
Randomized Clinical Trials or Convenient Controls: TREWS or FALSE? 

Shamim Nemati, Supreeth P. Shashikumar, Andre L. Holder, Gabriel Wardi, and Robert L. Owens 

 

ARISING FROM  Roy Adams et al. Nat Med  

https://doi.org/10.1038/s41591-022-01894-0 (2022) 

 

We read with interest the Adams et al.1 report of the TREWS machine learning (ML)-based sepsis early 

warning system. The authors conclude that large-scale randomized trials are needed to confirm their 

observations, but assert that their findings indicate the potential for the TREWS system to identify sepsis 

patients early and improve patient outcomes, including a significant decrease in mortality.  However, this 

conclusion is based upon a comparison of those whose alert was confirmed vs. not confirmed within 3 

hours, rather than random allocation to TREWS vs. no TREWS. Using data from over 650,000 patient 

encounters across two distinct healthcare systems, we show that the findings of Adams et al. are likely to 

be severely biased due to the failure to adjust for ‘processes of care’-related confounding factors. 

 

 

 
Figure 1. Venn diagram describing the TREWS cohort1, including those who were retrospectively identified as having 

sepsis and were identified by the ML-based alert before initiation of antibiotic therapy (shaded areas A and B). No 

data were reported on the false positive (D) and false negative (E) groups. 

 

 

While Adams et al. do not explicitly state the mechanism by which the study intervention improves 

outcomes, they presumably believe one of the following to be responsible: 1) early recognition of sepsis 

provided by the TREWS alert followed by clinician acknowledgement and patient evaluation, 2) a 
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streamlined user interface (UI) for guiding caregivers through a protocolized sepsis care bundle4, or 3) the 

combined effect of early recognition and patient evaluation, referred to as human–machine teaming3. We 

have reproduced their cohort characteristics in Figure 1.  As can be seen, the data suggesting value to 

the implementation of the TREWS algorithm comes from a comparison of groups A (evaluated with 3 

hours of alert) and B (evaluated more than 3 hours after the alert).  Using our representation of the data, 

the number of false alarms (D) and missed detections (E and potentially C) becomes apparent.  One even 

might argue for the group of septic patients not flagged by the alert  (group E  and potentially C) as the 

control group. Notably, both these groups had lower unadjusted mortality rates compared to the study arm 

(See Adams et al., Table 1). Nevertheless, we aimed to determine whether other factors might explain the 

apparent success of the algorithm within groups A relative to group B. 

 

A Causal Inference Perspective 

 

We first attempted to construct the directed acyclic graph (DAG) representing the experimental setup of 

the study by Adams et al. (see Figure 2). Notably, the decision to evaluate a patient within three hours of 

the TREWS alert could be due to the ongoing ‘standard-of-care’ (i.e., a ‘coincident event’) triggered by the 

initial patient assessments and laboratory measurements. Conversely, any prolonged patient evaluation 

may be due to factors not within the control of the clinical team, such as increased patient volume, delayed 

laboratory results, case complexity or patient frailty8, or potential distractions due to false alarms produced 

by the TREWS algorithm (see Henry et al.2, Table 2). In such a setting, the experimental design around 

assignment of study and control arms of the TREWS study allowed them to take credit for early treatments 

and blame the clinicians for any prolonged evaluations, without properly adjusting for ‘processes of care’-

related confounders (e.g., time to obtain a serum lactate result). 

 

In the Emergency Department (ED), where the majority of sepsis cases are present on admission, we 

hypothesize that the actual timing of the TREWS alert is of no consequence (Hypothesis I). That is, one 

should be able to bucket patients into the proposed study and control arms from any random time point 

and arrive at similar differences in mortality. Furthermore, we hypothesize that by virtue of delaying alerts 

until verifiable symptoms were present3 (i.e., ‘looking over the shoulder’ of clinicians5), rather than helping 

to anticipate or predict cases of sepsis based on sparse or incomplete data, the TREWS alerts are 

increasingly correlated with the parallel and ongoing processes of care, which may alone explain the 

decisions to evaluate and treat patients. In such a setting, any causal claims of the potential effect of 

TREWS on patient outcomes may require adjustments by indicators of the processes of care (Hypothesis 

II); a classic backdoor adjustment problem in the causal inference literature9. As shown in Figure 2, the 

standard process of care triggers measurements such as labs and vitals, and the presence of certain 

measurements (e.g., serum lactate) are correlated with clinical suspicion of sepsis and whether the patient 

may receive early or late evaluation4. Notably, the patients in the study arm of Adams et al. were more 

likely to have lactate >2 mmol/L (75% versus 61%, P < 0.001)1. What is missing from this reporting and 

the subsequent risk adjustments is the number of patients who had any lactate recordings in the study vs. 

control arms; that is, adjustment by surrogates of processes of care and initiation of diagnostic protocols. 

 

The ‘Coin-flip Protocol’ 

 

To test the two hypotheses discussed above, we designed an alternative DAG in which the TREWS-based 

alert was replaced by a sequence of coin-flips (see Figure 2 (C)): a fair coin was flipped repeatedly, starting 

from the time of ED triage, and an alert was fired with the landing of the first head. This first coin flip 

randomly determines when an alert might be fired.  Next, we used a single biased coin-flip to assign 

patients to either the study arm or the control arm: 60% of the patients with an available lactate >1 mmol/L 
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at the time of the alert were assigned to the ‘study arm’, and the remaining patients (including those without 

a lactate measurement) to the ‘control arm’. This resulted in the study arm to include slightly higher lactate 

(as reported by  Adams et al.1). Using two large patient cohorts, we assessed the impact of this study arm 

assignment on time-to-antibiotics and mortality. Briefly, we followed the approach of Adams et al. and 

included those who met Sepsis-3 criteria7, and received their first antibiotic after the alert and within 24 h 

of the alert. 

 

 
Figure 2. Directed acyclic graph (DAG) representations of the Standard Process of Care (A), the experimental 

setup of Adams et al.1 (B) and our proposed thought experiment (C). Note, ‘processes of care’-related factors, as 

well as confounders such as incoming patient volume, case complexity and frailty8 or distractions due to false alarms 

produced by the TREWS algorithm can affect patient evaluation, timing of antibiotics, and outcomes. See Appendix 

A for a more formal DAG representation and discussion of back-door path adjustment. ABX = antibiotics. 

 

Table 1 summarizes the characteristics of the patients assigned to the study and control arms according 

to our thought experiment (i.e., the ‘coin-flip protocol’). Notably, compared to the control arm, the study 

arm has slightly higher lactate, significantly lower time-to-antibiotics, lower mortality rate, lower rates of 

sequential organ failure assessment (SOFA) score progression at 72 h, and lower length of hospital stay. 

Moreover, logistic regression-based adjustment by age, gender, Charlson Comorbidity Index (CCI), serum 

lactate, systemic inflammatory response syndrome (SIRS), and SOFA show that the odds of mortality 

increased by  2.21 (p<0.001; cohort A) and 1.6 (<0.01; cohort B) for patients within the control group. In 

comparison the odds associated with one unit increase in SOFA is 1.30 (p<0.001; cohort A) and 1.2 

(p<0.001; cohort B). However, we cannot make any claims regarding the mortality reduction benefits of 

our proposed ‘coin-flip protocol’, since the overall mortality for our patient cohorts remain unchanged. But, 

we can see that assigning patients with sepsis to different groups based on lactate availability and level 

results in groups with substantially different care characteristics and outcomes.  As we use real-world 

data, these differences in care are based on information that is already available to clinicians without ANY 

machine learning guidance and from a randomly selected alert time.  That is, the observed differences in 

the mortality rate are artifacts of the way patients are assigned to the study and control arms, and any 

alleged overall mortality reduction claims are an illusion induced by our study’s experimental setup.  
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From TREWS to True Estimates 

 

As one might expect, across the two patient cohorts analyzed in our study, the observed associations 

between the membership in the study arm and outcomes only goes away once adjusted for the presence 

of lactate (i.e., backdoor adjustment9). Notably, Adams et al.1 do not adjust for such confounders in their 

analysis, which is likely to significantly bias their findings. We recommend all observational studies of ML-

based predictive models to include directed acyclic graph diagrams to explicitly lay out assumptions 

surrounding the data generation processes, and to use pertinent causal inference techniques to mitigate 

the problem of biased effect estimates. While thoughtful experimental design, causal inference, and 

rigorous reporting (including both false positive and false negative rates) can strengthen the findings of 

the study by Adams et al, our results demonstrate the importance of rigorously designed randomized 

clinical studies, a hallmark of evidence-based medicine.  

 

 

Table 1. Cohort statistics 

 

 Cohort A 
231,441 ED encounters (8351 septic) 

Cohort B 
431,780 ED encounters (23,120 septic) 

 Case 
(658) 

Control 
(2745) 

P value Case 
(1614) 

Control 
(5942) 

P value 

Age (years) 53.5  (±16.7) 55.0 (±17.2) 0.1 57.1 (±17.8) 58.8 (±17.3) < 0.01 

Documented 
men, N (%) 

376 (57.1%) 1587 (57.8%) 0.75 877 (54%) 3321 (56%) 0.2 

Mean CCI 1.9  (±1.6) 2.1 (±1.6) 0.02 5.7 (±3.8) 5.9 (±3.7) <0.05 

SOFA 1.3 (±1.9) 1.4 (±1.9) 0.6 1.0 (±1.6) 1.3 (±1.7) < 0.01 

Serum lactate 3.0 (±1.5) 3.0 (±1.7) 0.6 2.5 (±1.3) 2.3 (±1.4) <0.01 

Serum lactate > 

2 mmol/L (%)† 

82.2% 11.9% – 
 

64.9% 11.9% – 

Time to 
antibiotics (h) 

2.2  

[0.9 5.5] 

 

4.6  
[2.2 9.0] 

<0.001 1.7  
[0.7 4.5] 

3.3  
[1.6 6.5] 

 

<0.001 

In-hospital 
mortality,  
n (%) 

22 (3.3%) 176 (6.4%) <0.001* 58 (3.6%) 303 (5.1%) <0.005* 

Maximum SOFA 
over 72 h 

2.7 3.8 < 0.001 1.6 2.4 < 0.001 

Length of stay 
(h) 

96 
[48 240] 

144 
[72 294] 

< 0.001 118 
[69 221] 

123 
[68 230] 

0.06 

† The denominator is the total number of patients in each group and therefore affected by the number of missing lactates. 

* This is the p value after adjustment for Age, Gender, CCI, Lactate, SIRS, SOFA, and an indicator for belonging to the control 

arm. The adjusted odds ratios for in-hospital mortality for the control arms in cohorts A and B were 2.21 and 1.6. SOFA = 

sequential organ failure assessment, CCI = Charlson Comorbidity Index. 
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Appendix A 

Causal Inference and Backdoor Adjustment 

 

 
Figure A1. A directed acyclic graphical model representing the experimental setup of Adams et al.1 (top) and our 

proposed thought experiment (bottom). 

 

Our thought experiment was aimed at demonstrating the confounding effect of the backdoor path induced 

by node A, when assessing the causal effect of node S on E, T, and O. In our thought experiment, a fair 

coin is flipped repeatedly, starting from the time of ED triage, and an alert is fired with the landing of the 

first head. Next, a second biased coin is used to assign 60% of the patients with an available lactate >1 

mmol/L to the ‘study arm’, and the remaining patients (including those without a lactate measurement) to 

the ‘control arm’. This results in the study arm to include slightly higher lactate (as reported by  Adams et 

al.).  

The key question is whether (and under what conditions) the experimental design and the analysis 

method of Adams et al. can accurately estimate the effect of TREWS alerts on patient evaluation, time 

to administration of antibiotics and outcomes. We demonstrate that using their approach we arrive at an 
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incorrect conclusion that a sequence of coin flips can accurately stratify patients into two groups with over 

~50% differences in mortality. 

 

Note, ‘processes of care’-related factors (node A) (e.g., timing of a serum lactate measurement or 

ordering of a blood culture), as well as confounders (node C) such as patient volume, distractions caused 

by the TREWS false alarms, case complexity and patient frailty can affect patient evaluation, timing of 

antibiotics, and outcomes. However, Adams et al. do not adjust for the formers (i.e., backdoor 

adjustment), which as demonstrated in our main results (see Table 1) has the potential to substantially 

bias their findings. Once we control for A, we block the back-door path from S to E, producing an unbiased 

estimate. Similarly, in our experiment, once we adjust for the presence of serum lactate, we see that 

being in the study arm or the control arm has no effect on patient outcomes. 
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