites disproportionately affect Indigenous People. For example, in Canada south of the 60th parallel, there are an estimated 4486 Federal contaminated sites on 88 Indigenous reserve land, making up over 20% of the total sites, although reserves make up only 89 0.5% of the total land mass (Government of Canada, 2021; OECD, 2020). Similarly in the US, 90 91 ~34% of Superfund sites are categorized under 'Native American Interest' by the Environmental Protection Agency (EPA), while Native American people make up only 2.9% of the total 92 93 population (EPA, 2021a; Jones, 2021).

Many Indigenous peoples in Canada and the US have traditional ties to the land, 94 95 including as an integral part of food systems, language, culture, community, and spirituality. The 96 health of Indigenous communities cannot be understood independent of the health of the environment and thus contaminated sites present unique challenges to Indigenous People 97 (Hoover, 2013). One of the most notable challenges is the impact of contaminants on Indigenous 98 food systems, including agricultural and subsistence activities such as hunting, gathering, 99 100 farming, and gardening (Fernández-Llamazares et al., 2020). As an example, the First Nations Food and Nutrition Study in Canada recently sampled traditional foods from 92 communities, 101

4

measuring 2061 samples and finding many of these to have elevated concentrations of mercury, 102 lead, cadmium, and arsenic (Chan, Singh, et al., 2021). Exposure to such contaminants is 103 104 associated with organ damage, neurodegenerative diseases, cancer, and reproductive and developmental disorders (Briffa et al., 2020; Engwa et al., 2019). Furthermore, contamination of 105 traditional foods has contributed to a 'nutrition transition' for many Indigenous communities, 106 107 characterized by the westernization of diet and lifestyle and a reliance on nutrient-poor market foods. This transition is fueling a high prevalence of chronic diseases including obesity and 108 109 related cardiometabolic disorders (Chan, Fediuk, et al., 2021; Damman et al., 2008) Overall, 110 exposure to contaminants results in both direct and indirect health effects for Indigenous peoples, contributing to a loss of food sovereignty, which is defined as the right to healthy, culturally 111 appropriate, and self-determined food and agricultural systems, and is a key determinant of 112 overall health (Coté, 2016; Fernández-Llamazares et al., 2020). 113 Unique solutions are required to address the challenges that contaminated sites pose to 114 115 Indigenous communities, however environmental research and management processes often use western-institutionalized risk assessment tools and frameworks which are generic and poorly 116 apply to Indigenous people (Arsenault et al., 2019; J. Sandlos & A. Keeling, 2016; Wang et al., 117 118 2020). For example, the application of a generic risk assessment model for mercury exposure to studies involving Indigenous populations did not yield results that were representative of the 119 120 study population (Canuel et al., 2006). This issue is further complicated by the lack of toxicological data for the hundreds of chemicals found at contaminated sites (EPA, 2021d; 121 Government of Canada, 2021; Wang et al., 2020). Regulatory barriers further challenge 122

123 contaminated sites management. The variety of US governmental programs, for example, that

124 categorize and address contaminated sites has resulted in a fragmented tracking system and a

5

125	poor understanding of the scope of the problem (EPA, 2021c). In Canada, Indigenous reserve
126	land falls under federal jurisdiction, while most environmental management is provincially
127	mandated (Eckert et al., 2020). The Indian Act constitutes federal legislation on reserve
128	management, but fails to mention environmental protection, and Indigenous legal systems are not
129	consistently recognized under the Canadian constitution on the same level as federal and
130	provincial legislation (Eckert et al., 2020; Gunn K, 2021). Taken together, there are scientific
131	gaps, regulatory barriers, and a lack of meaningful inclusion of Indigenous communities, which
132	prevent improvements to the management of federal contaminated sites.
133	Contaminated sites threaten land-based food systems that are essential to many
134	Indigenous communities' culture, spirituality, and overall health. Scientific, regulatory and
135	epistemological barriers facing federal contaminated site management adds complexity beyond
136	previous studies of pollution and Indigenous people in general (Fernández-Llamazares et al.,
137	2020). However, to our knowledge, the topic of federal contaminated sites and Indigenous
138	people has yet to be reviewed, preventing the advancement of solutions to these barriers. As
139	such, the objective was this paper was to present the state of knowledge on 1) the relationship
140	between contaminated sites and Indigenous people, and their land and food systems; 2)
141	strategies, challenges, and successes for contaminated sites management on Indigenous land; and
142	3) Indigenous leadership and inclusion in contaminated sites management activities. In doing so,
143	this scoping review maps the available information and identifies evidence gaps and priority
144	actions pertaining to contaminated sites and Indigenous peoples in Canada and the US (Munn et
145	al., 2018).
146	

147

6

148 2. METHODS

149 2.1 Positionality Statement

This review was conducted by non-Indigenous researchers at McGill University in 150 Montreal, Canada. The authors are non-Indigenous persons of color (a doctoral student and 151 Professor). While every attempt was made to minimize biases, we acknowledge that this 152 positionality and its historical context places limitations on the present work. The motivation for 153 the review is a community-based project lead by the Kanien'kehà:ka (Mohawk) Community of 154 155 Kanesatake in Quebec, Canada, that addresses a local contaminated site. The authors are based in McGill's Centre for Indigenous Nutrition and Environment (CINE), which affords connections 156 157 with many Indigenous communities and stakeholders and provides opportunities for the 158 promotion of Indigenous methodologies and decolonizing research practices.

159 2.2 Search Strategy and Study Selection Criteria

160 The search strategy utilized three data streams, which included a systematic scholarly literature search, a grey literature search, and federal contaminated sites data repositories (Figure 161 1). First, a systematic search of peer-reviewed literature was conducted to identify the state of 162 163 knowledge pertaining to the study objectives. Second, a search for grey literature, such as governmental reports, theses, news articles, and case studies was used to support the findings. 164 Finally, publicly available federal contaminated site data was downloaded from the US and 165 Canadian federal government websites. The results were compiled and scrutinized to map the 166 existing evidence and to develop an understanding of priority scientific and environmental 167 168 management gaps in a multidisciplinary context. The PRISMA (Transparent Reporting of

7

Systematic Reviews and Meta-Analyses) checklist was utilized to ensure that methodologyreporting was transparent (Tricco et al., 2018).

171 2.2.1 Systematic Literature Search

A systematic search of databases (Scopus, Web of Science, and Pubmed) was used to 172 identify relevant articles. The final search was run on January 10, 2022. Boolean operators were 173 used to search each database as follows: ("First Nations" OR "Indigenous people" OR "Native 174 American" OR "Aboriginal" OR "Inuit" OR "Metis" OR "American Indian" OR "Canadian 175 Indian" OR "Traditional food" OR "Indigenous agriculture" OR "Country food*" OR "Tribal 176 land" OR "reservation" OR "reserve land" OR "Indian country") AND ("contaminated site" OR 177 "superfund" OR "contaminated land" OR "brownfield" OR "abandoned mine"). The Scopus 178 179 search was limited with the operator TI-ABS-KEY due to initial results from a full-text search that lacked specificity. 180

Overall, inclusion criteria were broad, to capture the diversity and scope of the 181 information available on the topic. Papers were included that pertained to federal contaminated 182 site(s) in Canada or the US, and to Indigenous peoples, communities, and environments exposed 183 184 to the site. Both qualitative and quantitative studies were included. Both primary studies (i.e., involving the collection of primary data and direct measurement of an outcome of interest) and 185 secondary studies (i.e., review papers or discussion papers) were included. Literature included 186 187 was limited to Canada and the US and published in English. No date limit was placed on the studies. The review was limited to First Nations, Inuit, and Metis peoples in Canada, and all 188 189 Native American peoples in the US, including those residing in non-contiguous states. Notably, many mainland Indigenous people such as the Haudenosaunee, Cree, and Anishinaabe live in 190 both the US and Canada, due to the cutting of common cultural territory by the international 191

8

192	border (Native Land Interactive Map, 2021). Furthermore, some Indigenous communities live on
193	both sides of the US-Mexico Border, and these were considered if the literature was relevant to
194	the US context. The review used the definition of 'contaminated site' as described by the US
195	EPA and Environment and Climate Change Canada (ECCC) (See Supplemental Materials,
196	Glossary of Key Terms) (EPA, 2021c; Government of Canada, 2021). The review excluded
197	literature on pollution and Indigenous people that was not specific to contaminated sites. The
198	search and screening process, involving the reviewing of titles and abstracts, resulted in a total of
199	49 articles for analysis (Figure 2; Excel Table S1).

200 2.2.2 Grey Literature Search

Due to the minimal number of publications in academic journals related to contaminated 201 202 sites and Indigenous People in Canada and the US, and to capture a broader range of perspectives on the topic, a grey literature search was also conducted. Grey literature included 203 multiple document types produced by all levels of government, academics, businesses and 204 organizations, that are not controlled by commercial publishing. (Mahood et al., 2014) The 205 search strategy 'SYMBALS' (a systematic review methodology blending active learning and 206 207 snowballing) (van Haastrecht et al., 2021), which uses backward snowballing to allow researchers to complement their set of relevant papers with additional sources such as grey 208 209 literature. The grey literature search was conducted from January 2022 through to March 2022 inclusive. 210

Grey literature was yielded iteratively from relevant websites, governmental databases, organizations, and reference lists. Search terms were compiled from the authors' knowledge on the topic and information from previous searches. The search terms used fell into two main categories ("Indigenous People" and "Contaminated Sites") with the complete list available in

9

215	Supplemental Materials (Table S1). News articles, reports, dissertations and theses were found in
216	ProQuest and included if relevant. Governmental websites, including Health Canada, Indigenous
217	and Northern Affairs Canada, Environment and Climate Change Canada, US EPA and the Tribal
218	Lands Assistance Center were searched. Information on Indigenous peoples and federal
219	contaminated sites is often cited in technical reports and therefore, Google Scholar was searched,
220	which has been cited as an acceptable database for grey literature searches (Haddaway et al.,
221	2015). The search yielded a total of 20 selected grey literature articles (Excel Table S2), which
222	included seven government documents (EPA, 2015; Government of Northwest Territories, 2021;
223	Indigenous and Northern Affairs Canada, 2016; Michelsen, 2010; US Government
224	Accountability Office, 2019; US Government Publishing Office, 2016; Woolford, 2017); four
225	journal articles (non-peer-reviewed) (Castleden et al., 2017; Gallo, 2011; Gover, 2007; Lewis et
226	al., 2015), one opinion article (Nolan, 2009), one thesis (Clark, 2020), three news
227	articles, (Bienkowski, 2012; Hansen, 2018; Indian Country Today, 2013), and four conference
228	materials (Ellison, 2012; Gailus, 2013; Hykin, 2016; Kent, 2016). Although not considered as
229	grey literature in this review, information was also gathered from nine government webpages, to
230	better understand the context of the findings (Table S2).

231 2.2.3 Federal Data Inventory Search

232 Government websites (US EPA and Government of Canada) were used to identify available

233 datasets for inclusion. Data on contaminated sites was publicly available in an Excel spreadsheet

format for all federal contaminated sites on reserve land in Canada from the Federal

- 235 Contaminated Sites Inventory (FCSI) (n= 6878) (Government of Canada, 2021) (Excel Table
- S3), which was downloaded on October 14, 2021. A search for US EPA Superfund sites
- 237 categorized under "Native American Interest" (which includes sites that affect Native American

10

peoples but are not on Tribal lands) from the Superfund Site Information database was run on 238 October 4, 2021, and re-run on February 16, 2022 to include both the Superfund site data (n= 239 240 1236) (Excel Table S4) and an inventory of data on contaminants at Superfund sites (Excel Table S5) (EPA, 2021d). The searches of the Canadian and US databases resulted in a total of 8114 241 records of contaminated site data for analysis. Canadian and US data was not consistent, 242 243 however some variables were available in both datasets, which included the site location and Indigenous community affected, site status (i.e., whether the site was currently active), risk 244 classification and prioritization ranking, type of contaminant, and type of contaminant media. 245 246 Canadian FCSI data also included information on the management strategy and plan for the site, the estimated size of the area contaminated, the number of people living in proximity to the site, 247 and expenditure estimates related to monitoring, remediation, assessment, and maintenance. 248 Superfund data included indications of whether the contaminants were of human or ecological 249 250 concern, the site type (i.e., source of contamination), and exposure control measures.

251

2.3 Data Extraction and Analysis

Included peer-reviewed literature were compiled into a data chart following a model outlined 252 253 by the Joanna Briggs Institute Methodology for Scoping Reviews (Peters et al., 2015) (Excel Table S1). Per this guideline, the following data were extracted and charted: author(s), year of 254 publication, country of origin, study purpose, location, study population (i.e., sample size), 255 256 methodology, and key findings related to the scoping review questions. Additionally, data extracted that are specific to this study included: contaminated site name, contaminant name or 257 258 contaminant class, contaminant media sampled, type (source) of contaminated site, Indigenous 259 community of focus and/or territory of focus, the presence of a collaboration between Indigenous 260 and non-indigenous researchers and/or Indigenous authorship, whether the article was a primary

11

or secondary data source, whether the article collected qualitative or quantitative data, and the discipline in which the article was published. For quantitative data, descriptive statistics were used to map out and better understand the scope of the data. Qualitative data were iteratively analyzed to develop themes presented in the results section.

Data from both retrieved articles and federal databases were analyzed using Microsoft 265 266 Excel Software (Microsoft 365 MSO (Version 2205)), and basic descriptive statistical analyses were run on these datasets. For example, data such as contaminants of focus, risk assessment 267 information, and site locations were extracted and compared across data streams. Data was 268 269 analyzed in answer to the three study objectives, with additional questions being developed iteratively as the data was explored. A narrative synthesis of qualitative data was integrated into 270 271 this analysis. Complete datasets can be found in supplementary materials, which includes data extraction charts for peer-reviewed literature (Excel Table S1) and grey literature (Excel Table 272 S2); and raw data retrieved from Canadian FCSI (Excel Table S3) and US EPA Superfund 273 databases (Excel Tables S4 and S5). 274

275 3. **RESULTS**

276 3.1 Overview of results

Information available on contaminated sites and Indigenous peoples in Canada and the USA included 49 peer-reviewed journal articles, 20 pieces of grey literature, and 8114 contaminated site records from federal databases (Table 1). These sources provided data on the potential or actual contamination of the lands of 815 distinct Indigenous tribes and nations and indicated the presence of 440 different chemicals or chemical groups found at 4976 distinct contaminated sites. Peer-reviewed literature available on the topic has been published between

12

1996-2021. Of the 49 peer-reviewed articles, 35 were primary data sources (i.e., original data
collection), while 14 were secondary, including reviews, historical reviews, and discussion
papers. Of the articles collecting primary data, 26 collected quantitative data, three collected both
qualitative and quantitative data, and six collected qualitative data only. Throughout these
sources, contamination of a wide variety of media, from soil, air, water, groundwater, and food
to human biomarkers were described.

289 3.2 Indigenous Communities and Geographic Patterns

290 Peer-reviewed literature described contaminated sites affecting 41 distinct Indigenous Tribes and Nations across Canada and the US (Table 1), with some literature focused on multiple 291 Tribes or Nations. A total of 11 individual communities were the focus of grey articles, with the 292 293 remaining grey literatures focused on Indigenous Peoples in general as opposed to individual communities. In contrast, more communities were captured under the federal databases as the US 294 295 EPA reported Superfund sites of interest to 239 Indigenous Tribes (EPA, 2021d), and Canada's FCSI included sites affecting 576 distinct Indigenous communities on 745 different reserve lands 296 (Excel Tables S3 and S4) (Government of Canada, 2021). Notably, Canadian and US federal 297 contaminated site data varied, in that Canada listed multiple "sites" with unique identifiers in the 298 same geographic region, while Superfund tended to list one larger area with a single identifier. 299 300 Of the 49 peer-reviewed journal articles that were included in the review, 29 were based in the 301 US, 13 were based in Canada, and seven were based in both the US and Canada. In grey literature, the US EPA published a report in 2020 estimating that 146 605 Native American 302 303 people live within one mile of a Superfund site, and 449 849 live within three miles. (EPA, 2020) 304 Canadian FCSI data provided an estimate of populations (which included Indigenous and non-Indigenous people) living near contaminated sites on reserves, totaling 2 096 197 people living 305

13

within 1 km (Government of Canada, 2021). Canadian FCSI data also reported estimated sizes of
the contaminated areas, ranging from 0.0001 to 1,500,000 cubic square meters per site
(Government of Canada, 2021). Figure 3 displays contaminated site locations identified from the
four data streams.

310 3.3 Contaminated sites, sources, and media

Of the contaminated sites described in the 49 peer-reviewed articles, 25 were from 311 mining activity, eight were industrial waste sites, six were hazardous waste sites, four were 312 313 military radar, and one was from hydroelectric activities, with the remainder of unspecified origin. Nine grey articles were focused on specific contaminated sites, which included the 314 mention of seven sites due to mining activities, two from industrial activities, one nuclear waste 315 316 site, and one from an accidental spill. The US EPA reported on Superfund Site types, including 159 due to manufacturing/processing/maintenance, 84 mining sites, 98 waste management sites, 317 318 and 39 recycling sites (EPA, 2021d). However, we note that most of the sites (n=248) were classified as having "other" sources (EPA, 2021d). Canadian FCSI Data does not provide 319 information on contaminant source (Government of Canada, 2021). 320

In the peer-reviewed literature, a total of 45 unique contaminants or contaminant groups 321 were identified or discussed (Table 1). While most grey literature was focused on contaminated 322 sites in general without referencing specific chemicals, seven articles referenced (but did not 323 324 measure) specific contaminants of concern, which included lead, arsenic, PCBs, benzene, cadmium, formaldehyde, uranium, zinc, pentachlorophenol, dioxin, and creosote. Superfund site 325 326 data reported the measurement of 440 different contaminants or contaminant groups found at 296 contaminated sites, with lead, arsenic, and cadmium as the most common ones listed. Of these 327 contaminants listed, 12% were flagged by US EPA as a potential ecological risk.(EPA, 2021d) 328

14

329	Canadian FCSI Data reported contaminant classes as opposed to single contaminants, for a total
330	of 12 different contaminant classes found at 4680 contaminated sites (Table 1). The most
331	commonly reported classes were petroleum hydrocarbons (PHCs), polycyclic aromatic
332	hydrocarbons (PAHs), and metals, metalloids, and organometallics.(Government of Canada,
333	2021) In Canadian FCSI Data, there were 2198 contaminated sites listed (~32%) without data on
334	contaminants, and in Superfund site data there were 940 sites (~76%) without contaminant data.
335	Human biomarkers and wildlife were the most common media tested for contaminants in
336	peer-reviewed literature. While grey literature did not measure or detect contamination, water,
337	food, and sediment were the most common contaminated media mentioned. Both Superfund and
338	FCSI datasets reported contaminant media tested, with soil being the most common in both
339	databases, followed by groundwater (Table 2). There were several media utilized in scientific
340	research that were not identified in federal site assessments. These include human biomarkers
341	(Denham et al., 2005; Fitzgerald et al., 1996; Fitzgerald et al., 2004; Goncharov et al., 2008;
342	Kegler & Malcoe, 2004; Michelle C Kegler et al., 2010; Rock et al., 2019; Tsuji et al., 2005),
343	plants and plant foods (Fitzgerald et al., 1996; Fitzgerald et al., 2004; Garvin, 2018; Koch et al.,
344	2013; Samuel-Nakamura et al., 2017; Sarkar et al., 2019), wildlife and wild game (Brown et al.,
345	2014; Koch et al., 2013; Rock et al., 2019; Samuel-Nakamura et al., 2017), and tree bark (Flett et
346	al., 2021).

347 **3.4 K**

3.4 Risks posed by contaminated sites

Both qualitative and quantitative data from the three evidence streams provided information on contaminated sites and Indigenous people, land, and food systems. Although a causal link to health outcomes cannot be inferred through federal contaminated site databases, information such as prioritization rankings add to our understanding of the issue's scope.

15

3.4.1 Environmental risk assessment 352 Six peer-reviewed studies focused on the assessment of contaminants found on 353 Indigenous lands affected by contaminated sites (summarized in Table S4), and in five of these 354 studies there was evidence of contaminant levels exceeding regulatory guidelines. A study on an 355 abandoned mine waste site proximate to the lands of the Navajo Nation (Blue Gap Chapter, 356 357 Arizona), revealed elevated levels of Uranium (67-170 μ g/L-1, US EPA max. 30 μ g/L-1) in spring water, and detected Uranium (6,614 mg/kg-1), Vanadium (15,814 mg/kg-1), and Arsenic 358 (40 mg/kg-1) in mine waste solids (Blake et al., 2015). Another study examined tree bark on the 359 360 Spokane reservation (Washington), nearby the Midnight Mine Superfund site, finding a high geo-accumulation index for Uranium and a moderate index for Thorium (Flett et al., 2021). 361 Uranium was also detected in stream sediments on Inuit Territory in Labrador, Canada, proximal 362 to the Abandoned Kitts-U mine site (up to 214.46 mg/kg detected, exceeding the max. of 23 363 mg/kg) (Sarkar et al., 2019). Sediment toxicity tests in Inukjuak Inuit Territory (Saglek Bay, 364 365 Labrador) near a military radar site revealed sediment PCB concentrations exceeding Canadian sediment quality guidelines by 41-fold (Brown et al., 2013). Local birds in Saglek Bay, the 366 shorthorn sculpin and black guillemot, were found to be exposed to sediments with 367 368 concentrations measuring 1000 ng/g within 3 km of a contaminated marine sediment site, exceeding the limits associated with risk to survival (750 ng/g for sculpin and 77 ng/g for 369 370 guillemot) (Brown et al., 2013). Other studies examined the presence or origin of contaminants. 371 For example, a study on the Yurok Indian Reservation's Klamath watershed (California) detected a wide variety of contaminants in water, including carbamates, dioxins/furans, mercury, 372 373 microcystins, organochloride pesticides, and phenols including PCP and TCP (Middleton et al., 374 2019). The origin of copper contamination dispersed onto the land of the L'anse Indian tribal

16

lands (Michigan) were confirmed to be from the Mass Mill Superfund close to the Keeweenaw
Peninsula in one study using sediment core dating (Kerfoot et al., 2020).

377 *3.4.2 Contaminated Sites and Indigenous Food Systems*

378 Seven peer-reviewed articles examined contaminants and Indigenous peoples' food (both plant and wildlife) (Table S5) (Brown et al., 2014; Fitzgerald et al., 2004; Garvin, 2018; Koch et 379 380 al., 2013; Rock et al., 2019; Samuel-Nakamura et al., 2017; Schmitt et al., 2006). A total of 58 varieties of plant and animal foods were sampled, including 42 plant species, four mushroom 381 species, and 12 animal species. Seals that are a part of Inuit diets in Labrador, Canada were 382 383 evidenced to contain PCBs and organochloride pesticides that exceeded adverse effects thresholds of 1.3 mg/kg (Brown et al., 2014). Hares, mushrooms, and wild berries at a variety of 384 contaminated sites affecting First Nations in Canada were assessed, evidencing arsenic 385 bioaccessibility in hare meat and mushrooms (Koch et al., 2013). Mutton consumed by Navajo 386 Nation members in Arizona were found to exceed reference dietary intake levels for uranium, 387 arsenic, cadmium, lead, molybdenum, and selenium (Rock et al., 2019; Samuel-Nakamura et al., 388 2017). In studies on the traditional foods of the Eight Tribes and Nations of Northeastern 389 Oklahoma, fish and crayfish were found to contain lead and cadmium, posing a hazard to human 390 391 consumers of carnivorous wildlife (lead consumption from cravfish up to 58.75 mg/kg/day (Toxicological Reference Value (TRV) 1.68), from carp up to 7.54 mg/kg/day; and cadmium 392 393 from crayfish up to 1.66 mg/kg/day (TRV 1.47) (Schmitt et al., 2006), and 36 species of edible 394 plants within a contaminated area were found to have significantly different levels of cadmium. 395 lead, and zinc than plants outside of the contaminated area (Garvin, 2018). Overall, contaminants studied in food were primarily heavy metals (Garvin, 2018; Koch et al., 2013; Rock et al., 2019; 396 Samuel-Nakamura et al., 2017; Schmitt et al., 2006), with one study examining PCBs and 397

17

organochloride pesticides (Brown et al., 2014). Traditional foods and medicinal plants are not
included as sampling media in Federal site data for Canada or the US (EPA, 2021d; Government
of Canada, 2021).

401 *3.4.3 Contaminated Sites and the Health of Indigenous Peoples*

Superfund data showed that 59% of contaminants found at Superfund sites were at levels that
pose a risk to human health (EPA, 2021c). The Superfund database inventories 122 sites at
which human exposures are "under control" (i.e., the exposure is under EPA limits or
precautions have been put in place to prevent human exposure), while the human exposure status
of 1075 sites remain unknown (EPA, 2021d).

407 In scholarly literature, a total of 3742 Indigenous participants were studied across articles, with a total of 2224 participants in seven articles related to contaminant exposures and human 408 health outcomes (summarized in Table S6), primarily from the Akwesasne Mohawk (Ontario, 409 Quebec, and New York) (823 participants in 5 studies) and Navajo (Utah, New Mexico, and 410 Arizona) (1304 participants in one study) Nations, and also from the Ramapough Lunaape 411 412 Nation (New Jersey) (97 participants in one study) (Denham et al., 2005; Fitzgerald et al., 1996; 413 Fitzgerald et al., 2004; Goncharov et al., 2008; Hund et al., 2015; Hwang et al., 2001; Meltzer et al., 2020). The majority of these articles examined PCBs (Denham et al., 2005; Fitzgerald et al., 414 1996; Fitzgerald et al., 2004; Goncharov et al., 2008; Hwang et al., 2001). A study conducted in 415 416 the Mohawk community of Akwesasne evidenced the presence of PCBs in breast milk (Hwang et al., 2001) and serum (Fitzgerald et al., 2004) in a sample of 97 Akwesasne Mohawk women. 417 418 Among a sample of 138 Akwesasne Mohawk girls, low levels of serum lead (mean 0.49 ug/dL) were associated with significantly lower probability of having reached menarche, and serum 419 PCBs (mean 0.12 ppb) were associated with a significantly higher probability of attaining 420

18

421	menarche (Denham et al., 2005). Serum PCBs and pesticides were associated with heart disease
422	in a sample of 335 Akwesasne Mohawk men (Goncharov et al., 2008). A large cohort study
423	(1304 participants) examined chronic diseases in Navajo Nation members, finding self-reported
424	kidney disease, diabetes, and hypertension to be highly prevalent in the population (43% of the
425	sample had at least one of the three diseases, and 20% had at least two), and to be associated
426	with self-reported exposure to Uranium mine wastes (with a 28% higher risk of hypertension for
427	those with an active exposure to mine wastes) (Hund et al., 2015).
428	Furthermore, four peer-reviewed articles explored the impacts of contaminated sites on
429	Indigenous peoples using qualitative interviews (Table S7) (Cassady, 2007; Hoover, 2013; Smith
430	et al., 2010; Teufel-Shone et al., 2021). In the case of the Aamjiwnaang First Nation (Ontario),
431	semi-structured interviews of 18 community members were conducted, with interviewees
432	reporting fear related to contamination, unknown long-term health effects, and a changing
433	relationship to the earth resulting from a large contaminated site nearby ("Chemical Valley")
434	(Smith et al., 2010). According to participants, these effects were not addressed by federal
435	cleanup strategies, and continued to impact the community once the site was remediated (Smith
436	et al., 2010). Loss of culture, language, and social connection was reported as an implication of
437	Superfund sites affecting fishing activities in semi-structured interviews with 65 Akwesasne
438	Mohawk community members (Hoover, 2013). Navajo Nation members in 12 at-home focus
439	group interviews described that the Gold King Mine Spill (San Juan River, Northwestern US)
440	was a continuation of colonial violence on Indigenous peoples which removed the community's
441	agency and voice and forced their relocation (Teufel-Shone et al., 2021). An ethnographic article
442	that involved informal interviews with Inupiak Inuit members (Alaska) described that the

19

discovery of a contaminated site created suspicions about health effects such as cancer amongstthe community (Cassady, 2007).

445 News articles in grey literature provided information on some Indigenous community 446 members' perceptions of the health impacts of contaminated sites. For example, one article described a shift away from cultural practices due to a large contaminated site ("Chemical 447 448 Valley") close to the Aamjiwnaang First Nation (Bienkowski, 2012), and another described the perceived threat of Superfund Sites to the overall health (including both cancer and non-cancer 449 450 endpoints) of Native American people across the US (Hansen, 2018). A review article in the grey 451 literature also described concerns of Native American communities on the potential effects of abandoned mine sites in the Western United States on child development (Lewis et al., 2015). 452

453 3.5 Contaminated Sites Management

According to government documents in the grey literature, both US and Canadian 454 contaminated site management programs follow a standard process for assessing, planning for, 455 and remediating contaminated sites (Table S8). Contaminated sites on Indigenous lands are 456 managed similarly to sites on non-Indigenous lands in North America, including the application 457 458 of standardized risk assessment and management frameworks that fall under federal programs such as the Comprehensive Environmental Response, Compensation, and Liability Act 459 (CERCLA) in the US and Contaminated Sites Management Program (CSMP) in Canada 460 461 (Contaminated Sites Management Working Group, 2000; EPA, 2021c). These programs provide guidelines for site classification and prioritization and outline a step-wise process for addressing 462 federal contaminated sites. 463

20

Under these programs, 37.5% of Superfund sites are classified as "active" while the 464 remainder have been "archived" in the federal data. Similarly, 35.3% of Canadian sites are 465 categorized as "active" while 23.4% are "suspected" and the remainder are "closed". FCSI data 466 indicated the current stage of contaminated site management (Figure 4), with the largest 467 proportion of active sites (n=1331) in the "detailed testing" stage. Superfund data reported on 468 469 whether the site required "no further action/not eligible" (688 records), "referred to a cleanup program" (277 sites), or "assessment needed or ongoing" (62 sites). While it was not possible to 470 471 categorize all 49 peer-reviewed articles by stages of contaminated site processes, these were 472 tagged by the author based on the topic of focus, which was most commonly risk assessment (11 articles), environmental assessment (9 articles), risk management (9 articles), and socio-cultural 473 impacts (8 articles), with fewer articles focused on post-remediation (3 articles) and long-term 474 assessment/legacy impacts (1 article). 475

476 3.6 Health Risk and Exposure Assessment

In an effort to address the unique consumption patterns of subsistence populations, federal 477 governments have published guidelines for more comprehensively assessing exposures to 478 country foods, including in the context of frameworks such as the Human Health Risk 479 Assessment (HHRA) and through the development of exposure scenarios (Harper, 2007; Health 480 Canada, 2018). In peer-reviewed literature, the benefits and challenges of assessments for 481 482 contaminated sites that include exposure scenarios for Indigenous communities were outlined in two primary and four secondary articles (Tables S9 and S10). Potential benefits were described 483 in two case studies on the testing and validation of exposure scenarios related to hazardous waste 484 485 contamination on the Umatilla Indian reservation (Oregon), and of uranium contamination on the Spokane reservation (Washington). These exposure scenarios were found to improve the holistic 486

21

487	nature of risk assessments, which included the consideration of pre-site land use and socio-
488	political factors associated with exposure, compared to generic risk assessments that do not
489	measure community-specific exposure (Harper et al., 2012; Harper et al., 2002). Challenges to
490	risk assessment were described in two peer-reviewed articles on the development of exposure
491	scenarios for consumption patterns of the Confederated Tribes of the Umatilla Indian
492	Reservation (Oregon) located near a Superfund (Department of Energy's Hanford Site) (Harris &
493	Harper, 1997), and the validation of a risk assessment ingestion value by estimating soil
494	ingestion by the Xeni Gwet'in First Nation (British Colombia) through the contaminated Chilko
495	Watershed (Doyle et al., 2012). Both studies found inconsistencies between risks posed to
496	Indigenous peoples and risks assessed in standard HHRAs, including soil ingestion values and
497	exposures due to lifestyle factors, religious practices, and non-food exposures (Doyle et al.,
498	2012; Harris & Harper, 1997). In qualitative research, interviews with 35 members of the
499	Colombia river basin tribe (Umatilla, Oregon) highlighted that risk assessments in Indigenous
500	communities measure risk on the same scales as non-Indigenous communities, despite evidence
501	that contaminated sites create unique risks for Indigenous people that are not possible to quantify
502	using traditional methods (Harris & Harper, 1997). Furthermore, two discussion articles critiqued
503	standardized risk assessments due to a lack of consideration of cumulative effects of
504	contaminants, incompatibility with tribal life ways (Holifield, 2012), the privileging of property
505	owners and lack of benefit to Indigenous peoples, and the use of non-Indigenous definitions of
506	health to define risks (Arquette et al., 2002). An article focused in the Akwesasne Mohawk
507	community cited a lack of Indigenous involvement and resources allocated to the community as
508	a major barrier to effective risk assessment (Arquette et al., 2002).

22

509	Grey literature evidenced risk assessments that were conducted for specific sites and
510	communities, including for example an HHRA of legacy arsenic contamination as a response to
511	concerns surrounding health risks from the Ndilo and Dettah (Dene) communities (Yellowknife,
512	Northwest Territories).(Government of Northwest Territories) According to government
513	documents, under CERCLA and CSMP, health risk assessment is used to measure and quantify
514	physical health risks and is part of the standardized process for contaminated site management.
515	Notably, according to Canadian guidelines, conducting an HHRA typically requires the "hire of
516	a qualified consultant with the necessary technical and scientific expertise to perform the work"
517	(Contaminated Sites Management Working Group, 2000). In Canada, the National Classification
518	System for Contaminated Sites is used to evaluate and classify sites based on the level of human
519	and environmental risk posed by the site (Canadian Council of Ministers of the Environment,
520	2008). In Canadian FCSI Data, sites are ranked as either "High priority" (1016 site records),
521	"Medium priority" (1198 site records), "Low priority" (491 site records), or "No priority for
522	action" (429 site records) based on this system (Government of Canada, 2021). A site classified
523	as "High priority" has imminent risks or documented adverse outcomes to both human and
524	environmental health (Canadian Council of Ministers of the Environment, 2008). The US EPA
525	uses a similar tool, the Hazard Ranking System, to assign a quantitative value to the human and
526	environmental risks posed by a site, which determines whether a Superfund site will be
527	categorized under a "National Priorities List" (EPA, 2017). The Superfund dataset categorized
528	site records as "not NPL" (1022 records), "deleted NPL" (27 records), "removed from NPL"
529	(one record), "proposed NPL" (nine records), "part of an NPL site" (46 records), or "final NPL"
530	(131), indicating that 186 sites are of high priority (i.e., classified as "NPL) (EPA, 2021d). Thus,
531	across Canadian and US federal datasets, there are 1202 sites that are classified as "high priority"

23

due to human and environmental health risks (Chan, Fediuk, et al., 2021; Samuel-Nakamura etal., 2017).

534 3.7 Risk Management

The management of risks related to contaminated sites in Canada and the US involves 535 removing or reducing contaminants and limiting the use of contaminated media by affected 536 537 communities. Risk management strategies are unique to each site, and involve input from regulators, site owners, policies, and local communities (Contaminated Sites Management 538 539 Working Group, 2000; EPA, 2022d). Five peer-reviewed research articles tested various risk management strategies related to contaminated sites and Indigenous communities (Table S11). A 540 study on risk mapping of contaminants on the lands of the Navajo Nation (Churchrock Chapter, 541 542 New Mexico) and a survey of 151 community members found that the maps were helpful in avoiding the risk of consumption of contaminated food and water arising from the Churchrock 543 Uranium Mine Site (deLemos et al., 2009). Another study cited the effectiveness of safety 544 protocols (education on the proper handling of hazardous wastes) for nine Fort Albany Cree First 545 Nation workers (Ontario) employed to clean-up the Mid-Canada Radar Contaminated site, 546 finding no significant burden of blood lead and PCBs before and after the clean-up (Tsuji et al., 547 2005). Three studies explored the influence of a lay-health advisor intervention on blood lead 548 concentrations in children living in proximity to the Tar Creek Superfund Site, comparing results 549 550 between members of the Eight Tribes and Nations of Northeastern Oklahoma and Non-Indigenous, white participants that lived near the site. Influences on lead exposure prevention 551 552 behaviors were first assessed through qualitative interviews with 380 children's caregivers 553 (Bland et al., 2005). Then, caregiver-child pairs (n=331 pairs, 43.5% Native American) 554 participated in a cross-sectional study, measuring children's blood lead, and conducting

24

555	structured caregiver interviews before and after a 2-year intervention in which caregivers were
556	trained by local community health advisors on how to prevent children from blood lead
557	poisoning (Bland et al., 2005; Kegler & Malcoe, 2004). The study found a reduction in blood
558	lead before and after the intervention. Of Native American children, blood lead levels decreased
559	significantly from time 1 (6.00 ug/dL) to time 2 (4.97 ug/dL), with no significant difference from
560	the white control group. Another study was conducted at a third time point (4 years later),
561	finding improved lead preventative behaviors (handwashing) in Indigenous participants (167
562	Indigenous and 213 white participants) (Michelle C Kegler et al., 2010). Another review article
563	described a precautionary principle for risk management at the Zortman-Landusky Mine
564	Superfund Site on the Fort Belknap Reservation (Montana), home to the Assiniboine and Gros
565	Ventre Tribes, in which caution was exercised in site management when risk is unknown (Emel
566	& Krueger, 2003).

Five peer-reviewed articles described the use of consumption advisories to manage risks 567 related to country foods. One article focused on the territories of the Ahahminguus community of 568 the Mowachaht Tribe and the Silammon people (British Colombia) and analyzed the use of 569 570 Canadian health advisories and fishery closures related to contaminated sites near the Gold river 571 and Powell river fisheries. The study found that the risks are comparable when switching from country foods to market foods, and that such advisories may be substituting one risk for another 572 573 (Wiseman & Gobas, 2002). The relationship between country foods and market foods was also examined in two studies focused on the Inupiaq Inuit and the Akwesasne Mohawk Nation 574 (Cassady, 2007; Hoover, 2013). Advisories for consuming traditional fish resulted in inadequate 575 nutrition and cultural loss for the Akwesasne Mohawk Community (Hoover, 2013). An 576 ethnographic field study focused on the Project Chariot abandoned waste site (Alaska) described 577

25

578	that Inupiaq Inuit considered traditional foods to be curative and preventive of health issues,
579	despite the issuance of advisories, and also described local knowledge (e.g., visually checking
580	wild game for tumors) that could be used to determine if food was contaminated (Cassady,
581	2007). Two articles in grey literature discussed the contamination of subsistence food resources
582	in Indigenous communities in general (Bienkowski, 2012; EPA, 2015), with one article noting
583	that studies of contaminants most often result in avoidance advisories (Bienkowski, 2012). One
584	government document described successful implementations of consumption advisories and
585	community education related to contaminated foods on the lands of several Indigenous
586	communities after receiving federal grants from the US EPA Superfund, including the
587	Akwesasne Mohawk Nation, Anishinaabe Nation (Great lakes region of Canada and the US),
588	and Yurok tribe (California) (EPA, 2015).

589 3.8 Long-Term Management

590 In peer-reviewed literature, information in five review articles described that 591 communities continue to face long-term site-related challenges after a site is remediated and closed by the federal government (Moore-Nall, 2015; J. Sandlos & A. Keeling, 2016; John 592 Sandlos & Arn Keeling, 2016; Smith et al., 2010; Teufel-Shone et al., 2021). For example, one 593 article described that a contaminated site resulted in alienation of Navajo Nation members 594 (Arizona) from their traditional territory (John Sandlos & Arn Keeling, 2016). Another article 595 596 described that there was a lack of acknowledgement of the legacy impacts of contaminated sites by federal governments, despite advocacy efforts by the Dettah and Ndilo communities 597 (Yellowknife) on the remediation of the Giant Mine in Canada (J. Sandlos & A. Keeling, 2016). 598 599 Long-term health impacts were also described in the context of the Los Alamos National Laboratory Superfund Site and the Tribes of the Southwestern US (Moore-Nall, 2015). The Gold 600

26

King Mine spill was described in one review article as contributing to a history of relocation and
lack of agency and voice for the Navajo (Dine) Nation, with lasting impacts on the community
(Teufel-Shone et al., 2021).

604 Three semi-quantitative studies examined post-remediation land uses of contaminated sites (Table S12) (Burger, 2004a, 2004b; LeClerc & Keeling, 2015). Two of these studies 605 606 utilized structured interviews and found that future land use preferences differed by ethnicity, with participants that were members of the Shoshone Bannock tribe (Idaho) rating camping, 607 fishing, hunting, and returning the land to Native people higher than white participants did. 608 609 Native American participants were generally underrepresented, however, in both studies (324 out 610 of 1370 participants (23.6%) and 11 out of 254 participants (3.5%)) (Burger, 2004a, 2004b). Another study involving semi-structured interviews of 18 members of the Dene and Metis 611 communities of Fort Resolution (Northwest Territories) found that since the establishment and 612 613 closing of the Abandoned Pine Point Mine site, the community's land use patterns had changed 614 from a land-based economy to a mixed economy reliant on wage labor, concluding that postremediation land use would likely be different than land uses before the site's establishment 615 (LeClerc & Keeling, 2015). 616

In conference materials in grey literature, one document recommended designing remediation processes at Superfund sites that can more effectively account for tribal needs to permanently restore the land for tribal uses (Michelsen, 2010). Another article described that due to the political and financial dynamics associated with site remediation on reserve land in Canada, the federal government will remediate a site at the lowest possible cost, which often does not meet the standard that Indigenous communities desire for post-remediation land use and development (Gailus, 2013). In federal datasets, both Superfund and FCSI categorized most of

27

the sites under "no further action required", with 2408 such sites in Canada and 688 sites in theUS (EPA, 2021d; Government of Canada, 2021).

626 3.9 Indigenous Inclusion, Collaboration, and Leadership

627 *3.9.1 Collaborative research*

628 Of the included peer-reviewed literature, 20 articles described a collaboration between 629 academic researchers and Indigenous people or communities (Arquette et al., 2002; Blake et al., 630 2015; Denham et al., 2005; Fitzgerald et al., 1996; Fitzgerald et al., 2004; Flett et al., 2021; 631 Goncharov et al., 2008; Harper et al., 2012; Hoover, 2013, 2016; Kegler & Malcoe, 2004; Michelle C Kegler et al., 2010; Michelle C. Kegler et al., 2010; Meltzer et al., 2020; Middleton 632 633 et al., 2019; Rock et al., 2019; Sarkar et al., 2019; Smith et al., 2010; Teufel-Shone et al., 2021). 634 Several articles described collaborative efforts between academic institutions and Indigenous 635 communities, as well as community-led research projects (deLemos et al., 2009; Goncharov et al., 2008; Harper et al., 2012; Hoover, 2013, 2016; Kegler & Malcoe, 2004; Michelle C Kegler et 636 al., 2010; Michelle C. Kegler et al., 2010; Rock et al., 2019). Some of these studies described 637 638 such collaborations as mutually beneficial. For example, interviews with 64 Akwesasne Mohawk 639 members on their collaboration with SUNY Albany, a public University in New York State, revealed that there were benefits to members such as education, job skills, grant money and 640 information; and to researchers such as better results, access to the community and help of 641 642 Mohawk workers in the field (Hoover, 2016). One article analyzed contaminated site response networks consisting of the Eight tribes of Northeastern Oklahoma and non-Indigenous 643 organizations, concluding that there was an increase in collaboration over time (Michelle C. 644 Kegler et al., 2010). Peer-reviewed literature supports that federal grants help to facilitate multi-645 646 study projects in communities, as was the case with a collaborative project between the Eight

28

647	tribes of Northeastern Oklahoma and the University of Oklahoma entitled 'Tribal Efforts Against
648	Lead' (Kegler & Malcoe, 2004; Michelle C Kegler et al., 2010; Michelle C. Kegler et al., 2010).
649	Challenges to collaboration were also described in peer-reviewed literature. For example,
650	members of the Akwesasne Mohawk community described difficulties with time constraints due
651	to the finite nature of academic funding, a lack of trust between researchers and community
652	members, and inadequate science communication (Hoover, 2016). Two review articles described
653	an ongoing need for greater funding and resources allocated to collaborative Indigenous-lead
654	research on contaminated sites in the United States (Lewis et al., 2017; Moore-Nall, 2015).
655	Grey literature and government websites indicated that federal funding agencies in both
656	the US and Canada provide support to Indigenous communities to address contaminated sites
657	(EPA, 2022c; 2021), which has helped to build capacity and resilience (Environment and
658	Climate Change Canada, 2019; Hoover, 2016; United States Government Accountability Office,
659	2020). Examples of such programs include the First Nations Environmental Contaminants
660	Program (FNECP) and the Northern Contaminants Program (NCP) in Canada, and funds
661	allocated under CERCLA in the US, including the Superfund State and Indian Tribe Core
662	Program Cooperative Agreements (EPA, 2022b). Government reports in grey literature describe
663	that tribes in the US have used EPA grants to support capacity building in environmental
664	programs, and that First Nations in Canada have benefitted from the FNECP (Environment and
665	Climate Change Canada, 2019; Hoover, 2016; United States Government Accountability Office,
666	2020). Many federal granting agencies require that Indigenous communities partner with
667	academic institutions (Ferguson, 2021; Indigenous Services Canada, 2021; National Institute of
668	Environmental Health Sciences, 2022), which is aligned with the aforementioned peer-reviewed
669	literature from academics involving collaborative efforts with Indigenous communities.

29

670	Furthermore, grey literature from governmental funding agencies and review papers described
671	that the requirement to partner with an established scientist trained in an academic institution
672	(Ferguson, 2021; Indigenous Services Canada, 2021; National Institute of Environmental Health
673	Sciences, 2022) limits the ability of many communities to obtain funding independently, and
674	often results in a large amount of scientific and monetary resources focused on a single
675	community (Ferguson, 2021; Fitzgerald et al., 1996; Fitzgerald et al., 2004; Hoover, 2013, 2016;
676	Kegler & Malcoe, 2004; Michelle C Kegler et al., 2010), while other sites have minimal support.

677

3.9.2 Collaborative Site Management

Peer-reviewed literature described the methods of evaluation collaborations between 678 679 Indigenous communities and non-Indigenous institutions, such as in the example of the Fort 680 Albany Cree First Nation, wherein a Canadian governmental framework was used to evaluate whether a true partnership existed between the Canadian government and First Nation (Sistili et 681 682 al., 2006), Another review article described a diminished societal, governmental, academic, and political response to the Sequoyah Corporation fuels release and the Church Rock spill, nuclear 683 releases affecting the Cherokee (Oklahoma) and Navajo (New Mexico) nations, compared to 684 685 contaminating events of a similar scale affecting white communities (Brugge et al., 2007).

Government documents are available in grey literature on inclusion and collaboration
with Indigenous communities on contaminated site processes. Canada has a federal guidance
document indicating areas in which inclusion of Indigenous communities may occur,
recommending that Indigenous people assist with the contaminated site process, and providing
potential opportunities for Indigenous involvement (for example, community members
performing media sampling or hiring Indigenous companies to carry out remediation work)
(Health Canada, 2010). Indigenous inclusion on Superfund site management follows a

30

693	consultation process outlined by the US EPA, which defines the establishment, appropriateness
694	and extent of consultation and collaboration with federally recognized tribes.(EPA, 2011a) After
695	determining that there was insufficient consultation with tribes at NPL Superfund sites (18 NPL
696	sites with documented consultation, 7 of which had incomplete data), the US Government
697	Accountability Office recommended documented consultation with tribes at 4 of the 9 steps in
698	contaminated site processes, which excludes initial assessment, remedial design, construction
699	completion and post-construction completion (i.e., maintenance and long term actions) and post-
700	remediation development (US Government Accountability Office, 2019).
701	Non-governmental grey literature highlighted a lack of Indigenous inclusion in
702	contaminated sites assessment and management processes voiced by Indigenous peoples. For
703	example, a news article described that members of the Akwesasne Mohawk Tribe (New York)
704	were dissatisfied with their opportunities to provide input into remediation decisions on the US
705	EPA Alcoa Grasse River Superfund site (Indian Country Today, 2013). Chief Glenn Nolan of the
706	Missanabie Cree First Nation (Ontario) outlined the lack of Indigenous involvement in the
707	assessment, management, and communication of risks associated with abandoned mine sites
708	(Nolan, 2009). The article proposed actions to improve consultation with Indigenous people,
709	including community involvement beginning from initial assessment, accessible communication
710	of results, and the development of ongoing collaborative monitoring strategies (Nolan, 2009).
711	While not a dominant theme in literature or government guidance documents, successful
712	instances of Indigenous leadership in contaminated site management are evidenced in grey
713	literature sources (Assembly of First Nations, 2001; EPA, 1996; Tribal Superfund Working
714	Group, 2022). The Tribal Superfund Working Group, for example, has published several tribe-
715	led efforts to fight community contamination, such as in the case of the Fort Mojave Indian Tribe

31

716	(California) remediation project on the Topock site (Tribal Superfund Working Group, 2022).
717	First Nations in Canada have also demonstrated leadership in reclaiming and remediating land
718	contaminated by abandoned mines, for example, by leading discussions among the Assembly of
719	First Nations (Canada-wide) on remediation options (Assembly of First Nations, 2001).

720 *3.9.3 Traditional Knowledge and Contaminated Sites*

721 In peer-reviewed literature, one discussion article described the negative impacts of 722 historical subsumption of Traditional Knowledge within technical contaminated site processes in 723 the remediation of the Giant Mine, Northwest Territories, which was seen by the local Dene First Nation, Dettah and Ndilo (Navajo) communities as an inadequate and inappropriate inclusion of 724 Traditional Knowledge (J. Sandlos & A. Keeling, 2016). The US EPA recently published a 725 726 document outlining the 'integration' of Traditional Knowledge into environmental science, policy, and decision-making processes, in response to tribal leaders' requests to enhance its use 727 728 (Woolford, 2017). In grey literature, Health Canada lists Traditional Knowledge as a component 729 of exposure assessment within the HHRA (Health Canada, 2018), and in a recent update of their Northern Contaminated Sites Management Plan (NCSMP), pledged to increase inclusion of 730 Traditional Knowledge studies into project planning and implementation, although the 731 operational methods of this are not published (Crown-Indigenous and Northern Affairs Canada, 732 2021). 733

734 **4. DISCUSSION**

This scoping review identified, mapped, and analyzed the existing information on
contaminated sites and Indigenous peoples in Canada and the US, and sought to address the three
main objectives outlined in the introduction. The research was motivated by observations that

32

738 contaminated sites disproportionately affect Indigenous communities (Fernández-Llamazares et al., 2020; Lewis et al., 2017), and that there is limited research on the subject matter, without 739 which a deeper understanding cannot be realized to permit evidence-based solutions. Findings 740 from 49 scholarly articles, 20 grey literature pieces, and US and Canadian federal contaminated 741 742 site databases revealed a disparate yet also vast and multi-disciplinary body of information on 743 contaminated sites affecting Indigenous peoples and their health, land, and food systems. The number of articles identified from the systematic literature search covers a relatively small 744 proportion of the total number of federal contaminated sites identified from federal inventories 745 746 that affect Indigenous peoples. Of the peer-reviewed literature retrieved, a total of 35 sites were described, while there were 8114 sites inventoried by federal governments. Information on 815 747 Indigenous communities was identified through this review, while there exist in total 574 Tribal 748 749 Entities in the US (National Conference of State Legislators, 2020) and in Canada there are 630 First Nations and 53 Inuit communities (Crown-Indigenous and Northern Affairs Canada, 2022), 750 751 as well as eight Metis Settlements (although the majority of Metis in Canada do not live on official settlements). Thus, the information available identifies a substantial amount 752 753 (approximately 64%) of Indigenous communities that are potentially impacted by federal 754 contaminated sites, though this is likely an underestimation.

We note through our mapping exercise that site locations in the US and Canada are widespread, however the majority are south of the 60th parallel in Canada, and that data from the three evidence streams may largely underrepresent the geographic scope of contaminated sites that affect Indigenous peoples. A discussion specific to federal contaminated sites is applicable to Indigenous communities that live on federally managed land. Notably, due to regulatory and legal provisions under the Indian Act, Canadian FCSI data primarily concerns First Nations

33

761	reserves, which are considered federal lands and are mostly inhabited by First Nations
762	communities with the majority being south of the 60 th parallel. Approximately 328,048 (40 %) of
763	First Nations members in Canada live on reserve land according to the 2016 census (Indigenous
764	Services Canada, 2020). Accordingly, FCSI data does not represent the total amount of
765	contaminated sites affecting Indigenous communities in the country, and furthermore, Inuit and
766	Metis communities are likely most underrepresented, as the majority do not live on reserve land
767	(Gailus, 2013). Contaminated sites affecting Indigenous communities off-reserve are usually
768	managed provincially or privately and thus are not captured by federal databases (Government of
769	Canada, 1985). One grey literature article estimated that 1200 Indigenous communities in
770	Canada have either an active mine, an abandoned mine site, or a mine exploration project on
771	their territory, which is more than double the number of communities listed in the FCSI,
772	demonstrating that there are many sites of potential or actual concern to Indigenous communities
773	that are not tracked by the federal government (Nolan, 2009). Similarly, the US EPA does not
774	have explicit criteria for determining how a Superfund Site is deemed to be of 'Native American
775	Interest', and many sites are managed by non-federal governing bodies (termed 'cleanups') or
776	private industries (EPA, 2021b; US Government Accountability Office, 2019), which are not
777	included in Superfund data. Thus, the information presented in this review is limited to federally
778	managed and inventoried contaminated sites affecting Indigenous peoples, but there are many
779	sites managed under other jurisdictions not accounted for by federal governments or this review.
780	Contaminated sites are a pervasive issue for Indigenous communities in Canada and the
781	US, with peer-reviewed literature and federal data indicating that the largest proportion of these
782	sites arise from mining activity and industrial development on or adjacent to lands inhabited by
783	Indigenous peoples. It is notable that there are many sites for which the source of contamination

34

is unknown or not documented, for example, 248 (20%) of Superfund site records do not
inventory the source of contamination, and FCSI does not inventory contaminant sources. This
review also found that there is minimal primary scientific research on the assessment of
contamination from these sites (i.e., 45 unique contaminants measured in scientific studies in the
literature compared to 440 unique contaminants measured and recorded in federal datasets), with
most studies examining a single contaminant or a handful of contaminants.
Indigenous peoples are exposed to contaminants from contaminated sites through a

791 variety of pathways, which includes inhalation, ingestion of drinking water and contaminated 792 foods, and contact with contaminated soil and sediments. Literature on traditional food systems across Canada and the US evidences a diversity of exposure pathways unique to Indigenous 793 794 communities, including for example through subsistence diets that include wild foods and medicinal plants (Chan, Fediuk, et al., 2021; Fernández-Llamazares et al., 2020; Jonasson et al., 795 796 2019). Notably, while peer-reviewed literature examined in this review documents the presence 797 of a variety of contaminants in plant foods, wildlife, wild game, and human biomarkers (Brown et al., 2014; Denham et al., 2005; Fitzgerald et al., 1996; Fitzgerald et al., 2004; Flett et al., 2021; 798 799 Garvin, 2018; Goncharov et al., 2008; Kegler & Malcoe, 2004; Michelle C Kegler et al., 2010; 800 Koch et al., 2013; Rock et al., 2019; Samuel-Nakamura et al., 2017; Sarkar et al., 2019; Tsuji et al., 2005), information on these potential exposure sources is not captured in federal databases. 801 802 As Indigenous peoples have unique consumption and land use patterns compared to the general population, exposures that are estimated based on generic federal frameworks employed in 803 804 environmental assessments may be limited (Arquette et al., 2002; Cassady, 2007; Doyle et al., 805 2012; Harris & Harper, 1997; Holifield, 2012; Lewis et al., 2017). In a search of the US EPA Exposure Factors Handbook with the keyword "Native American", six tables are available 806

35

pertaining to exposure to contaminants through the consumption of fish, but there is no
information pertaining to any other exposure pathway (EPA, 2022a). This is one example of the
paucity of data and classification tools for environmental assessments involving Indigenous
peoples.

Our review found that the current body of literature on the potential health impacts of 811 812 contaminated sites on Indigenous peoples is relatively small and lacks diversity. We identified seven peer-reviewed articles with quantitative data on health outcomes. Four of these articles 813 814 were focused on the Mohawk community of Akwesasne (Table S6), and they documented a range of chronic and developmental outcomes associated with exposure to chemical stressors 815 816 (primarily lead and PCBs), including early menarche, heart disease, kidney disease, diabetes, and 817 hypertension. In four qualitative peer-reviewed studies, culture, spirituality, language, and community were found to be adversely influenced by contaminated site exposure (Cassady, 818 819 2007; Hoover, 2013; Smith et al., 2010; Teufel-Shone et al., 2021), and these are social and 820 environmental determinants of Indigenous Peoples' health (Reading & Wien, 2009). There was evidence that many Indigenous communities face long-term site-related challenges including a 821 822 changing relationship to the earth, fear related to contamination, and cultural loss (Moore-Nall, 823 2015; John Sandlos & Arn Keeling, 2016; Smith et al., 2010; Teufel-Shone et al., 2021). While these findings are not easily generalizable (i.e., they report on findings from 6 of 815 824 825 communities identified by federal databases who are potentially exposed to contaminated sites), they alert us to the possibility that health risks are elevated in such impacted communities and 826 827 call for the need to scale-up research in this area.

According to federal data, the progression through the ten-step process for addressing a contaminated site can take decades (EPA, 2021a; Government of Canada, 2021). In the Canadian

36

830	commissioner's report on federal contaminated sites, it was identified that there are more sites in
831	the inventory than funds available for their management, and as a result only the highest priority
832	sites are addressed (Ellison, 2012; Government of Canada, 2012). Furthermore, existing
833	regulations make it difficult for communities to receive federal funding for site remediation
834	unless they can prove that there is a high risk to human health and the environment, the
835	assessment of which involves lengthy and expensive technical processes that are often
836	outsourced to experts in academic and consulting, for example, that conduct HHRAs (Gailus,
837	2013). This results in a catch-22 in which the current regulatory and federal funding structure
838	requires that Indigenous communities rely on outsourcing work, which thus limits internal
839	capacity building.

This review found that contaminated sites are often addressed by federal governments, 840 industry, and the scientific community as an isolated, technical problem, (Contaminated Sites 841 Management Working Group, 2000; EPA, 2011b; 2019) while they are considered by many 842 Indigenous peoples as part of a broader legacy of environmental injustice (Cassady, 2007; 843 Holifield, 2012; Lewis et al., 2017; Moore-Nall, 2015; John Sandlos & Arn Keeling, 2016; 844 Smith et al., 2010; Teufel-Shone et al., 2021). Federal risk assessment systems are useful to 845 846 organize and prioritize site management, however according to our review these assessments are not necessarily aligned with the needs of the communities affected by them (Contaminated Sites 847 848 Management Working Group, 2000). Furthermore, there is evidence in peer-reviewed literature 849 to suggest that the use of generic "one-size-fits-all" risk assessment models (such as the HHRA in Canada and the Hazard Ranking System in the US) for contaminated sites lack benefit to 850 Indigenous people (Arquette et al., 2002; Cassady, 2007; Doyle et al., 2012; Harris & Harper, 851 1997; Holifield, 2012; Lewis et al., 2017). Although sites are 'closed' when they are deemed to 852

853	be at a safe risk level by federal governments, this review found evidence that Indigenous
854	peoples face long-term and cumulative challenges that are not supported by governmental
855	resources and funding (Moore-Nall, 2015; J. Sandlos & A. Keeling, 2016; John Sandlos & Arn
856	Keeling, 2016; Smith et al., 2010; Teufel-Shone et al., 2021). This current western scientific
857	approach contradicts Indigenous epistemologies such as the Seven Generations Principle, a
858	Haudenosaunee philosophy followed by many Indigenous communities in Canada and the US, in
859	which decision-making considers the well-being of people and environments seven generations
860	into the future (Joseph, 2020). These factors point to the need for a holistic approach from both
861	academics and governments which includes moving beyond physical and finite impacts to
862	understanding contaminated sites as complex, multi-faceted issues with long term and
863	cumulative effects (Brugge et al., 2007; Holifield, 2012; Nolan, 2009; J. Sandlos & A. Keeling,
864	2016; Smith et al., 2010; Teufel-Shone et al., 2021). Recent evidence affirms the positive benefit
865	of environmental risk assessments that privilege Indigenous epistemologies and leadership, a
866	strategy which may help to respond to the lack of prioritization of Indigenous conceptualizations
867	of risk in contaminated site assessment (Buell et al., 2020). Taken together, these factors point to
868	a need for efficient, low-cost, Indigenous-led and community-based assessment methods that can
869	rapidly predict health and environmental risks, which would help to build community capacity
870	and improve the efficiency and cost-effectiveness of current assessment and prioritization
871	processes. There is an increasing focus on the development of New Approach Methodologies
872	(NAMs) for environmental risk assessment by industry, government, and academics
873	(Government of Canada, 2017; Krewski et al., 2010), and these findings suggest that Indigenous
874	perspectives should be considered and prioritized as a part of current NAMs development.

38

The majority of peer-reviewed research on risk management included in this review was 875 focused on avoiding contaminant exposure (for example, through the use of fish consumption 876 877 advisories), which is consistent with a global pollution management trend in which risk reduction through public and community level intervention is replaced with risk avoidance that emphasizes 878 individual level action (Fernández-Llamazares et al., 2020). It is possible that this 'downstream' 879 880 approach to management of contaminated sites perpetuates the vulnerability narrative that is often associated with Indigenous communities by Western knowledge systems, having the 881 882 potential to hinder communities from gaining greater autonomy (Haalboom & Natcher, 2012). 883 However, we note that there are cases where contaminants pose high risks to health and risk avoidance strategies are necessary in the short-term, and in these situations, community 884 involvement may help to improve site management. A recent review indicated that through the 885 involvement of First Nations communities in the process, risk management approaches such as 886 consumption advisories can provide greater benefit to First Nations (McAuley & Knopper, 887 888 2011). This is one strategy that would increase the effectiveness of federal contaminated site risk management, and the operationalization of this involvement is an area for further research. We 889 also note that a large proportion of peer-reviewed articles (n=20) identified in this review were 890 891 problem-based (Blake et al., 2015; Brown et al., 2014; Brown et al., 2013; Cassady, 2007; deLemos et al., 2009; Denham et al., 2005; Fitzgerald et al., 1996; Fitzgerald et al., 2004; 892 893 Goncharov et al., 2008; Hoover, 2013; Hund et al., 2015; Hwang et al., 2001; Kerfoot et al., 894 2020; Koch et al., 2013; Meltzer et al., 2020; Middleton et al., 2019; Rock et al., 2019; Samuel-895 Nakamura et al., 2017; Smith et al., 2010; Teufel-Shone et al., 2021) as opposed to solution-896 focused. Notably, we did not find any peer-reviewed articles focused on specific remediation 897 strategies nor restoring land back to pre-contamination conditions.

898	Most research we found on contaminated sites and Indigenous peoples involved a
899	collaboration between western academics and Indigenous communities (Excel Table S1). Several
900	such partnerships, such as in the case of the Mohawk community of Akwesasne and SUNY
901	Albany, have shown to provide mutual benefit (Hoover, 2016). While our review notes that
902	industry, government, and the scientific community acknowledge the importance of Indigenous
903	inclusion (Arquette et al., 2002; Ellison, 2012; Gover, 2007; Holifield, 2012; Michelsen, 2010;
904	Nolan, 2009; Sistili et al., 2006), we found minimal evidence of Indigenous leadership in the
905	management of contaminated sites. Recent literature from Indigenous scholars on natural
906	resource management describes that the inclusion of and collaboration with Indigenous peoples
907	in environmental management is often tokenistic (Parsons et al., 2021). The contribution of
908	Indigenous voices in contaminated site management often occurs too late in the federal process,
909	which perpetuates the "downstream" approach to site management discussed earlier. Vague
910	definitions of 'inclusion' of Indigenous peoples in contaminated site management were found
911	throughout this review (Health Canada, 2010) (EPA, 2011a), which risks the subsumption of
912	Indigenous peoples into non-Indigenous management bodies.(Fernández-Llamazares et al.,
913	2020) Our review found that non-Indigenous stakeholders are the powerholders in the
914	management of contaminated sites and largely control collaborations with Indigenous
915	communities. For example, US and Canadian federal guidance documents outline how, when,
916	and to what extent Indigenous peoples are to be included or consulted, omitting Indigenous
917	leadership in designing the process or management plan, and thus maintaining federal
918	governments as the power-holders (EPA, 2011a; Health Canada, 2010). In the US, under
919	CERCLA, tribes are excluded from identifying contaminated sites for inclusion on the Superfund
920	National Priorities List (Gover, 2007). Furthermore, based on our findings, the information

40

related to contaminated site management on Indigenous lands was dominated by non-Indigenous 921 voices. Government documents and academic articles included in this review were primarily 922 923 authored by non-Indigenous persons, while Indigenous voices could be found in news articles and other web-based grey literature. To this effect, platforms that provide a seat at the decision-924 making table for federal contaminated sites may underrepresent Indigenous peoples. These 925 926 findings are consistent with a recent review highlighting the inadequate inclusion of Indigenous 927 peoples in environmental management in general (Fernández-Llamazares et al., 2020). Increased 928 efforts and research to strategize Indigenous leadership and prioritize Indigenous epistemologies 929 in relation to contaminated site management may contribute to more holistic and sustainable contaminated site management processes. 930

931 Results indicated that federal governments, Indigenous communities, and academics acknowledge a complex relationship between Indigenous Traditional Knowledge and western 932 933 science in the context of contaminated site management, but that the approaches to achieving 934 successful collaboration are a work in progress (EPA, 2011a; Health Canada, 2010; Reid et al., 2021; J. Sandlos & A. Keeling, 2016; Woolford, 2017). Recent publications demonstrate that 935 increased efforts are being made to collaborate with Traditional Knowledge holders, including 936 937 through increased federal funding for collaborations, working groups, and discussions around Traditional Knowledge (EPA, 2011a; J. Sandlos & A. Keeling, 2016; Woolford, 2017). 938 939 However, federal and academic collaboration initiatives in contaminated site management and research processes may in some cases continue to perpetuate paternalistic environmental 940 practices if left unchecked, as we note that "Using", "Incorporating", and "Integrating" 941 Traditional Knowledge into western science and governance has been described in academic 942 literature as a form of assimilation (Reid et al., 2021). New approaches that engage Indigenous 943

41

and Western ways of knowing harmoniously may continue to propel collaborative engagement 944 between knowledge systems forward. One such approach is Two-Eyed Seeing, a term 945 popularized by Mi'kmaw Elder Dr. Albert Marshall, through which we "learn to see from one 946 eye with the strengths of Indigenous knowledges and ways of knowing, and from the other eye 947 with the strengths of mainstream knowledge, and we use both eyes together" (Reid et al., 2021). 948 949 Through this approach, Indigenous environmental management goals related to contaminated 950 sites may begin to be realized through collaboration between networks such as Indigenous 951 leadership, Indigenous community members, industry, federal governments, and the scientific 952 community.

953 4.1 Strengths and Limitations

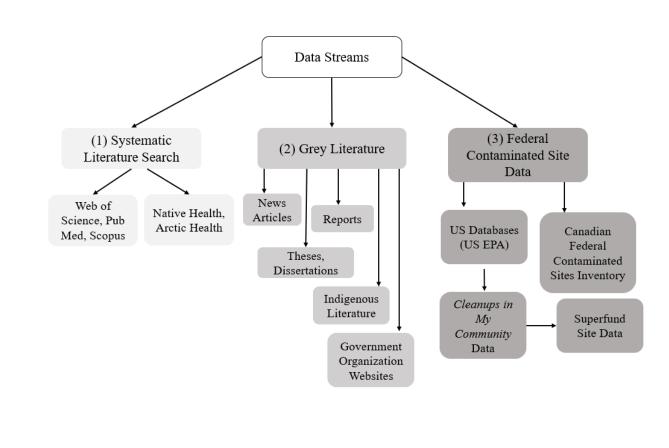
954 This is the first scoping review to examine the issue of federal contaminated sites and Indigenous peoples, and thus addresses a research gap. Given the disparate evidence base, the 955 956 compilation and synthesis of data and information from the scholarly literature, federal data and 957 grey literature is a major strength of this review, as it enables us to see with greater diversity, clarity, and objectivity the many perspectives involved in the subject matter. The use of both 958 959 published and unpublished literature promotes the consideration of voices that are not typically heard in academic literature. Furthermore, the study used a rigorous and transparent search 960 961 strategy, following the PRISMA guideline for scoping reviews (Tricco et al., 2018). To ensure a 962 comprehensive search of the diversity of literature, the search strategy included three databases as well as reference list searches. 963

Despite the strengths of this work, there are some notable limitations. Foremost is the lack of data. Across the three data streams we relied on, there is relatively minimal information (i.e., contaminant sources and types, human exposure pathways, health outcomes) on federal

42

967	contaminated sites to which Indigenous peoples are potentially exposed. Within federal
968	databases, there are 3138 contaminated sites listed without data on contaminants, and a small
969	fraction of these inventoried sites have been the focus of peer-reviewed scientific studies.
970	Despite evidence from federal databases on the presence of hundreds of contaminants (i.e., 440
971	unique contaminants identified) present at contaminated sites, there is almost no peer-reviewed
972	research on community-specific exposures or health outcomes in the literature. Such a lack of
973	knowledge (i.e., unknown potential health and environmental effects) has been shown to create
974	stress and fear for many Indigenous communities, thereby changing their relationship with the
975	land (Cassady, 2007; Hoover, 2013; Smith et al., 2010; Teufel-Shone et al., 2021).
976	Furthermore, due to the relatively small and disparate body of knowledge on the issue of
977	contaminated sites and Indigenous peoples in North America, it is difficult to draw strong
978	conclusions on the findings (though our findings are generally consistent). While there has been
979	a legacy of challenges related to contaminated sites for Indigenous peoples, the documentation of
980	federal contaminated sites is relatively recent, with the US Superfund program established in
981	1980 (Beins, 2015) and the Canadian Contaminated Sites Working Group established in 1995
982	(Contaminated Sites Management Working Group, 2000). According to our review, peer-
983	reviewed literature available on the topic is dated as early as 1996. In addition, Indigenous
984	peoples across Canada and the US are not a homogenous group, and the findings of this review
985	are not generalizable. However, the nature of a scoping review is that it provides a general
986	overview of current knowledge on the topic and can thus provide some motivation and direction
987	for future research.

988 This study did not identify all relevant grey literature, but rather sought grey literature 989 iteratively as the review developed per the SYMBALS protocol described in the methods (van


43

Haastrecht et al., 2021). This strategy helped with the management of the breadth of concepts 990 991 within the broad topic of contaminated sites and Indigenous communities and enabled the 992 gathering of multiple perspectives on a single concept, as opposed to single perspectives on multiple topics. The included literature was reviewed by one reviewer, and this is a major 993 limitation. However, the relatively small body of literature available allowed for the selected 994 995 articles to be reviewed with a high degree of detail and rigor by one reviewer. Finally, and as 996 elaborated in the methods section (Positionality Statement), we note that this review was 997 conducted by non-Indigenous academics, who have a limited understanding of the experiences of Indigenous peoples and communities. Every attempt was made to acknowledge this positionality 998 and ensure transparency in the process of writing this article, however, this is a major limitation. 999

1000 4.2 Conclusions

This scoping review considered academic research, grey literature, and federal data to 1001 1002 better understand the issue of contaminated sites and Indigenous peoples in Canada and the US. 1003 In doing so, we found a vast and diverse but also disparate body of information evidencing the contamination of the lands of 815 distinct Indigenous tribes and nations and the presence of 440 1004 1005 different contaminants or contaminant groups. Our first objective was to synthesize information pertaining to the relationship between contaminated sites and Indigenous people, and their land 1006 1007 and food systems. Results demonstrated that there is minimal data on the contaminant sources 1008 and types, human exposure pathways, health outcomes assessment and management of risks 1009 relative to the number of sites on or adjacent to Indigenous lands. Our second objective was to 1010 better understand the strategies, challenges, and successes for contaminated sites assessment and 1011 management on Indigenous land, and our third objective was to explore the evidence on 1012 Indigenous leadership and inclusion in contaminated sites management and research activities.

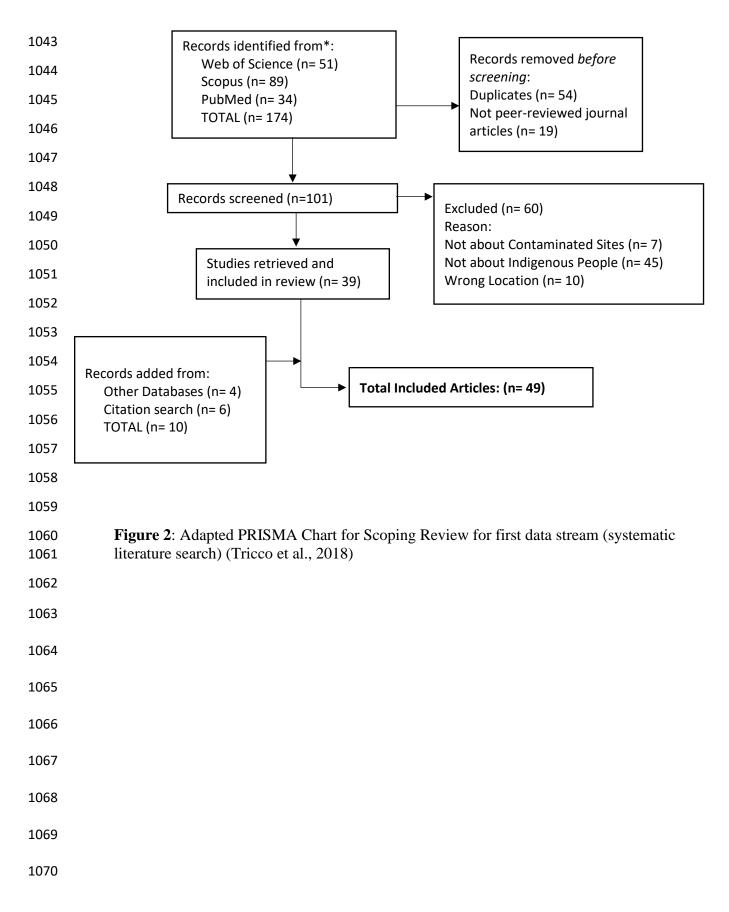

	44
1013	Overall, our review demonstrated a need for more holistic, upstream, and efficient approaches in
1014	the assessment, management, and research of contaminated sites on Indigenous lands. This
1015	should include a focus on community-specific approaches to site management and a re-
1016	conceptualization of risks related to contaminated sites that privileges Indigenous
1017	epistemologies; greater collaboration between networks such as the scientific community,
1018	Indigenous communities, and federal governments; and a re-evaluation of current frameworks in
1019	which contaminated sites are addressed with Indigenous leadership at the forefront.
1020	
1021	
1022	
1023	
1024	
1025	
1026	
1027	

Figure 1: Overview of the three data streams used in this scoping review

- -

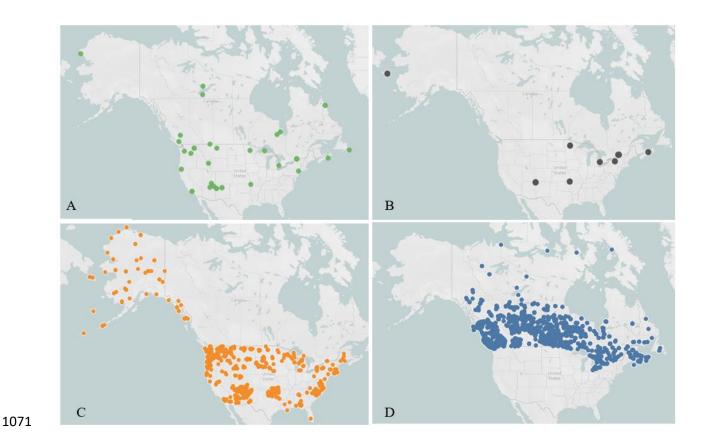
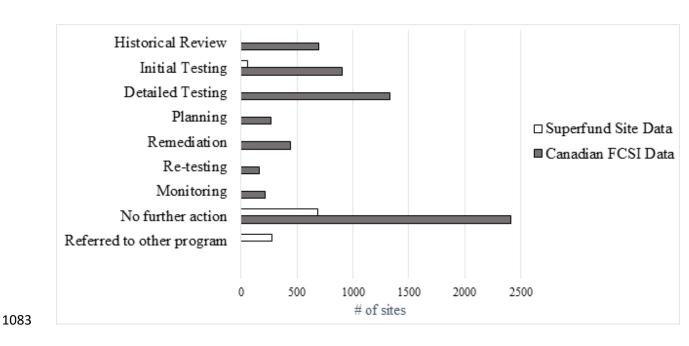



Figure 3: Co-location of Contaminated Sites affecting Indigenous Peoples based on a review of
data from A) Site locations identified via the primary literature review; B) Site locations
identified in grey literature; C) Site locations identified in US EPA Superfund Database; D) Site
locations identified in Canadian Federal Contaminated Site Inventory Data. Each site is indicated
with a dot (note: some site locations are the focus of more than one peer-reviewed article). The
maps were generated using OpenStreet Maps and Tableau Software. The underlying database is
available in the supplementary materials (Excel Tables S1-S4).

- 1081
- 1082

Figure 4: Bar graph representing the number of sites at each stage of the contaminated sites

1086 management process for Canada and US Data, classified under federal management programs

```
1087 (CERCLA and CSMP) (Excel Tables S3 and S4)
```

49

Table 1: Meta-data from three data streams (systematic literature review, grey literature, andfederal contaminated site databases)

1101

	Peer- reviewed Literature	Grey Literature ª	Canadian Federal Contaminated Sites Inventory (FCSI)	US EPA Superfund Dataset	TOTAL
Total # of records	49	20	6878	1236	8180
# of active sites ^b	n/a	n/a	2428	463	2891
# of archived sites	n/a	n/a	2843	773	3616
# of suspected sites	n/a	n/a	1607	n/a	1607
	41 (8 Canada, 30 US, 3 US and Canada)		576	239	815 ^f
# of contaminants identified		14	12	440	440 ^f

^aGrey literature was collected iteratively using SYMBALs methodology as described above (van

- Haastrecht et al., 2021), and therefore is not representative of the entire scope of grey literatureavailable on the topic
- ^b "Active Sites": have not completed the process for addressing a contaminated site and continue
 to pose an environmental and/or financial liability to the federal government are classified as

1107 active(Environment Canada, 2012)

- "Closed" or "Archived" sites are defined by federal governments as having shown acceptable
 levels of human and ecological risk by meeting national guidelines, remedial objectives have
- 1110 been achieved, and no further action is required (Environment Canada, 2012)
- ^dA "suspected site" is one at which further assessment is required to determine if the site is
- 1112 'contaminated' (i.e., remedial action may be required) (Government of Canada, 2021)
- 1113 ^e The literature review's definition of Indigenous included First Nations, Inuit, and Metis peoples
- in Canada, and all Native American peoples in the United States, including those residing in non-
- 1115 contiguous states; Canadian FCSI data was filtered by sites located on reserve land, and
- inventories the name of the Indigenous community that lives there; Superfund data specifies the
- 1117 Native American community which is affected by the site (with the site classified under "Native
- 1118American Interest")
- 1119 ^f duplicates removed
- 1120
- 1121
- 1122
- 1123

50

1124

Table 2: Number of contaminants reported by media type in peer-reviewed articles and federal

1126 site records

1127

Contaminant Media Type	# of contaminants detected per media in peer-reviewed articles a (% of total)	# of contaminants reported per media in FCSI data ^b (% of total)	# of contaminants reported per media in Superfund data ^b (% of total)
Soil (incl. surface soil)	4 (6.3%)	3493 (62.8%)	3817 (34.7%)
Groundwater	n/a	1022 (18.4%)	2618 (23.8%)
Sediment	3 (4.8%)	111 (2.0%)	1841 (16.8%)
Surface water	9 (14.3%)	133 (2.4%)	903 (8.2%)
Solid Waste	1 (1.6%)	Not reported	403 (3.7%)
Air	n/a	56 (1.0%)	184 (1.7%)
Other Media	46 (73%)	n/a	n/a
TOTAL #	63	5559	10 988

^aTo display data that is comparable to federal governmental databases, this column reflects the number of

1129 contaminants detected per media per peer-reviewed article collecting primary quantitative data. For a

detailed chart on contaminants sampled including the number of samples taken in each study, seesupplemental materials (Excel Table S1).

1132 ^bFederal databases (both FCSI and Superfund) provided information on the name of contaminants or

1133 contaminant groups found at each site, and the media in which they were found. Notably, the databases do

not indicate the number of samples taken per media or the contaminant level. This number therefore

provides us with an idea of the prevalence at which each media is sampled, rather than the exact number of samples per media

1137 Note: See Excel Tables S1, S3, and S5 for complete datasets (EPA, 2021d; Goncharov et al., 2008)

1138

1139

References

1142 1143 1144	Arquette, M., Cole, M., Cook, K., LaFrance, B., Peters, M., Ransom, J., Sargent, E., Smoke, V., & Stairs, A. (2002, APR). Holistic risk-based environmental decision making: A native perspective. <i>Environmental health perspectives</i> , 110, 259-264. <u>https://doi.org/10.1289/ehp.02110s2259</u>
1145 1146 1147 1148	Arsenault, R., Bourassa, C., Diver, S., McGregor, D., & Witham, A. (2019). Including indigenous knowledge systems in environmental assessments: restructuring the process. <i>Global</i> <i>Environmental Politics</i> , 19(3), 120-132.
1149 1150 1151 1152	Assembly of First Nations. (2001, May 11-13, 2001). <i>After the Mine: Healing Our Lands and Nations- a workshop on abandoned mines</i> The Assembly of First Nations and MiningWatch Canada, Sudbury, Ontario. <u>https://miningwatch.ca/sites/default/files/afn_mwc_workshop_report.pdf</u>
1153 1154 1155	Beins, K. a. L., Stephen. (2015). <i>Superfund: Polluters pay so children can play</i> . <u>https://chej.org/wp-content/uploads/Superfund-35th-Anniversary-Report1.pdf</u>
1156 1157 1158	Bienkowski, B. (2012). Contaminated Culture: Native People Struggle with Tainted Resources. <i>Scientific American</i> .
1159 1160 1161 1162 1163	Blake, J. M., Avasarala, S., Artyushkova, K., Ali, AM. S., Brearley, A. J., Shuey, C., Robinson, W. P., Nez, C., Bill, S., & Lewis, J. (2015). Elevated concentrations of U and co-occurring metals in abandoned mine wastes in a northeastern Arizona Native American community. <i>Environmental</i> <i>Science & Technology</i> , 49(14), 8506-8514.
1164 1165 1166 1167	Bland, A. D., Kegler, M. C., Escoffery, C., & Malcoe, L. H. (2005, Jul). Understanding childhood lead poisoning preventive behaviors: the roles of self-efficacy, subjective norms, and perceived benefits. <i>Preventive Medicine</i> , 41(1), 70-78. <u>https://doi.org/10.1016/j.ypmed.2004.10.010</u>
1168 1169 1170 1171	Briffa, J., Sinagra, E., & Blundell, R. (2020, 2020/09/01/). Heavy metal pollution in the environment and their toxicological effects on humans. <i>Heliyon</i> , 6(9), e04691. <u>https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e04691</u>
1172 1173 1174 1175	Brown, T. M., Fisk, A. T., Helbing, C. C., & Reimer, K. J. (2014). Polychlorinated biphenyl profiles in ringed seals (Pusa Hispida) reveal historical contamination by a military radar station in Labrador, Canada. <i>ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY</i> , 33(3), 592-601.
1176 1177 1178 1179 1180	Brown, T. M., Kuzyk, Z. Z. A., Stow, J. P., Burgess, N. M., Solomon, S. M., Sheldon, T. A., & Reimer, K. J. (2013). Effects-based marine ecological risk assessment at a polychlorinated biphenyl- contaminated site in Saglek, Labrador, Canada. <i>ENVIRONMENTAL TOXICOLOGY AND</i> <i>CHEMISTRY</i> , 32(2), 453-467. <u>https://doi.org/https://doi.org/10.1002/etc.2070</u>
1181 1182 1183 1184	Brugge, D., delemos, J. L., & Bui, C. (2007). The Sequoyah Corporation fuels release and the Church Rock spill: unpublicized nuclear releases in American Indian communities. <i>American journal of</i> <i>public health</i> , 97(9), 1595-1600.

1185 1186 1187 1188	Buell, MC., Ritchie, D., Ryan, K., & Metcalfe, C. D. (2020). Using Indigenous and Western knowledge systems for environmental risk assessment. <i>Ecological Applications</i> , 30(7), e02146. <u>https://doi.org/https://doi.org/10.1002/eap.2146</u>
1189 1190 1191 1192	Burger, J. (2004a). Recreational rates and future land-use preferences for four Department of Energy sites: consistency despite demographic and geographical differences. <i>ENVIRONMENTAL</i> <i>RESEARCH</i> , 95(2), 215-223.
1193 1194 1195 1196	Burger, J. (2004b). Study of the future land use of a contaminated site: Preferences versus potential use. <i>Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies & Techniques,</i> 14(4), 97-110.
1197 1198 1199	Canadian Council of Ministers of the Environment. (2008). <i>National Classification System for</i> <i>Contaminated Sites- Guidance Document</i> . <u>https://www.ccme.ca/en/res/ncscs_guidance_e.pdf</u>
1200 1201 1202	Canadian Geographic. Metis Settlements and Farms. In <i>Indigenous People's Atlas of Canada</i> . Canadian Geographic. <u>https://indigenouspeoplesatlasofcanada.ca/article/metis-settlements-and-farms/</u>
1203 1204 1205 1206 1207	Canuel, R., Grosbois, S. B. d., Atikessé, L., Lucotte, M., Arp, P., Ritchie, C., Mergler, D., Chan, H. M., Amyot, M., & Anderson, R. (2006). New Evidence on Variations of Human Body Burden of Methylmercury from Fish Consumption. <i>Environmental health perspectives</i> , 114(2), 302-306. <u>https://doi.org/doi:10.1289/ehp.7857</u>
1208 1209 1210	Cassady, J. (2007). A tundra of sickness: the uneasy relationship between toxic waste, TEK, and cultural survival. <i>Arctic Anthropology</i> , 44(1), 87-97.
1211 1212 1213 1214 1215	Castleden, H., Bennett, E., Lewis, D., & Martin, D. (2017). "Put It Near the Indians": Indigenous Perspectives on Pulp Mill Contaminants in Their Traditional Territories (Pictou Landing First Nation, Canada). Progress in community health partnerships: research, education, and action, 11(1), 25-33.
1216 1217 1218 1219 1220	Chan, H. M., Fediuk, K., Batal, M., Sadik, T., Tikhonov, C., Ing, A., & Barwin, L. (2021, 2021/06/01). The First Nations Food, Nutrition and Environment Study (2008–2018)—rationale, design, methods and lessons learned. <i>Canadian Journal of Public Health</i> , 112(1), 8-19. <u>https://doi.org/10.17269/s41997-021-00480-0</u>
1221 1222 1223 1224	Chan, H. M., Singh, K., Batal, M., Marushka, L., Tikhonov, C., Sadik, T., Schwartz, H., & Fediuk, K. (2021). Levels of metals and persistent organic pollutants in traditional foods consumed by First Nations living on-reserve in Canada. <i>Canadian Journal of Public Health</i> , 112(1), 81-96.
1225 1226 1227 1228	Clark, T. (2020). A Comparison of Tribal Sovereignty, Self-Determination, Environmental Justice at the EPA's Onondaga Lake and Superfund Sites City University of New York]. New York. https://academicworks.cuny.edu/gc_etds/3739/

1229 1230 1231 1232	Contaminated Sites Management Working Group. (2000). <i>Federal approach to contaminated sites</i> . <u>https://www.canada.ca/en/environment-climate-change/services/federal-contaminated-sites/federal-approach.html</u>
1233 1234 1235	Coté, C. (2016). "Indigenizing" food sovereignty. Revitalizing Indigenous food practices and ecological knowledges in Canada and the United States. <i>Humanities</i> , <i>5</i> (3), 57.
1236 1237 1238 1239	Crown-Indigenous and Northern Affairs Canada. (2021). <i>Evaluation of the Northern Contaminated Sites</i> <i>Program</i> . <u>https://www.rcaanc-cirnac.gc.ca/DAM/DAM-CIRNAC-RCAANC/DAM-AEV/STAGING/texte-text/ev_ncsp21_1628679495032_eng.pdf</u>
1240 1241 1242 1243	Crown-Indigenous and Northern Affairs Canada. (2022). <i>Indigenous Peoples and Communities</i> . Crown- Indigenous and Northern Affairs Canada. Retrieved June 27 from <u>https://www.rcaanc-</u> <u>cirnac.gc.ca/eng/1100100013785/1529102490303</u>
1244 1245 1246 1247	Damman, S., Eide, W. B., & Kuhnlein, H. V. (2008, 2008/04/01/). Indigenous peoples' nutrition transition in a right to food perspective. <i>Food Policy</i> , 33(2), 135-155. <u>https://doi.org/https://doi.org/10.1016/j.foodpol.2007.08.002</u>
1248 1249 1250 1251 1252	 deLemos, J. L., Brugge, D., Cajero, M., Downs, M., Durant, J. L., George, C. M., Henio-Adeky, S., Nez, T., Manning, T., Rock, T., Seschillie, B., Shuey, C., & Lewis, J. (2009, 2009/07/09). Development of risk maps to minimize uranium exposures in the Navajo Churchrock mining district. <i>Environmental Health</i>, 8(1), 29. <u>https://doi.org/10.1186/1476-069X-8-29</u>
1253 1254 1255 1256 1257	 Denham, M., Schell, L. M., Deane, G., Gallo, M. V., Ravenscroft, J., & DeCaprio, A. P. (2005, Feb). Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. <i>Pediatrics</i>, <i>115</i>(2), e127-134. <u>https://doi.org/10.1542/peds.2004-1161</u>
1258 1259 1260 1261	Doyle, J. R., Blais, J. M., Holmes, R. D., & White, P. A. (2012, May 1). A soil ingestion pilot study of a population following a traditional lifestyle typical of rural or wilderness areas. SCIENCE OF THE TOTAL ENVIRONMENT, 424, 110-120. <u>https://doi.org/10.1016/j.scitotenv.2012.02.043</u>
1262 1263 1264 1265	 Eckert, L. E., Claxton, N. X., Owens, C., Johnston, A., Ban, N. C., Moola, F., & Darimont, C. T. (2020). Indigenous knowledge and federal environmental assessments in Canada: applying past lessons to the 2019 impact assessment act. <i>Facets</i>, 5(1), 67-90.
1266 1267 1268	Ellison, M. (2012). Development of Aboriginal Lands: Successes, risks and environemental concerns respecting contaminated sites Vancouver, BC
1269 1270 1271	Emel, J., & Krueger, R. (2003). Spoken but not Heard: The promise of the precautionary principle for natural resource development. <i>Local Environment</i> , 8, 9-25.
1272	

1273 1274 1275	Engwa, G. A., Ferdinand, P. U., Nwalo, F. N., & Unachukwu, M. N. (2019). Mechanism and health effects of heavy metal toxicity in humans. <i>Poisoning in the modern world-new tricks for an old dog, 10</i> .
1276 1277 1278 1279 1280	Environment and Climate Change Canada. (2019, 2019-07-24). <i>Federal Contaminated Sites: Success Stories</i> . Environment and Climate Change Canada. Retrieved February 15 from https://www.canada.ca/en/environment-climate-change/services/federal-contaminated-sites/success-stories.html#kitasoo
1281 1282	EPA. (1996). Third National Tribal Conference on Environmental Management.
1283 1284 1285 1286	EPA. (2011a). EPA Policy on Consultation and Coordination with Indian Tribes. <u>https://www.epa.gov/sites/default/files/2013-08/documents/cons-and-coord-with-indian-tribes-policy.pdf</u>
1287 1288 1289 1290	EPA. (2011b). <i>This is Superfund A community Guide to EPA's Superfund Program</i> . <u>http://www7.nau.edu/itep/main/hazsubmap/docs/CERCLA/ThisIsSuperfundACommunityGuideToEPAsSuperfundProgram9.13.11.pdf</u>
1291 1292 1293 1294	EPA. (2015). A Decade of Tribal Environmental Health Research: Results and Impacts from EPA's Extramural Grants and Fellowship Programs. <u>https://www.epa.gov/sites/default/files/2015-08/documents/results-impacts.pdf</u>
1295 1296	EPA. (2017). Revised HRS Final Rule, 40 CFR 300. https://semspub.epa.gov/work/HQ/100002489.pdf
1297 1298 1299 1300 1301	EPA. (2020). Population Surrounding 1857 Superfund Remedial Sites. <u>https://outlook.office.com/mail/inbox/id/AAQkADAyNWViYjc3LTI3OGQtNDRjOC04OWU3L</u> <u>TExMjU2Zjg3NzBIZgAQAErw9YWvUtBNqV%2F%2FtjXe5gY%3D?realm=mcgill.ca&path=/</u> <u>mail/search</u>
1302 1303 1304	EPA. (2021a). <i>CIMC Listing</i> United States Environmental Protection Agency. <u>https://cimc.epa.gov/ords/cimc/f?p=CIMC:LIST</u>
1305 1306 1307	EPA. (2021b). Cleanups in My Community (CIMC)- Cleanups and Grants Listings Page https://cimc.epa.gov/ords/cimc/f?p=CIMC:LIST
1308 1309 1310	EPA. (2021c, September 28, 2021). <i>Contaminated Land</i> . United States Environmental Protection Agency. <u>https://www.epa.gov/report-environment/contaminated-land#roe-indicators</u>
1311 1312 1313	EPA. (2021d). Search Superfund Site Information https://cumulis.epa.gov/supercpad/cursites/srchsites.cfm
1314	

1315 1316	EPA. (2022a). <i>EPA ExpoBox</i> [Database]. EPA Expobox. <u>https://cfpub.epa.gov/ncea/risk/expobox/efhTableSearch.cfm</u>
1317 1318 1319 1320	EPA. (2022b). <i>Land Cleanup Funding Authorities Available to Tribal Governments</i> . Retrieved June 14 from <u>https://www.epa.gov/tribal-lands/land-cleanup-funding-authorities-available-tribal-governments-0</u>
1321 1322 1323 1324	EPA. (2022c). Land Cleanup Funding Authorities Available to Tribal Governments. Retrieved May 27 2022 from <u>https://www.epa.gov/tribal-lands/land-cleanup-funding-authorities-available-tribal-governments-0</u>
1325 1326	EPA. (2022d). Risk Management. Retrieved May 30 from https://www.epa.gov/risk/risk-management
1327 1328 1329	Ferguson, K. (2021). Indigenous Environmental health research secures \$1.3M grant. <i>Western News</i> . <u>https://news.westernu.ca/2021/08/indigenous-environmental-health-research-secures-1-3m-grant/</u>
1330 1331 1332 1333 1334	Fernández-Llamazares, Á., Garteizgogeascoa, M., Basu, N., Brondizio, E. S., Cabeza, M., Martínez-Alier, J., McElwee, P., & Reyes-García, V. (2020). A State-of-the-Art Review of Indigenous Peoples and Environmental Pollution. <i>Integrated Environmental Assessment and Management</i> , 16(3), 324-341. <u>https://doi.org/https://doi.org/10.1002/ieam.4239</u>
1335 1336 1337 1338 1339	Fitzgerald, E. F., Brix, K. A., Deres, D. A., Hwang, SA., Bush, B., Lambert, G., & Tarbell, A. (1996). Polychlorinated biphenyl (PCB) and dichlorodiphenyl dichloroethylene (DDE) exposure among Native American men from contaminated Great Lakes fish and wildlife. <i>Toxicology and</i> <i>industrial health</i> , 12(3-4), 361-368.
1340 1341 1342 1343 1344 1345	Fitzgerald, E. F., Hwang, SA., Langguth, K., Cayo, M., Yang, BZ., Bush, B., Worswick, P., & Lauzon, T. (2004, 2004/02/01/). Fish consumption and other environmental exposures and their associations with serum PCB concentrations among Mohawk women at Akwesasne. <i>ENVIRONMENTAL RESEARCH</i> , 94(2), 160-170. <u>https://doi.org/https://doi.org/10.1016/S0013- 9351(03)00133-6</u>
1346 1347 1348 1349 1350	Flett, L., McLeod, C. L., McCarty, J. L., Shaulis, B. J., Fain, J. J., & Krekeler, M. P. S. (2021, 2021/03/01/). Monitoring uranium mine pollution on Native American lands: Insights from tree bark particulate matter on the Spokane Reservation, Washington, USA. <i>ENVIRONMENTAL RESEARCH</i> , 194, 110619. <u>https://doi.org/https://doi.org/10.1016/j.envres.2020.110619</u>
1351 1352 1353 1354	Gailus, J. (2013). <i>Management of Contaminated Sites on Indian Reserve Lands</i> Site Remediation in British Colombia Conference, Vancouver. <u>https://www.dgwlaw.ca/wp- content/uploads/2014/12/Site_Remediation_Conference_Paper.pdf</u>
1355 1356 1357	Gallo, M. (2011). From wood treatment to unequal treatment: The story of the St. Regis Superfund site. Law & Ineq., 29, 175.
1358	

1359 1360 1361 1362	Garvin, E. M., Bridge, Cas F., Garvin, Meredith S. (2018). Edible wild plants growing in contaminated floodplains: implications for the issuance of tribal consumption advisories within the Grand Lake watershed of northeastern Oklahoma, USA. <i>Environmental Geochemistry and Health, 40</i> (3), 999-1025. <u>https://doi.org/http://dx.doi.org/10.1007/s10653-017-9960-3</u>
1363 1364 1365 1366 1367	 Goncharov, A., Haase, R. F., Santiago-Rivera, A., Morse, G., McCaffrey, R. J., Rej, R., & Carpenter, D. O. (2008, 2008/02/01/). High serum PCBs are associated with elevation of serum lipids and cardiovascular disease in a Native American population. <i>ENVIRONMENTAL RESEARCH</i>, <i>106</i>(2), 226-239. <u>https://doi.org/10.1016/j.envres.2007.10.006</u>
1368 1369 1370	Gover, L. (2007). Twenty Years Later-Tribes and the Superfund Program. <i>Natural Resources & Environment</i> , 21(3), 48-53.
1371 1372	Indian Act, (1985). https://laws-lois.justice.gc.ca/eng/acts/i-5/fulltext.html
1373 1374 1375 1376	Government of Canada. (2012). Report of the Commissioner of the Environmental and Sustainable Development- Federal Contaminated Sites and Their Impacts. http://www.oagbvg.gc.ca/internet/English/parl_cesd_201205_03_e_36775.html#hd5b,
1377 1378 1379 1380	Government of Canada. (2017). <i>Committee report- November 16-17, 2016.</i> . <u>https://www.canada.ca/en/health-canada/services/chemical-substances/chemicals-management-plan/science-committee/meeting-records-reports/committee-report-november-16-17-2016.html</u>
1381 1382 1383 1384	Government of Canada. (2019). Action plan for contaminated sites. Government of Canada. Retrieved May 24 from <u>https://www.canada.ca/en/environment-climate-change/services/federal- contaminated-sites/action-plan.html</u>
1385 1386 1387	Government of Canada. (2021). Federal Contaminated Sites Inventory. <u>https://www.tbs-sct.gc.ca/fcsi-</u> <u>rscf/home-accueil-eng.aspx</u>
1388 1389 1390 1391 1392	Government of Northwest Territories. (2021). Human Health Risk Assessment for Legacy Arsenic Contamination Around Yellowknife- Plain Language Summary. <u>https://www.enr.gov.nt.ca/sites/enr/files/resources/arsenic_human_health_risk_assessment_summ_ary_june_2021_0.pdf</u>
1393 1394 1395	Gunn K, O. N. C. (2021). Indigenous Law and Canadian Courts. <i>First Peoples' Law</i> . <u>https://www.firstpeopleslaw.com/public-education/blog/indigenous-law-canadian-</u>
1396 1397 1398	Haalboom, B., & Natcher, D. C. (2012). The power and peril of" vulnerability": Approaching community labels with caution in climate change research. <i>ARCTIC</i> , 319-327.
1399 1400 1401	Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of Google Scholar in evidence reviews and its applicability to grey literature searching. <i>PLoS ONE</i> , <i>10</i> (9), e0138237.

Hansen, T. (2018). Kill the Land, Kill the People: There Are 532 Superfund Sites in Indian Country! <i>Indian Country Today</i> .
Harper, B. (2007). Traditional Tribal Subsistence Exposure Scenario and Risk Assessment Guidance Manual. <u>https://health.oregonstate.edu/sites/health.oregonstate.edu/files/research/pdf/tribal-grant/exposure_scenario_and_risk_guidance_manual_v2.pdf</u>
Harper, B., Harding, A., Harris, S., & Berger, P. (2012). Subsistence exposure scenarios for tribal applications. <i>Human and Ecological Risk Assessment: An International Journal, 18</i> (4), 810-831.
Harper, B. L., Flett, B., Harris, S., Abeyta, C., & Kirschner, F. (2002). The Spokane Tribe's multipathway subsistence exposure scenario and screening level RME. <i>RISK ANALYSIS</i> , <i>22</i> (3), 513-526.
Harris, S. G., & Harper, B. L. (1997, Dec). A Native American exposure scenario. <i>RISK ANALYSIS</i> , <i>17</i> (6), 789-795. <u>https://doi.org/10.1111/j.1539-6924.1997.tb01284.x</u>
Health Canada. (2010). A Guide to Involving Aboriginal Peoples in Contaminated Sites Managament. https://publications.gc.ca/collections/collection 2011/sc-hc/H128-1-10-628-eng.pdf
Health Canada. (2018). Guidance for evaluating human health impacts in environmental assessment: country foods.
 Holifield, R. (2012). Environmental Justice as Recognition and Participation in Risk Assessment: Negotiating and Translating Health Risk at a Superfund Site in Indian Country. ANNALS OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS, 102(3), 591-613. <u>https://doi.org/10.1080/00045608.2011.641892</u>
Hoover, E. (2013). Cultural and health implications of fish advisories in a Native American community. <i>Ecological Processes</i> , 2(1), 1-12.
Hoover, E. (2016). "We're not going to be guinea pigs;" Citizen Science and Environmental Health in a Native American Community. <i>Journal of Science Communication</i> , 15(1), A05.
 Hund, L., Bedrick, E. J., Miller, C., Huerta, G., Nez, T., Ramone, S., Shuey, C., Cajero, M., & Lewis, J. (2015). A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo Nation. <i>Journal of the Royal Statistical Society: Series A (Statistics in Society), 178</i>(4), 1069-1091.
Hwang, SA., Yang, BZ., Fitzgerald, E. F., Bush, B., & Cook, K. (2001, 2001/07/01). Fingerprinting PCB patterns among Mohawk women. <i>Journal of Exposure Science & Environmental</i> <i>Epidemiology</i> , 11(3), 184-192. <u>https://doi.org/10.1038/sj.jea.7500159</u>

1445 1446 1447	Hykin, J. B. (2016, September 21, 2016). Contaminated Sites on First Nations Lands 2016 Site Remediation Conference, Vancouver, BC. <u>http://www.woodwardandcompany.com/wp- content/uploads/pdfs/2016-09-20-Contaminated_Sites_on_First_Nation_Lands-Final.pdf</u>
1448 1449 1450 1451	Indian Country Today. (2013). Mohawks Say EPA Alcoa-Superfund Cleanup Plan Falls Short. <i>Indian</i> <i>Country Today</i> . <u>https://indiancountrytoday.com/archive/mohawks-say-epa-alcoa-superfund-cleanup-plan-falls-short</u>
1452 1453 1454 1455	Indigenous and Northern Affairs Canada. (2016). <i>Evaluation of the Contaminated Sites On-Reserve</i> (South of the 60th Parallel) Program. <u>https://www.rcaanc-cirnac.gc.ca/DAM/DAM-CIRNAC-</u> <u>RCAANC/DAM-AEV/STAGING/texte-text/ev_css60_1511896979296_eng.pdf</u>
1456 1457 1458 1459	Indigenous Services Canada. (2020). Annual Report to Parliament <u>https://www.sac-</u> <u>isc.gc.ca/DAM/DAM-ISC-SAC/DAM-TRNSPRCY/STAGING/texte-text/annual-report-</u> <u>parliament-arp-report2020_1648059621383_eng.pdf</u>
1460 1461 1462	Indigenous Services Canada. (2021). <i>First Nations Environmental Contaminants Program</i> . Retrieved January 31 from <u>https://www.sac-isc.gc.ca/eng/1583779185601/1583779243216</u>
1463 1464 1465 1466 1467	Jonasson, M. E., Spiegel, S. J., Thomas, S., Yassi, A., Wittman, H., Takaro, T., Afshari, R., Markwick, M., & Spiegel, J. M. (2019, 2019/12/01). Oil pipelines and food sovereignty: threat to health equity for Indigenous communities. <i>Journal of Public Health Policy</i> , 40(4), 504-517. <u>https://doi.org/10.1057/s41271-019-00186-1</u>
1468 1469 1470 1471 1472	Jones, N. M., Rachel; Ramirez, Roberto; Rios-Vargas, Merarys. (2021, August 12, 2021). 2020 Census Illuminates Racial and Ethic Composition of the Country. <i>United States Census Bureau</i> . <u>https://www.census.gov/library/stories/2021/08/improved-race-ethnicity-measures-reveal-united-states-population-much-more-multiracial.html</u>
1473 1474 1475 1476 1477	Joseph, B. (2020, July 4). What is the seventh generation principle? <u>https://www.ictinc.ca/blog/seventh-generation-principle#:~:text=The%20Seventh%20Generation%20Principle%20is,seven%20generations%20into%20the%20future</u> .
1478 1479 1480 1481	Kegler, M. C., & Malcoe, L. H. (2004). Results from a lay health advisor intervention to prevent lead poisoning among rural Native American children. <i>American journal of public health</i> , 94(10), 1730-1735.
1482 1483 1484 1485	Kegler, M. C., Malcoe, L. H., & Fedirko, V. (2010). Primary prevention of lead poisoning in rural native American children: behavioral outcomes from a community-based intervention in a former mining region. <i>Family and Community Health</i> , 32-43.
1486	

1487 1488 1489	Kegler, M. C., Rigler, J., & Ravani, M. K. (2010). Using network analysis to assess the evolution of organizational collaboration in response to a major environmental health threat. <i>Health Education</i> <i>Research</i> , 25(3), 413-424. <u>https://doi.org/10.1093/her/cyq022</u>
1490 1491 1492	Kent, T. (2016). <i>Tribal-Led Cleanup Activities at the Tar Creek Superfund Site</i> Tribal Lands Environmental Forum, <u>https://www7.nau.edu/itep/main/iteps/ORCA/6354_ORCA.pdf</u>
1493 1494 1495 1496 1497	Kerfoot, W. C., Urban, N., Jeong, J., MacLennan, C., & Ford, S. (2020, 2020/10/01/). Copper-rich "Halo" off Lake Superior's Keweenaw Peninsula and how Mass Mill tailings dispersed onto tribal lands. <i>JOURNAL OF GREAT LAKES RESEARCH</i> , 46(5), 1423-1443. <u>https://doi.org/https://doi.org/10.1016/j.jglr.2020.07.004</u>
1498 1499 1500 1501 1502	 Koch, I., Dee, J., House, K., Sui, J., Zhang, J., McKnight-Whitford, A., & Reimer, K. J. (2013, 2013/04/01/). Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. SCIENCE OF THE TOTAL ENVIRONMENT, 449, 1-8. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.01.047
1503 1504 1505 1506 1507 1508 1509	 Krewski, D., Acosta, D., Jr., Andersen, M., Anderson, H., Bailar, J. C., 3rd, Boekelheide, K., Brent, R., Charnley, G., Cheung, V. G., Green, S., Jr., Kelsey, K. T., Kerkvliet, N. I., Li, A. A., McCray, L., Meyer, O., Patterson, R. D., Pennie, W., Scala, R. A., Solomon, G. M., Stephens, M., Yager, J., & Zeise, L. (2010). Toxicity testing in the 21st century: a vision and a strategy. <i>Journal of</i> <i>toxicology and environmental health. Part B, Critical reviews</i>, <i>13</i>(2-4), 51-138. <u>https://doi.org/10.1080/10937404.2010.483176</u>
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519	 Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N., Baldé, A. B., Bertollini, R., Bose-O'Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F., Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C., Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K., & Zhong, M. (2018). The Lancet Commission on pollution and health. <i>The Lancet</i>, <i>391</i>(10119), 462-512. https://doi.org/10.1016/S0140-6736(17)32345-0
1520 1521 1522 1523	LeClerc, E., & Keeling, A. (2015, 2015/01/01/). From cutlines to traplines: Post-industrial land use at the Pine Point mine. <i>The Extractive Industries and Society</i> , 2(1), 7-18. <u>https://doi.org/https://doi.org/10.1016/j.exis.2014.09.001</u>
1524 1525 1526 1527 1528	Lewis, J., Gonzales, M., Burnette, C., Benally, M., Seanez, P., Shuey, C., Nez, H., Nez, C., & Nez, S. (2015). Environmental exposures to metals in native communities and implications for child development: basis for the Navajo Birth Cohort Study. <i>Journal of Social Work in Disability & Rehabilitation</i> , 14(3-4), 245-269.
1529 1530 1531 1532	Lewis, J., Hoover, J., & MacKenzie, D. (2017, 2017/06/01). Mining and Environmental Health Disparities in Native American Communities. <i>Current environmental health reports</i> , 4(2), 130- 141. <u>https://doi.org/10.1007/s40572-017-0140-5</u>

6	ſ	
υ	ſ	

1533 1534 1535	Mahood, Q., Van Eerd, D., & Irvin, E. (2014). Searching for grey literature for systematic reviews: challenges and benefits. <i>Research synthesis methods</i> , <i>5</i> (3), 221-234.
1536 1537 1538 1539	McAuley, C., & Knopper, L. D. (2011, 2011/06/08). Impacts of traditional food consumption advisories: Compliance, changes in diet and loss of confidence in traditional foods. <i>Environmental Health</i> , 10(1), 55. <u>https://doi.org/10.1186/1476-069X-10-55</u>
1540 1541 1542 1543 1544	Meltzer, G., Avenbuan, O., Wu, F., Shah, K., Chen, Y., Mann, V., & Zelikoff, J. T. (2020, 2020/12/01). The Ramapough Lunaape Nation: Facing Health Impacts Associated with Proximity to a Superfund Site. <i>Journal of Community Health</i> , 45(6), 1196-1204. <u>https://doi.org/10.1007/s10900- 020-00848-2</u>
1545 1546 1547	Michelsen, T. (2010). Superfund on Tribal Lands: Issues, Challenges, and Solutions. <u>https://clu-in.org/conf/tio/NARPMPresents1_101211/Superfund-on-Tribal-Lands.pdf</u>
1548 1549 1550 1551 1552	 Middleton, B. R., Talaugon, S., Young, T. M., Wong, L., Fluharty, S., Reed, K., Cosby, C., & Myers, R. (2019). Bi-directional learning: identifying contaminants on the Yurok Indian reservation. <i>INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH</i>, 16(19), 3513.
1553 1554 1555	Moore-Nall, A. (2015). The legacy of uranium development on or near Indian reservations and health implications rekindling public awareness. <i>Geosciences</i> , 5(1), 15-29.
1556 1557 1558 1559	Munn, Z., Peters, M. D., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. <i>BMC medical research methodology</i> , 18(1), 1-7.
1560 1561 1562 1563	National Conference of State Legislators. (2020). <i>Federal and State Recognized Tribes</i> . National Conference of State Legislators. Retrieved June 27 from <u>https://www.ncsl.org/legislators-staff/legislators/quad-caucus/list-of-federal-and-state-recognized-tribes.aspx#State</u>
1564 1565 1566	National Institute of Environmental Health Sciences. (2022). <i>Superfund Research Program</i> . <u>https://www.niehs.nih.gov/research/supported/centers/srp/index.cfm</u>
1567 1568	Native Land Interactive Map. (2021). Retrieved November 12 from https://native-land.ca/
1569 1570 1571 1572	Nolan, C. G. (2009). Risk assessment and orphaned/abandoned mines in Canada—What role do aboriginal communities play in risk assessment? <i>Integrated Environmental Assessment and</i> <i>Management</i> , 5(3), 486-487.
1573 1574 1575	OECD. (2020). Linking Indigenous Communities with Regional Development in Canada https://doi.org/doi:https://doi.org/10.1787/fa0f60c6-en

1576 1577 1578 1579	Parsons, M., Fisher, K., & Crease, R. P. (2021). Environmental Justice and Indigenous Environmental Justice. Decolonising Blue Spaces in the Anthropocene: Freshwater management in Aotearoa New Zealand, 39-73. <u>https://doi.org/10.1007/978-3-030-61071-5_2</u>
1580 1581 1582	Peters, M. D., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. <i>JBI Evidence Implementation</i> , 13(3), 141-146.
1583 1584 1585 1586	Reading, C., & Wien, F. (2009). <i>Health Inequities and Social Determinants of Aboriginal Peoples'</i> <i>Health</i> . <u>https://www.ccnsa-nccah.ca/docs/determinants/RPT-HealthInequalities-Reading-Wien-EN.pdf</u>
1587 1588 1589 1590	 Reid, A. J., Eckert, L. E., Lane, J. F., Young, N., Hinch, S. G., Darimont, C. T., Cooke, S. J., Ban, N. C., & Marshall, A. (2021). "Two-Eyed Seeing": An Indigenous framework to transform fisheries research and management. <i>Fish and Fisheries</i>, 22(2), 243-261.
1591 1592 1593 1594 1595	Rock, T., Camplain, R., Teufel-Shone, N. I., & Ingram, J. C. (2019). Traditional sheep consumption by Navajo people in Cameron, Arizona [Article]. <i>INTERNATIONAL JOURNAL OF</i> <i>ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH</i> , 16(21), Article 4195. <u>https://doi.org/10.3390/ijerph16214195</u>
1596 1597 1598 1599	Samuel-Nakamura, C., Robbins, W. A., & Hodge, F. S. (2017). Uranium and associated heavy metals in Ovis aries in a mining impacted area in Northwestern New Mexico. <i>INTERNATIONAL</i> <i>JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH</i> , 14(8), 848.
1600 1601 1602 1603 1604	Sandlos, J., & Keeling, A. (2016, APR). Aboriginal communities, traditional knowledge, and the environmental legacies of extractive development in Canada. <i>EXTRACTIVE INDUSTRIES AND</i> <i>SOCIETY-AN INTERNATIONAL JOURNAL</i> , 3(2), 278-287. <u>https://doi.org/10.1016/j.exis.2015.06.005</u>
1605 1606 1607	Sandlos, J., & Keeling, A. (2016). Toxic legacies, slow violence, and environmental injustice at Giant Mine, Northwest Territories. <i>Northern Review</i> (42), 7–21-27–21.
1608 1609 1610 1611 1612	Sarkar, A., Wilton, D. H. C., Fitzgerald, E., Sharma, A., Sharma, A., & Sathya, A. J. (2019, Apr). Environmental impact assessment of uranium exploration and development on indigenous land in Labrador (Canada): a community-driven initiative. <i>Environ Geochem Health</i> , 41(2), 939-949. <u>https://doi.org/10.1007/s10653-018-0191-z</u>
1613 1614 1615 1616 1617	Schmitt, C. J., Brumbaugh, W. G., Linder, G. L., & Hinck, J. E. (2006, 2006/10/01). A Screening-Level Assessment of Lead, Cadmium, and Zinc in Fish and Crayfish from Northeastern Oklahoma, USA. <i>Environmental Geochemistry and Health</i> , 28(5), 445-471. <u>https://doi.org/10.1007/s10653- 006-9050-4</u>
1618	

1619 1620 1621	Sistili, B., Metatawabin, M., Iannucci, G., & Tsuji, L. J. (2006). An Aboriginal perspective on the remediation of mid-Canada radar line sites in the Subarctic: A partnership evaluation. <i>ARCTIC</i> , 142-154.
1622 1623 1624	Smith, K., Luginaah, I., & Lockridge, A. (2010). Contaminated'therapeutic landscape: the case of the Aamjiwnaang First Nation in Ontario, Canada. Geography Research Forum,
1625 1626 1627 1628 1629 1630	Teufel-Shone, N. I., Chief, C., Richards, J. R., Clausen, R. J., Yazzie, A., Begay, M. A., Jr., Lothrop, N., Yazzie, J., Begay, A. B., Beamer, P. I., & Chief, K. (2021, Sep 6). Development of a Culturally Anchored Qualitative Approach to Conduct and Analyze Focus Group Narratives Collected in Diné (Navajo) Communities to Understand the Impacts of the Gold King Mine Spill of 2015. <i>Int</i> <i>J Environ Res Public Health</i> , 18(17). <u>https://doi.org/10.3390/ijerph18179402</u>
1631 1632 1633	Tribal Superfund Working Group. (2022). <i>Tribal Superfund Working Group</i> . Retrieved January 31 from https://triballands.org/tlac/building-relationships/tribal-superfund-working-group/
1634 1635 1636 1637	Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D., Horsley, T., & Weeks, L. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. <i>Annals of internal medicine</i> , 169(7), 467-473.
1638 1639 1640 1641	Tsuji, L. J., Wainman, B. C., Weber, JP., Sutherland, C., Katapatuk, B., & Nieboer, E. (2005). Protecting the health of First Nation personnel at contaminated sites: A case study of Mid-Canada Radar Line Site 050 in northern Canada. <i>ARCTIC</i> , 233-240.
1642 1643 1644 1645	United States Government Accountability Office. (2020). EPA Grants to Tribes- Additional Actions Needed to Effectively Address Tribal Environmental Concerns. <u>https://www.gao.gov/assets/gao- 21-150.pdf</u>
1646 1647 1648 1649	US Government Accountability Office. (2019). Superfund: EPA Should Improve the Reliability of Data on National Priorities List Sites Affecting Indian Tribes. <u>https://www.gao.gov/products/gao-19-123</u>
1650 1651 1652	US Government Publishing Office. (2016). <i>Examining EPA's unacceptable response to Indian Tribes</i> . <u>https://www.govinfo.gov/content/pkg/CHRG-114shrg20899/html/CHRG-114shrg20899.htm</u>
1653 1654 1655 1656 1657	van Haastrecht, M., Sarhan, I., Yigit Ozkan, B., Brinkhuis, M., & Spruit, M. (2021, 2021-May-28). SYMBALS: A Systematic Review Methodology Blending Active Learning and Snowballing [Original Research]. Frontiers in Research Metrics and Analytics, 6. <u>https://doi.org/10.3389/frma.2021.685591</u>
1658 1659 1660 1661 1662	Wang, Z., Walker, G. W., Muir, D. C. G., & Nagatani-Yoshida, K. (2020, 2020/03/03). Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. <i>Environmental Science & Technology</i> , 54(5), 2575-2584. <u>https://doi.org/10.1021/acs.est.9b06379</u>

1663 1664 1665	Wiseman, C. L., & Gobas, F. A. (2002). Balancing risks in the management of contaminated first nations fisheries. <i>International journal of environmental health research</i> , <i>12</i> (4), 331-342.
1666 1667 1668	Woolford, J. (2017). Consideration of Tribal Treaty Rights and Traditional Ecological Knowledge in the Supefund Remedial Program. <u>https://semspub.epa.gov/work/HQ/500024668.pdf</u>
1669	
1670	