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Abstract

NO2 is a mainly anthropogenic gas that affects population health and its expo-
sure is associated with several respiratory diseases. Its tropospheric concentration is
associated with vehicle emissions. During 2020, COVID-19 lockdowns have impeded
population’s mobility, hence constructing an almost ideal situation to study their rela-
tionship with tropospheric NO2 concentration. We used TROPOMI (TROPOspheric
Monitoring Instrument) satellite images, Google mobility reports and vehicule count in
order to study these relationships in six big Latin American metropolitan areas: México
DF, São Paulo, Buenos Aires, Rio de Janeiro, Lima and Bogotá. In all of them, tropo-
spheric NO2 concentration decreased during 2020 compared to 2019, particularly during
April 2020. Temperature differences alone could not explain the NO2 concentration
differences between February and April 2020. The daily vehicle count in Buenos Aires
was a significantly important variable in order to explain NO2 concentration variations
(p < 0.001) and it could be replaced by the daily Google’s residential variation without
significant information loss (p ' 1). This study strengthens previous research findings
about NO2 concentration reduction during COVID-19 lockdowns and shows the rela-
tionship between human mobility and air pollution in the particular context of Latin
America big cities.
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1 Introduction

1.1 Mobility reduction during COVID-19 pandemic

The current outbreak of the new coronavirus SARS-CoV-2, first reported in Hubei Province of
the People’s Republic of China, has spread to many other countries. On January 30th, 2020,
the WHO Emergency Committee declared a global health emergency based on increasing
case reporting rates. During several months of 2020, most countries implemented different
strategies such as social distancing measures against the spread and transmission of COVID-
19. For instance: imposing lockdowns, banning large gatherings, closing schools, restaurants,
etc. These measures proved to be effective in their purpose [1, 2, 3, 4, 5, 6, 7, 8]. Hence,
in order to understand population mobility during COVID-19 lockdown, it is necessary to
measure it directly. Many researchers have used mobile data and related it to COVID-19
outbreaks [9, 10, 11], socioeconomic consequences [12, 13, 14], and environmental changes
[15, 16].

Latin America is a very affected area by COVID-19 outbreak [17]. These cities are: México
DF, México (24.5 millions inhabitants), São Paulo, Brasil (22.6 millions inhabitants), Buenos
Aires Metropolitan Region, Argentina (16.6 millions inhabitants), Rio de Janeiro, Brasil
(13.3 millions inhabitants), Lima, Perú (11.1 millions inhabitants) and Bogotá, Colombia
(9.8 millions inhabitants).

Latin American governments’ responses were very different between countries [18, 19],
especially at the very beginning of the pandemic. For instance: Argentina, Perú and Colombia
have followed WHO recommendations very closely, declaring sanitary emergencies less than
10 days after each detected its first COVID-19 case and implementing total closures shortly
after. On the contrary, México and Brasil declared a sanitary emergency nearly a month
after their first detected case and only partial closures were implemented. Though, in all
mentioned cities, both weak and strong restrictions started in March 2020 [18, 19].

1.2 NO2 pollution and health

During COVID-19 lockdown, many studies [20, 21, 22, 23, 24, 25, 26, 27] described the
improvement of air quality in big cities around the world associated with decreasement of
air pollutant emissions during COVID-19 measures implementations. Particularly, nitrogen
dioxide (NO2) is a common air pollutant and it has natural (as soil emissions or forest fires,
for example) and anthropogenic sources. The predominant ones are fossil fuel combustion,
biomass burning, livestock waste, biogenic soil and indoor combustions [28, 29], though many
studies have described the vehicle transportation as the mainly emisor of NO2 and NOX (NO
+ NO2, being NO2/NOX ratio increasing [30, 31, 32]. A worldwide study [33] states that
the highest ground values of NO2 where observed in the principal cities of America, Europe
and Asia, where the common denominator is the high number of vehicles, which are clearly
the main source of NO2 emissions in cities worldwide. Moreover, the reduction of the NO2
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exposure in Latin America requires considerable investments in public transportation, cre-
ative traffic management, improving fuel quality, promoting modes of transportation, and
expanding low emission zones [34]. Although NO2 and NOX emissions are decreasing in Eu-
rope associated to the new vehicles and fuels technologies [32], in Argentina, NOX increasing
emissions (21% between 1995-2019) are still associated with economic growth [35], where it is
estimated that 84% of them are concentrated in urban areas of more than 2.500 inhab./km2

and that 83% of all ozone precursors (including NO2) are emitted by transport, 4% by the
industry, 6% by residence and 6% by electricity production [36].

It is an important atmospheric trace gas due to its health effects and its environmental
effects: long term exposure to NO2 is associated with an increase in Chronic Obstructive
Pulmonary Disease (COPD) and Acute Lower Respiratory Infection (ALRI) mortality [37].
It absorbs visible solar radiation and contributes to impaired atmospheric visibility and has
a potentially direct role in global climate change. WHO states [38] that "nitrogen dioxide is
subject to extensive further atmospheric transformations”, and that “through the photochem-
ical reaction sequence initiated by solar-radiation-induced activation of nitrogen dioxide, the
newly generated pollutants are an important source of organic, nitrate and sulfate particles
currently measured as PM10 or PM2.5. For these reasons, NO2 is a key precursor of a range
of secondary pollutants whose effects on human health are well-documented".

This gas has a seasonal behavior due to natural factors involved in its destruction process
such as the number of hours of sunlight, air temperature or ozone concentration [38]. Likewise,
a seasonal change in the behavior of electricity and fossil fuel consumption is associated with
the concentration of NO2 in urban centers during winter (due to the increase in electricity
consumption associated with domestic heating) being higher than during summer. On the
other hand, in winter, low temperatures and the reduction in sunlight hours inhibit the NO2

decomposition reaction in which ozone takes part (ozone also has a seasonal behavior that
modulates the decomposition of NO2 [39]). During this season, thermal inversions are favored
and therefore the stability of the planetary boundary layer, which inhibits the mechanical
mixing and prolongs the presence of NO2 in the atmosphere. The concentration of NO2

varies depending on the meteorological conditions on the Earth’s surface. Several studies
show that the NO2 concentration presents a higher concentration and greater variability in
the presence of low wind speeds and little precipitation. Both, wind speed and precipitation,
favor the destruction of NO2 [40, 41]. Given that NO2 emission is associated with traffic, its
concentration variability has a weekly pattern, as it is observed in Europe where the emission
during weekends is significantly lower [42].

Most of the Latin American big cities are located in developing countries. As previously
observed by Mage et al. [43], in these countries air pollution represents a major risk for
healthcare due to the lack of resources and difficulties in the delivery of medical care in acute
cases. Particularly, in Latin America air pollution is essentially a metropolitan problem.
The hyper centralized urban growth led to cities with high traffic congestion, inadequate
urban transport infrastructures and an aging motor vehicle fleet [44]. In general, low income
neighborhoods are located surrounding the metropolitan areas, leaving the most vulnerable
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population exposed to poor quality urban air. This shows the relevance of constant and
precise monitoring of air pollution and its impact on human health in these cities.

1.3 Previous research

Previous works have explored the NO2 and human mobility reduction during the COVID-19
pandemic. Several studies have found a strong positive correlation between human mobility
and NO2 concentration. In different cities of the USA, an average drop of NO2 column
concentration of 13% during 2020 and a 20% average mobility reduction during March 2020
were observed [45]. Another study has found a greater NO2 concentration decrease in cities of
USA (at least 23%) to be strongly correlated with a 20% average decrease in urban mobility
for workplaces [46]. Further, in Singapore a 54% NO2 concentration reduction which is
significantly correlated (Spearman) to human mobility reduction [47]. On the other hand, a
worldwide study has described a maximum of 70% NO2 Air Quality Index (AQI) reduction
observed in the Philippines, seconded by Lima, Perú with a 55% and reaching a 60% mobility
reduction across Europe, Asia, and the Americas [48, 49].

Nevertheless, there is a lack of comparative studies of the association between these two
features in Latin America. In this work, we analyze the largest cities in Latin America through
a comparative study approach, in order to analyze the association between tropospheric
NO2 concentration and population mobility. This study involves obtaining data from open
sources and databases allowing its reproducibility. Our main hypothesis is that during the
first months of COVID-19 outbreak there was a tropospheric NO2 concentration reduction
in Latin American large cities. Furthermore, this phenomenon was related to population
mobility decrease.

2 Methods

2.1 Study design and data

The reason for choosing Latin American cities is the hyper centralized urbanization, health
care accessibility, economic influence of the region and socio-economical inequalities. Latin
American countries are significantly tied with higher consumption of fossil fuel which emits
the highest level of GHG emissions than any other economic sector [50]

The data used were taken from a number of open access sources and have different tem-
poral and spatial resolutions. All the information used corresponds to the six most popu-
lated metropolitan areas in Latin America (referred as cities unless it’s specified otherwise),
which are Buenos Aires Metropolitan Region (Argentina), São Paulo (Brasil), Rio de Janeiro
(Brasil), Lima (Perú), México DF (México), and Bogotá (Colombia).

The tropospheric offline NO2 dataset (OFFL NO2) was extracted from Sentinel-5P, an
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Earth observation satellite developed by the European Space Agency (ESA) as part of the
Copernicus Programme. Its spectrometer TROPOMI (TROPOspheric Monitoring Instru-
ment) measures the concentration of different atmospheric gases such as NO2, O3 and CH4

among others.

L3 data set was downloaded from the Google Earth Engine (GEE) Javascript API and
with a resolution of 0.01° × 0.01° as a result of the oversampling of the L2 OFFL NO2 data
from TROPOMI by GEE [51, 52, 40]. The conversion to L3 is done by the harpconvert tool
using the bin spatial operation. GEE OFFL NO2 data set (in units of µmol/m2) is already
filtered to remove pixels with quality assurance values less than 75%. The dataset is available
from June 28, 2018 to the present. However, on November 29, 2020, the data version was
upgraded to 1.4.0V and this version shows differences in data collection and analysis criteria,
for further explanation please see http://www.tropomi.eu/data-products/level-2-products.
For this reason the data after November 29, 2020 were excluded from the analysis. For the
analysis of the time series, we used the spatial average in a specific region of interest. On the
other hand, monthly time averages have been used to show the spatial variability throughout
a region of interest. Also, usually there is one observation of NO2 per day, and if there are
more, an average is taken.

Also, Ozone Monitoring Instrument (OMI/AURA) satellite’s daily tropospheric column
concentration measures [53] were retrieved from NASA’s Multi-Decadal Nitrogen Dioxide
and Derived Products from Satellites (MINDS) project. OMI images range temporarily from
October 2004 to the present. Though, its pixel size is 0.25°× 0.25°, 624 times larger than
TROPOMI’s.

Meteorological information was provided by the American National Oceanic and Atmo-
spheric Administration (NOAA) [54]. We obtained the daily average temperature and the
daily accumulated precipitation from the studied cities since 2004. In addition, the aver-
age daily wind speed in Buenos Aires-Argentina was provided by the Argentinian National
Weather Service (SMN for its acronym in Spanish) [55].

The vehicle traffic information is constituted by the number of vehicles per hour that
cross the toll booths of Buenos Aires [2] from 2018 to 2020. Raw data present information
about the type of vehicle, the toll booth ID and the driving direction among others. This
information was aggregated to total vehicle count per day in Buenos Aires. No other city’s
circulating vehicle count (or similar) information was freely available or sent upon request
from its appropriate ministry.

Population mobility data were taken from the Google Mobility Reports [56], widely used
during 2020 [57, 58, 59, 60, 61, 62]. The Google Mobility Reports show changes in baseline
daily trips and time spent at home for six categories in 131 countries around the world and
their subregions. It establishes the median value of the data collected between January 3rd,
2020 and February 6th, 2020, and presents data retrieved between February 15th, 2020 and
December 31st, 2020. The data were anonymized and originate from users who agreed to
enable location history in their Google accounts [56]. The information used in this study
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was the percentage variation of the number of visits to residential areas (named residential
variation). Their monthly averages are presented in Table S3. Only the information from
residential areas was used since it presented the strongest (negative) association with vehicu-
lar traffic in Buenos Aires (being the only city from which traffic information was available).

The different sources of data are summarized in Figure 1.

Figure 1: Vehicle circulation is analyzed using vehicle count at tools. Car emissions are
monitored from air pollution measures using satellite data. Population mobility is analyzed
with cell-phone mobility data.

2.2 NO2 estimation using satllite data

For each city, a rectangle around boundary delimitation was obtained. From TROPOMI’s
images, We selected the pixels whose value was greater than the 70th percentile in all monthly
images for each city separately; the extension of these pixels was named the “mask”. To create
it, we used the data before the lockdown measures (before march 2020) to avoid possible effects
of the quarantine period. Each set of pixels was different for each month. The pixels that
were common in all the masks were taken. Each mask was developed in order to measure the
reduction of NO2 concentration over the urban region of highest emissions. This region differs
from the boundary delimitation of the city. On the other hand, given the small amount of
OMI pixels covering each city, no mask was applied. The number of TROPOMI’s and OMI’s
pixels respectively ranged from 259 and 5 for Buenos Aires to 1986 and 13 for Lima, as it is
shown in Figures 2 and S1. From these areas, the average monthly and daily tropospheric
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NO2 concentration average and standard deviation values were calculated (Table S1 and
S2). Given the reduced amount of pixels per city for the OMI’s images, only TROPOMI’s
tropospheric NO2 concentration data was used in this study, except for the historical analysis.

2.3 Weather and mobility relationship with NO2 concentration

Monthly average NO2 concentration and temperature for the months of February (before
quarantine) and April 2020 (during quarantine) for each city, were taken in order to compare
with the monthly average residential variation (Figure 3). We calculated Pearson’s correlation
coefficient of the difference between April and February 2020 residential variation and the
percentual tropospheric NO2 April-February difference scaled by population. We calculated
the difference between April 2020 and February 2020 of the tropospheric NO2 concentration
and the temperature monthly averages (referred to as April-February monthly averages dif-
ferences) and compared to the ones of 2019, when no traffic restrictions were imposed (Figure
2). Given that TROPOMI satellite was launched in June 2018, previous data doesn’t exist.
Because of that and aiming for a better understanding of historical April-February monthly
averages differences, we used OMI’s data to reproduce the previous analysis and compared it
to the 2004-2019 average (Figure S1)

2.4 NO2 and mobility model

First, in order to study the strength of the relationship between residential variation and
daily vehicle counts, the linear model (1) was constructed:

V (R,We,Wh) = β0 + β1 ·R + β2 ·We + β3 ·Wh + ε (1)

Where V is the daily accumulated vehicle count, R is the residential variation, We are the
weekend days, Wh are the holidays, β1 to β3 are their respective linear parameters, β0 is the
intercept and ε is the independent error.

Second, we performed a sensitivity analysis. For this, we built and compared two linear
models (2) and (3) which differ only on the variables V , R, We and Wh and one additional
control model 4 having only the meteorological variables Tlag2, P and U . The comparison was
made by calculating the reduction of the residual sum of squares and its significance between
models.

Ln(NO2)(Tlag2, P, U, V ) = β0 + β1 · Tlag2 + β2 · P + β3 · U + β4 · V + ε (2)

Ln(NO2)(Tlag2, P, U,R,We,Wh) = β0+β1 ·Tlag2+β2 ·P+β3 ·U+β4 ·R+β5 ·We+β6 ·Wh+ε (3)

Ln(NO2)(Tlag2, P, U) = β0 + β1 · Tlag2 + β2 · P + β3 · U + ε (4)
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Where Ln(NO2) is the daily tropospheric NO2 concentration average in logarithmic scale,
Tlag2 is the daily temperature average with a two days lag (which improved the models’ fit),
P is the daily accumulated precipitations, U is the daily wind intensity average, V is the
daily accumulated vehicle count, β1 to β6 are the linear parameters, β0 is the intercept and
ε is the independent error. All assumptions of the linear regression models were satisfied.

3 Results

We have observed a decrease in tropospheric NO2 concentration in every city during almost
every month between March to December 2020 compared to the year before. The stronger
decreases were seen in April. The decrease was 21.3% in Mexico DF, 28.94% in Bogotá, 39.1%
in Rio de Janeiro, 39.3% in São Paulo, 56.3% in Buenos Aires, and 71.8% in Lima (Figure 2,
first and second column). These results are in agreement with previous researches: Represa et
al. (2020) [20] observed a 54% reduction of the tropospheric NO2 mean column concentration
during 2020 in Buenos Aires. In México DF, a 18.1% reduction was observed in 2020 compared
to the 2017-2019 period [63]. In Bogotá, a 20% tropospheric NO2 concentration reduction was
observed during the lockdown [64]. In Rio de Janeiro and São Paulo, a 9.1%-41.8% reduction
was measured in different locations of the cities [65]. Lima was pointed out as one of the
strongest decreases worldwide [66, 67] with a 61% NO2 concentration reduction in April 2020
compared to 2019 [68, 67].

The April-February tropospheric NO2 concentration and temperature monthly averages
differences showed a change between 2019 and 2020 (Figure 2, third column). As expected
by seasonality, the April-February temperature monthly average difference is negative for the
southern hemisphere cities (Buenos Aires, Lima, Rio de Janeiro and São Paulo), and positive
for the northern hemisphere cities (México DF and Bogotá). Even though tropospheric NO2

concentration is inversely related to the air temperature (as observed in almost every city of
this study between 2004 and 2019 as seen in Figure S1, third column), this relationship was
not widely observed in 2020: Buenos Aires, Lima and São Paulo showed less tropospheric
NO2 concentration in April than in February, yet the temperature was higher in February. In
addition, Bogotá showed a higher NO2 decrease in 2020 compared to 2019 despite a very sim-
ilar April-February temperature difference. Nevertheless, Mexico DF showed a slight higher
decrease in 2020 compared to 2019 on the April-February tropospheric NO2 concentration
difference as expected by the higher temperature difference in 2020. On the other hand, Rio
de Janeiro showed both in 2019 and 2020, less tropospheric NO2 concentration in February
than in April, being February always warmer. OMI’s historical data support these affirma-
tions. Nevertheless, for the Brazilian cities, the 2020 April-February difference was similar
to the historical 2004-2019 observations average. Several factors may play an important role
in this observation: On one hand, Brazil presented a less restrictive lockdown compared to
the other studied countries [18, 19]. On the other hand it was not possible to apply a mask
over the reduced amount of pixels in OMI’s images (as seen for the other cities, compared
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to TROPOMI’s data). Conjointly, these factors may hamper differences detection between
2020 and historical data.

The 2020 April-February residential variation difference and the tropospheric NO2 con-
centration percentage difference (Figure 3) showed an interesting ordering of the cities: the
ones with the less restrictives lockdowns (Rio de Janeiro, São Paulo and Mexico) have the
smallest residential variation and absolute NO2 concentration percentage differences, contrary
to the cities with more restrictive lockdowns (Lima and Bogotá). Similarly to Li (2020) [59]
in Singapore and Wong (2021) [46] in the USA, we have also observed a linear correlation
between tropospheric NO2 concentration and another population mobility indicator. Our
results showed that the strongest NO2 reduction was seen in Lima (Perú), likewise Corpus-
Mendoza (2021) [48] who observed the strongest decrease in NO2 AQI in Latin America being
in Lima, and the second strongest globally.

Importantly, when we compared the different cities there was a strong relationship be-
tween the April-February residential variation and the population-scaled tropospheric NO2

concentration percentage differences. Hence, we observed a significant negative linear cor-
relation (ρ = -0.90, p-value = 0.01) between those variables (3). As for the relationship
between the daily residential variation and daily accumulated vehicle count in Buenos Aires,
model (1) showed a strong linear association (R2

adj = 0.92) indicating a great collinearity and
information shared between these features. In addition, models (2) to (4) were satisfactorily
adjusted. Model (4) was proven significantly different (p-value < 0.001) to models (2) and
(3), both not significantly different from each other. These results are reflected on the simi-
larity of the models’ estimated parameters’ confidence intervals shown in Table 1 as for the
temperature and wind, their related estimated confidence intervals consistently overlap in
models (2) and (3) contrary to the temperatures’ estimated parameter confidence interval in
model (4). This sensibility analysis allowed us to conclude that toll’s vehicle count data and
residential variation data in Buenos Aires shared a large amount of information in order to
explain the logarithmic tropospheric NO2 concentration behavior during the 2020 COVID-19
lockdown.

Table 1: Model estimates’ confidence intervals. V : daily accumulated vehicle count, Tlag2:
daily temperature average with a two days lag, Wh: holidays, We: weekend days, U : daily
wind speed average, R: residential variation

Intercept V Tlag2 Wh We U R
Model (2) [-9;-8.6] [2.6e-06;3.7e-06] [-0.056;-0.034] [-0.11;-0.075]
Model (3) [-7.8;-7.2] [-0.055;-0.032] [-0.7;-0.28] [-0.63;-0.39] [-0.11;-0.073] [-0.028;-0.015]
Model (4) [-8.8;-8.3] [-0.031;-0.0079] [-0.11;-0.071]

These findings are meaningful because understanding NO2 dynamics and its relation with
human activities is one of the first steps to reduce its local and global concentration. It may
help to better comprehend its direct and indirect impacts on the urban population’s health
and life quality and on the environment. NO2 is a mainly anthropogenic gas that affects
population health. Our results show how drastically and rapidly tropospheric NO2 concen-
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Figure 2: First column: Average tropospheric NO2 concentration in April 2019. Second
column: Average tropospheric NO2 concentration in April 2020. Third column: 2019 and
2020 April-February differences of tropospheric NO2 concentration monthly average vs April-
February difference of the monthly average temperatures. A) Buenos Aires-Argentina. B)
Lima-Perú. C) México DF-México. D) Rio de Janeiro-Brasil. E) São Paulo-Brasil. F)
Bogotá-Colombia

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2022. ; https://doi.org/10.1101/2022.08.08.22277819doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.08.22277819
http://creativecommons.org/licenses/by-nd/4.0/


11

Figure 3: 2020 April-February differences for the residential variation and NO2 concentration
for the six studied metropolitan regions
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trations are related to the variation of urban population mobility in the largest cities of Latin
America which was not described before. Venter et. al. 2020 [69] had previously studied
the Google’s mobility report work indicator and an Apple’s vehicle driving indicator rela-
tionship with tropospheric NO2 concentration during COVID lockdowns in, mostly, northern
developed countries. Differently, our study aims to compare the equivalence of Google’s mo-
bility data reports and in-city direct vehicular count over the prediction of tropospheric NO2

concentration. Our findings show no significant differences using one or the other variable
at the tropospheric NO2 concentration prediction. Additionally, the tropospheric NO2 con-
centration and population mobility decreased during the lockdown period in Latin America
indicating a correlation between the decrease in NO2 concentrations and human mobility, in
agreement to Venter et. al.

Nevertheless, there are some limitations around these conclusions. Firstly, satellite data
used were downloaded as L3 which are interpolated values from a L2 rawer data set. Secondly,
during the study period, Bogotá was affected by the persistent presence of clouds. When GEE
transforms L2 data into L3, filtering with qa_value is applied. Pixels with missing values
correspond to areas where the tropospheric column retrieval has a larger uncertainty. Conse-
quently, the size of the data used to draw conclusions over Bogotá was small and the results
are not as reliable as for the other cities. Those meteorological conditions were confirmed
on the worldview platform [70]. Thirdly, due to the change in the version of the TROPOMI
data, it was not possible to carry out a study on the recovery of NO2 concentration levels
with the flexibility of mobility restriction measures. As there was usually one observation
of NO2 per day, these values were taken as the representatives of their respective days, this
represented a source of error since it didn’t take into account the daily variability present
in NO2 concentrations. Lastly, Google Mobility Reports’ spatial precision did not exactly
correlate with the satellite data spatial extension due to an unclear territorial delimitation on
the mobility data and the fact that the area of highest NO2 concentration was not restricted
by boundary delimitation.

4 Conclusion

The results of this study confirm our initial hypothesis; they showed that the tropospheric
NO2 concentration and population mobility decrease during the lockdown period in Latin
America are correlated. This study is a background for public policy decision makers. The
relationship between mobility and air quality could be used as an input for urban planification
and for climate change mitigation measures. In addition to the results, our work provides
methodological strategies for data processing.

Also, the cities that showed the strongest decrease of NO2 concentration and to the
population mobility reduction during April 2020 (Lima and Buenos Aires), seemed to be the
cities with the most restrictive lockdowns. In contrast, the cities with the weakest decrease of
NO2 concentration and population mobility (México, Rio de Janeiro and São Paulo) would
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appear to be the ones with the least restrictive measures. Nevertheless, this study did not
address the degree of intensity of these restrictive measures but, it’s a precedent for future
works focusing on this topic.

Although this work, and all the previously mentioned, had shown an important relation
between NO2 concentration and population mobility, causation is harder to prove being obser-
vational studies. Though it is possible that the globally observed NO2 concentration decrease
during the lockdowns is not caused by the population mobility reduction, it is very unlikely
not to be, and the more studies like ours there are, the more this hypothesis is reliable. We
proposed simple methods, as linear regressions, and they showed a great fit. These results
highlight the unquestionable correlation between these features.

5 Data accessibility

Data and scripts are available on github (https://github.com/matiaspoullain/NO2-pollution-
decrease-Latin-America-COVID-repository)
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10 Supplementary materials

Table S1: Observed averages and mean standard error of the TROPOMI’s monthly torpo-
spheric NO2 concentration (µmol.m-2)

Month Bogotá Buenos Aires Lima México DF Rio de Janeiro São Paulo
(n=367) (n=259) (n=1986) (n=1165) (n=750) (n=633)

Feb 61.87 (9.09) 84.62 (7.10) 46.31 (4.92) 216.26 (19.41) 52.96 (5.37) 77.62 (4.69)
Mar 38.36 (6.30) 87.20 (7.91) 38.57 (4.05) 185.19 (15.90) 40.04 (3.67) 70.87 (4.18)
Apr 25.50 (1.78) 58.17 (3.88) 25.86 (2.35) 95.67 (5.06) 44.34 (3.60) 69.82 (5.15)
May 26.91 (1.16) 88.32 (6.76) 47.95 (5.16) 86.28 (5.50) 47.29 (4.05) 101.96 (7.36)
Jun 20.99 (1.97) 136.70 (9.03) 78.82 (8.12) 95.79 (5.97) 77.47 (6.08) 110.85 (8.36)
Jul 16.35 (1.23) 133.90 (8.82) 103.97 (9.89) 109.96 (9.87) 75.15 (7.89) 151.32 (10.32)
Aug 31.95 (1.91) 83.19 (5.85) 99.73 (9.30) 87.92 (10.70) 64.96 (5.45) 150.73 (9.48)
Sep 28.74 (2.51) 117.70 (12.30) 92.94 (7.96) 99.95 (11.89) 66.03 (5.59) 117.41 (6.91)
Oct 21.42 (3.46) 105.02 (8.17) 83.07 (7.07) 167.31 (13.92) 53.70 (4.49) 99.50 (5.29)

Table S2: Observed averages and mean standard error of the OMI’s monthly torpospheric
NO2 concentration (µmol.m-2)

Month Bogotá Buenos Aires Lima México DF Rio de Janeiro São Paulo
Feb 30.30 (3.26) 57.54 (5.19) 22.05 (1.64) 103.65 (8.83) 29.71 (2.68) 32.74 (3.45)
Mar 29.39 (4.04) 38.39 (3.81) 17.84 (1.81) 85.46 (7.72) 42.81 (3.64) 38.86 (2.83)
Apr 21.53 (0.92) 53.31 (10.12) 15.61 (1.16) 44.45 (3.58) 33.95 (3.10) 48.45 (3.94)
May 11.13 (0.45) 73.28 (8.54) 19.29 (1.73) 55.04 (3.93) 41.27 (2.95) 55.68 (3.73)
Jun 19.70 (2.00) 110.26 (13.59) 26.55 (1.79) 47.73 (4.08) 47.56 (2.62) 64.22 (3.70)
Jul 17.44 (1.52) 89.60 (10.30) 31.58 (2.46) 53.13 (2.79) 48.34 (3.66) 73.39 (6.72)
Aug 17.03 (2.60) 63.86 (6.48) 29.37 (2.31) 45.37 (3.11) 42.20 (3.90) 81.06 (6.93)
Sep 18.84 (2.54) 83.85 (8.51) 25.84 (1.75) 53.16 (4.30) 50.70 (3.17) 64.22 (4.25)
Oct 17.37 (1.96) 69.57 (5.58) 26.35 (1.59) 69.85 (5.57) 45.29 (3.48) 52.36 (4.07)
Nov 18.23 (2.19) 43.76 (3.83) 22.62 (1.45) 89.76 (7.83) 27.26 (2.83) 38.94 (3.26)
Dec 11.48 (2.64) 52.03 (3.93) 21.86 (2.69) 101.59 (8.74) 36.92 (2.57) 43.98 (3.62)
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Figure S1: First column: Average OMI’s tropospheric NO2 concentration in April 2019.
Second column: Average OMI’s tropospheric NO2 concentration in April 2020. Third column:
2004-2019 average and 2020 April-February differences of tropospheric NO2 concentration
monthly average vs April-February difference of the monthly average temperatures for OMI
and TROPOMI’s measurements. A) Buenos Aires-Argentina. B) Lima-Perú. C) México
DF-México. D) Rio de Janeiro-Brasil. E) São Paulo-Brasil. F) Bogotá-Colombia
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Table S3: Observed averages and mean standard error of the monthly residential variation
(%)

Month Bogotá Buenos Aires Lima México DF Rio de Janeiro São Paulo
Feb -1.13 (0.10) 1.47 (0.25) -0.07 (0.03) -1.13 (0.03) 2.20 (0.30) 1.60 (0.35)
Mar 15.87 (0.63) 16.65 (0.54) 21.19 (0.65) 7.10 (0.27) 9.81 (0.33) 9.42 (0.37)
Apr 37.47 (0.20) 33.37 (0.11) 41.17 (0.16) 23.90 (0.17) 20.90 (0.10) 22.50 (0.14)
May 30.39 (0.19) 29.35 (0.11) 36.84 (0.13) 25.19 (0.18) 19.61 (0.10) 21.00 (0.14)
Jun 26.10 (0.18) 27.37 (0.07) 31.17 (0.11) 22.33 (0.16) 16.40 (0.09) 18.30 (0.10)
Jul 25.74 (0.16) 28.00 (0.10) 24.94 (0.11) 18.81 (0.14) 12.94 (0.09) 15.26 (0.10)
Aug 24.55 (0.18) 24.13 (0.08) 23.48 (0.13) 15.68 (0.16) 10.55 (0.09) 13.10 (0.11)
Sep 18.50 (0.17) 21.70 (0.09) 22.03 (0.12) 15.53 (0.15) 9.83 (0.10) 11.63 (0.12)
Oct 15.35 (0.17) 19.19 (0.11) 18.90 (0.09) 14.23 (0.15) 9.13 (0.06) 10.32 (0.10)
Nov 14.27 (0.18) 15.70 (0.10) 17.43 (0.09) 14.03 (0.17) 8.87 (0.12) 9.60 (0.13)
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