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ABSTRACT 31 

Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly 32 

heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for 33 

microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis.  Short RNA sequencing 34 

was performed on 351 lung tissue samples of COPD (n=145), ILD (n=144) and controls (n=64). Five distinct 35 

subclusters of samples were identified including 1 COPD-predominant cluster and 2 ILD-predominant clusters 36 

which associated with different clinical measurements of disease severity.  Utilizing 262 samples with gene 37 

expression and SNP microarrays, we built disease-specific genetic and expression networks to predict key 38 

miRNA regulators of gene expression. Members of miR-449/34 family, known to promote airway differentiation 39 

by repressing the Notch pathway, were among the top connected miRNAs in both COPD and ILD networks. 40 

Genes associated with miR-449/34 members in the disease networks were enriched among genes that 41 

increase in expression with airway differentiation at an air-liquid interface. A highly expressed isomiR 42 

containing a novel seed sequence was identified at the miR-34c-5p locus. 47% of the anticorrelated predicted 43 

targets for this isomiR were distinct from the canonical seed sequence for miR-34c-5p. Overexpression of the 44 

canonical miR-34c-5p and the miR-34c-5p isomiR with an alternative seed sequence down-regulated NOTCH1 45 

and NOTCH4. However, only overexpression of the isomiR down-regulated genes involved in Ras signaling 46 

such as CRKL and GRB2. Overall, these findings elucidate molecular heterogeneity inherent across COPD 47 

and ILD patients and further suggest roles for miR-34c in regulating disease-associated gene-expression.   48 

 49 

  50 
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INTRODUCTION 51 

Complex chronic lung diseases arise from heterogeneous molecular processes and are influenced by multiple 52 

factors including exposure to toxins and genetic susceptibility. Chronic obstructive pulmonary disease (COPD) 53 

is a progressive lung disease and the fourth leading cause of death worldwide,1 with an incidence of 2.8 cases 54 

per 1,000 persons per year2. Patients with COPD suffer from breathing difficulty, wheezing, excess mucus 55 

production, and chronic cough. Although biological processes, such as chronic inflammation, apoptosis, and 56 

oxidative stress, have been implicated in COPD pathogenesis, knowledge of the key molecular drivers of this 57 

disease remains limited3. Interstitial lung disease (ILD) is a collection of chronic lung diseases characterized by 58 

fibrosis or inflammation of the alveolar tissue in the lung parenchyma4. One of the most common subtypes of 59 

ILD, idiopathic pulmonary fibrosis (IPF), has an incidence of 6.8-8.8 per 100,000 persons per year5 with a 60 

median survival from diagnosis of 3–5 years6–8. 61 

MicroRNAs (miRNAs) are short RNA transcripts about 20-23 nucleotides long that can modulate expression 62 

levels or translation rates of specific mRNA targets via sequence-specific binding to their 3’ UTR9.  MicroRNAs 63 

are involved in a wide variety of developmental processes and aberrant activity of miRNAs can also contribute 64 

to disease pathogenesis10. Previous studies have performed transcriptomic profiling of affected lung tissue to 65 

understand the molecular processes associated with complex lung diseases such as COPD and ILD11–13. 66 

Additional studies sought to identify microRNA (miRNA) expression profiles associated with the presence of 67 

disease to gain insights into the regulation of aberrant gene expression14–16. Despite the information gained 68 

from these initial studies, larger sample sets are needed to identify novel molecular subtypes of disease and 69 

more data modalities need to be measured on each sample to perform integrative network analyses.  70 

 71 

Network approaches that integrate multiple data types have been used extensively to study complex 72 

diseases17. Integrative genetic and genomic network approaches have been used to identify molecular drivers 73 

of late-onset Alzheimer’s disease and breast cancer risk18,19. Integrative analysis of DNA methylation and gene 74 

expression has identified key regulators in the setting of COPD20. Several computational approaches have 75 

been applied to infer causality from biological data, including Bayesian networks,21–23 factor graphs18,19 and 76 

ridge and least absolute shrinkage and selection operator24. Statistical framework such as the Causlity 77 
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Inference Test (CIT), can be used to infer mediators of genetic or epigenetic factors associated with 78 

quantitative traits25. The CIT has also been used to characterize the role of microRNAs (miRNAs) in gene 79 

regulatory networks26 and can be applied in settings where profiling of miRNA expression, mRNA expression, 80 

and genetic or epigenetic variation have been captured on the same samples. 81 

 82 

Previous miRNA studies in COPD and ILD have relied primarily on microarray technology for quantifying 83 

expression. Microarrays only allow for the profiling of a canonical miRNA sequences. With the advent of small 84 

RNA sequencing, additional variation in miRNA sequences have been observed including variation on the 5’ 85 

end of mature miRNAs27. Variation on the 5’ end of a miRNA produces a different seed sequence. The seed 86 

sequence is the primary feature for determining the binding specificity of the miRNA to the 3’ UTR of mRNA 87 

transcripts. These noncanonical miRNAs, often called isomiRs, can have alternative functional roles compared 88 

to the canonical miRNA sequence at that locus due to the targeting of distinct mRNAs28. Despite the potentially 89 

important role of isomiRs in regulating gene expression, the expression patterns of isomiRs have not been 90 

well-characterized in tissues from subjects with chronic lung disease.  91 

 92 

In order to characterize molecular heterogeneity in chronic lung disease and predict key regulators of gene 93 

expression, we profiled miRNA expression via small-RNA sequencing from a large number of samples from 94 

the Lung Genome Research Consortium (LGRC). Unsupervised clustering revealed subgroups of subjects with 95 

distinct clinical and molecular characteristics. Using the CIT, we developed integrative networks and found 96 

increased connectivity in the disease cohorts for miRNAs involved in airway differentiation and ciliogenesis. 97 

Finally, we identified and characterized a 5’ isomiR of miR-34c-5p with putative roles in the regulation of Ras 98 

pathway members. Overall, these analyses provide a comprehensive view of miRNA expression patterns 99 

COPD and ILD and elucidate the potential roles of these miRNA in regulating biological pathways within the 00 

lung.  01 
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METHODS 02 

High-throughput sequencing of small RNA. RNA was obtained from the National Heart, Lung, and Blood 03 

Institute–sponsored Lung Tissue Research Consortium (LTRC)11,13. Tissue samples from the LTRC are 04 

labeled with IDs that cannot be used to identify to the study subjects. 45 samples were prepared with Small 05 

RNA Sample Prep Kit v1.5 (Illumina) and sequenced on the Genome Analyzer IIx (Illumina) according to the 06 

manufacturer’s protocol.  Multiplexed small RNA sequencing was conducted on the Illumina HiSeq 2000 for 07 

320 lung tissue samples.  Briefly, one microgram of total RNA from each sample was used for library 08 

preparation with a TruSeq Small RNA Sample Prep Kit (Illumina).  RNA adapters were ligated to 3’ and 5’ end 09 

of the RNA molecule and the adapter-ligated RNA was reverse transcribed into single-stranded cDNA. The 10 

RNA 3’ adapter was specifically designed to target miRNAs and other small RNAs that have a 3’ hydroxyl 11 

group resulting from enzymatic cleavage by Dicer or other RNA processing enzymes.  The cDNA was then 12 

PCR amplified using a common primer and a primer containing one of 10 index sequences. The introduction of 13 

the six-base index tag at the PCR step allowed multiplexed sequencing of different samples in a single lane of 14 

a flowcell.  Ten individual PCR-enriched cDNA libraries with unique indices in equal amount were pooled and 15 

gel purified together.  A 0.5% PhiX spike-in was also added in all lanes for quality control.  Each library was 16 

hybridized to one lane of the 8-lane single-read flowcell on a cBot Cluster Generation System (Illumina) using 17 

TruSeq Single-Read Cluster Kit (Illumina).  The clustered flowcell was loaded onto HiSeq 2000 sequencer for a 18 

multiplexed sequencing run that consists of a standard 36-cycle sequencing read with the addition of a 7-cycle 19 

index read.  20 

 21 

miRNA alignment and quality control. To estimate miRNA expression we used a small RNA sequencing 22 

pipeline previously described29. Briefly, the 3’ adapter sequence was trimmed using the FASTX toolkit. Reads 23 

longer than 15 nt were aligned to hg19 using Bowtie v0.12.730 allowing up to one mismatch and up to 10 24 

genomic locations. miRNA expression was quantified by counting the number of reads aligning to mature 25 

miRNA loci (miRBase v20) using Bedtools v2.9.0.31,32  For quality control, we examined the distribution of read 26 

lengths for each sample after trimming to ensure that the sequences we observed were of the proper length for 27 

miRNA. 13 of 365 samples clustered differently than the rest of the samples based on the read length 28 
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distribution and were excluded from subsequent analyses (Supplementary Figure 1). One additional sample 29 

was excluded as a duplicate leaving 351 samples for expression analysis (Table 1).  30 

 31 

Differential expression. To identify miRNAs associated with disease a generalized negative binomial model 32 

(glm.nb, MASS R package) was applied to each miRNA.  The count of each miRNA was used as the response 33 

variable and sequencing read depth, sequencing protocol, smoking status, age, gender, as well as COPD 34 

status and ILD status were used as predictor variables. The significance of the associations were assessed by 35 

performing an ANOVA33 between a model with both the COPD and ILD terms and a second model without the 36 

either disease term. P-values were adjusted with the Benjamini-Hochberg false discovery rate34 (FDR). 37 

MiRNAs were considered differentially expressed if they had an FDR q-value < 0.1 and the absolute value of 38 

the coefficient for either the COPD or ILD term was greater than 0.22, corresponding to a Fold Change (FC) of 39 

at least 1.25. 40 

 41 

Consensus Clustering. For clustering and display in heatmaps, miRNA counts within each sample were 42 

normalized to RPM values by adding a pseudocount of one to each miRNA, dividing by the total number of 43 

reads that aligned to all miRNA loci within that sample, multiplying by 1 × 106, and then applying a log2 44 

transformation.29 The batch effects of the two sequencing protocols were removed by Combat.35 Groups of 45 

miRNAs or samples were identified using consensus clustering36 (ConsensusClusterPlus R package) on the 46 

normalized and batch-corrected miRNA expression data. Sample clusters were assessed for enrichment of 47 

disease samples by using two logistic regression models where disease status (either COPD or ILD) was the 48 

response and sequencing read depth, sequencing protocol, smoking status, age, gender, and cluster status 49 

were dependent variables. Sample clusters were also associated with clinical variables of disease severity 50 

including DLCO (diffusing capacity of the lungs for carbon monoxide), FEV1/FVC ratio (forced expiratory 51 

volume 1 / forced vital capacity), FEV1 percent predicted, percent emphysema, and BODE score (i.e., a 52 

measure of the degree of obstruction, dyspnea, and exercise capacity). Linear models were fit where each clinical 53 

phenotype was the response variable and sequencing read depth, sequencing protocol, smoking status, age, 54 
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gender, and cluster status were dependent variables. Two separate models were fit for ILD and COPD 55 

patients. 56 

 57 

Building disease specific networks. We utilized a subset of 262 lung tissue samples with miRNA expression 58 

profiled by sequencing, as well as an Agilent gene expression microarray and Affymetrix SNP chip. We first 59 

identified all genes and miRNAs associated with a SNP (i.e. eQTL) by ANOVA while correcting for age, 60 

gender, smoking status, and population structure (p<0.0005) using the MatrixEQTL package.37 Next, we built 61 

integrative networks within the COPD, ILD, and control patients using the causality inference test (CIT).25 This 62 

test is a previously established method for predicting SNP-miRNA-mRNA triplets where the SNP is modulating 63 

the expression of the miRNA and the miRNA is modulating the expression of the gene.25 CIT assesses the 64 

hypothesis that a potential mediator between a genetic variable and an outcome variable is potentially causal 65 

for that outcome. Causal and reactive models are defined as series of conditions of associations between the 66 

three variables, corresponding to SNP, microRNA and mRNA nodes. The significance of the test is computed 67 

for both the causal and reactive models. If the causal p-value is lower than 0.05 and the reactive higher than 68 

0.05 then the causal relationship is indicated. If both p-values are greater than 0.05 then the call is 69 

independent, and if both p-values are lower than 0.05, then causality cannot be inferred. We select those SNP-70 

miRNA-mRNA triplets where the SNP-mRNA relationship is defined by a miRNA mediator and did not examine 71 

triplets where the SNP is not associated with the miRNA. The number of mRNA predicted to be regulated by 72 

each miRNA was compared between control and disease networks. The genes found to be regulated by the 73 

top differentially connected miRNAs were examined by GSVA38 and GSEA39 in an independent dataset 74 

examining gene expression patterns associated with differentiation of airway epithelium at an air-liquid 75 

interface (ALI)40. 76 

 77 

Validation by qRT-PCR. To measure the expression of miR-34a-5p, miR-34b-5p and miR-34c-5p, 10 ng of 78 

total RNA was used in a Taqman MiRNA Assay (Life Technologies, Catalog #4427975, ID #000426, 000427, 79 

000428, Carlsbad, CA) as per manufacturer’s protocol and the results were normalized to RNU44 expression 80 

(Life Technologies, Catalog #4427975, ID #001094, Carlsbad, CA). To measure the expression of RALA, 81 
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GRB2, CRK, CRKL, GRAP, RHOA, RHOC, EGF, ARAP2, NOTCH4 and NOTCH1, 500 ng of total RNA was 82 

reverse transcribed using RT2 First Strand Kits (Qiagen, Catalog #330401, Valencia, CA) according to the 83 

manufacturer’s protocol. cDNA product was added to SYBR Green qPCR Mastermix (Qiagen, Catalog 84 

#330523, Valencia, CA) and the appropriate primer (Qiagen, Catalog #PPH07458A, PPH00714C, 85 

PPH00731A, PPH01982A, PPH13173A, PPH00305G, PPH01089E, PPH00137B, PPH20012A, PPH06021F, 86 

PPH00526C, Valencia, CA). Data was normalized to the expression of UBC (Qiagen, Catalog #PPH00223F, 87 

Valencia, CA) and analyzed using the comparative CT method. 88 

 89 

Quantification and transfection of isomiRs. IsomiRs were identified within each canonical miRNA locus by 90 

grouping reads with the same 5’ start position. Targetscan v6.041 was used to predict mRNA targets for each 91 

canonical and isomiR seed. IMR90 cells and HBEpCs were transiently transfected with hsa-miR-34c-5p 92 

miRIDIAN miRNA mimic (Dharmacon, Catalog #C-300655-03-0020, Lafayette, CO), a custom miR-34c 5’ 93 

isomiR miRIDIAN miRNA mimic (Dharmacon, Lafayette, CO) or miRIDIAN miRNA mimic Negative Control #1 94 

(Dharmacon, Catalog #C-001000-01, Lafayette, CO). IMR90 cell transfection was completed using 95 

Lipofectamine RNAiMAX transfection reagent (Life Technologies, Catalog #13778150, Carlsbad, CA) 96 

according to the manufactures protocol. Transfection of HBEpCs was done using Cytofect Epithelial Cell 97 

Transfection Kit (Cell Applications, Catalog #TF102K, San Diego, CA). 98 

 99 

Data availability 00 

SNP data was provided by the Lung Genomics Research Consortium (LGRC; http://lung-gemomics.org; 01 

1RC2HL101715) using tissue samples and clinical data collected through the Lung Tissue Research 02 

Consortium (LTRC; http://www.ltrcpublic.com/). This data is available from dbGaP under the accession 03 

phs000624.v1.p1. The microRNA expression datasets generated and analyzed during the current study are 04 

available in the Raw and normalized data is available at the Gene Expression Omnibus (GEO) under the 05 

accession number GSE201121. 06 

 07 

 08 
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RESULTS 10 

Subject cohort 11 

MicroRNA expression was profiled with small-RNA sequencing for 364 lung tissue samples collected by the 12 

Lung Tissue Research Consortium. Thirteen samples with low quality were removed (Methods; 13 

Supplementary Table 1) resulting in 351 samples for downstream analyses including 145 subjects with 14 

COPD, 144 subjects with ILD, 62 Controls (Table 1, Supplementary Table 2). Controls were mostly derived 15 

from tissue adjacent normal to cancer as previously described11. Subjects with COPD had a significantly higher 16 

proportion of former smokers, higher Pack Years, lower FEV1/FVC ratios, and higher Percent Emphysema 17 

compared to Control subjects. Subjects with ILD had significantly lower Pack Years and higher FEV1/FVC 18 

ratios compared to Control subjects. Compared to individuals with ILD, COPD subjects had a significantly 19 

higher proportion of former smokers, higher Age, higher FEV1/FVC ratios, and higher Percent Emphysema. 20 

 21 

Table 1. Sample demographics. 22 

 Control n=62 ILD n=144 COPD n=145 

Smoking Status � � 2 current,  

38 former,        

19 never,  

3 N/A 

5 current,  

85 former,  

50 never,  

4 N/A 

8 current,  

129 former,  

6 never,  

2 N/A 

Age � 63.1 +/- 12.0 61.2 +/- 10.2 64.4 +/- 9.9 

Pack Years * � � 41.1 +/- 36.6 26.3 +/- 19.9 55.9 +/- 39.0 

Gender 31 males, 

31 females 

78 males, 

66 females 

86 males, 

59 females 

FEV1/FVC * � � 0.77 +/- 0.1 0.83 +/- 0.1 0.5 +/- 0.2 

Percent Emphysema � 

� 

0.7 +/- 1.0 0.8 +/- 1.7 16.6 +/- 18.0 

*Significantly different between ILD and Control (p<0.05)  23 
�Significantly different between COPD and Control (p<0.05) 24 
�Significantly different between ILD and COPD (p<0.05) 25 
P-values for gender and smoking status were calculated by using Fisher’s exact test; p-values for age, pack years, FEV1/FVC and Percent Emphysema 26 
were calculated by using Student’s t-test. 27 
 28 
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 29 

Unsupervised clustering identifies novel subgroups associated with clinical phenotypes 30 

693 of 2104 mature miRNAs were detected with 2 counts in at least 50% of samples. The expression profiles 31 

of 255 miRNAs were significantly associated with the presence of disease (ANOVA FDR q-value < 0.10 and 32 

fold change > 1.25 in either disease group compared to controls; Figure 1A; Supplementary Table 2). Five 33 

clusters of samples (S1-5) and 4 clusters of miRNA (M1-4) were determined by Consensus Clustering 34 

(Methods; Supplementary Figure 2). The majority of control samples (52%) were found in S1 (Figure 1B). 35 

Clusters S2, S4, and S5 had significantly more ILD samples compared to S1 (p<0.05). While the fractions of 36 

COPD samples in clusters S2-S5 were not significantly higher compared to cluster S1 (p>0.05), sample cluster 37 

S3 contained the highest proportion of COPD cases (53%). 38 

 39 

The ILD patients in clusters S4 and S5 had significantly lower DLCO (diffusing capacity of the lung for carbon 40 

monoxide) compared to ILD patients in cluster 1 (p<0.05; Figure 1C). Clusters S4 and S5 had an up-regulation 41 

in the expression of miRNAs from M1 and a down-regulation of miRNAs in M4. Sixty of the 125 miRNAs in M1 42 

were regionally co-located on chromosome 14q32 and were previously reported to be up-regulated in IPF16. 43 

Additional miRNAs in M1, including miR-21-5p/3p, miR-199a-3p, and miR-155-5p, have also been implicated 44 

in the ILD subtype IPF14,42,43. MiR-199a-5p was also associated with ILD status (p = 0.002) but did not pass our 45 

fold change cutoff42. The S4 and S5 clusters showed down-regulation in the expression of miRNAs from cluster 46 

M4. Several of the miRNAs in the M4 cluster were a part of in the miR-30 family, including miR-30a-5p/3p, 47 

miR-30d-5p/3p, miR-30b-5p, and miR-30c-2-3p. The two ILD-associated sample clusters S4 and S5 with more 48 

severe disease could be distinguished by higher levels of miRNA cluster M2. M2 contained many miRNAs that 49 

are major regulators of airway differentiation and ciliogenesis including miR-34b-5p/3p, miR-34c-5p/3p miR-50 

449a, miR-449b-5p, miR-449c-5p, and miR-4423-5p44,45. Other studies have identified two subclasses of IPF 51 

that are characterized by differences in expression of ciliary genes46. The different patterns of expression of 52 

ciliary-related miRNA between clusters S4 and S5 may also be indicative of this subtype. Cluster S2, which 53 

was also enriched for ILD samples, had intermediate levels of cluster M1/M2 up-regulation and M4 down-54 
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regulation compared to sample clusters S4 and S5, potentially indicating intermediate levels of disease 55 

severity. 56 

 57 

COPD samples in cluster S3 had significantly lower FEV1 percent predicted (p=0.01), DLCO (p<0.001), and 58 

FEV1/FVC (p=0.03), as well as significantly higher BODE score (body-mass index, airflow obstruction, 59 

dyspnea, and exercise, p=0.01) and percent emphysema (p=0.01) compared to the COPD samples in cluster 60 

S1. Cluster S3 was largely defined by the up-regulation of miRNAs in M3. M3 miRNA included proximal miR-61 

144 and miR-451a cluster on chromosome 17, miR-222-5p and miR-223-5p/-3p on chromosome X, as well as 62 

miR-18a and miR-92a-3p from the miR-17-92 polycistronic cluster on chromosome 13. Although not included 63 

in our clustering analysis due to the fold change cutoff, other miRNAs in the miR-17-92 polycistronic cluster 64 

were also associated with disease status, including miR-17-5p/3p, miR-19b-3p, and miR-20a-5p/3p (FDR q-65 

value < 0.05). Overall, we identified expression patterns of miRNAs that can distinguish unique subsets of 66 

patients with COPD and ILD, including patients with more severe clinical phenotypes.  67 

  68 
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 69 

 70 

Figure 1. Heterogeneity of miRNA expression profiles associated with COPD or ILD. A. The expression profiles of 255 miRNAs were significantly 71 
associated with the presence of disease (ANOVA FDR q-value < 0.10 and fold change > 1.25 in either disease group compared to controls). Consensus 72 
clustering was used to identify 5 distinct samples clusters and 4 distinct miRNA clusters. B. Stacked barplots display the proportion of disease and 73 
control samples within each sample cluster. The majority of control samples (53%) fell into cluster S1. Clusters S2, S4, and S5 were enriched with ILD 74 
patients compared to cluster S1. C. ILD samples in clusters S4 and S5 has significantly lower DLCO compared to ILD samples in cluster S1 (p < 0.05). 75 
COPD samples in cluster S3 had significantly lower DLCO, FEV1 percent predicted, FEV1/FVC ratios and significantly higher percent emphysema and 76 
BODE scores compared to COPD samples in cluster S1. Asterisks indicate significance: * p < 0.05; ** p < 0.01; *** p < 0.001. 77 
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Comparison of the number of gene and miRNA eQTLs in COPD and ILD 78 

eQTL analysis can reveal insights into specific biological effects that genetic variants have across d79 

tissues or to disease phenotypes.47 To compare the numbers of eQTLs between ILD and COPD a80 

number of eQTL effecting mRNA or miRNA expression in the setting of ILD and COPD, we utilized a su81 

262 lung tissue samples that had data from miRNA sequencing, SNP chips, and mRNA microarrays in82 

111 COPD, 113 ILD, and 38 Controls (Supplementary Table 4). Protein-coding genes and m83 

associated with a SNP were identified by ANOVA while correcting for age, gender, smoking statu84 

population structure within ILD, COPD and Control groups (FDR < 0.05; Table 2; Supplementary Fig85 

The COPD cohort had larger numbers of trans eQTLs for both genes and miRNAs compared to the ILD86 

(Gene: 110,424 in COPD, 68,050 in ILD; miRNA: 557 in COPD, 362 in ILD). In contrast, the ILD coh87 

larger numbers of cis gene eQTLs and nearly the same number of miRNA eQTLs as the COPD cohort88 

8195 in COPD, 10,941 in ILD; miRNA: 53 in COPD, 52 in ILD). The proportion of unique genes and m89 

with at least one cis eQTL was similar between COPD and ILD cohorts (cis gene: 6% in COPD, 7% in I90 

miRNA: 2% in COPD, 2% in ILD). However, there was 1.56-fold more trans gene eQTLs and 1.53-fol91 

trans miRNA eQTLS in the COPD cohort compared to the ILD cohort. Lastly, the proportion of miRN92 

any eQTL was significantly lower than the proportion of protein-coding genes with any eQTL in both the93 

and ILD cohorts (p < 0.001; Fisher’s exact test; Table 2). Overall, these results suggest that there ar94 

trans associations contributing to variability in expression in COPD compared to ILD and that miRNA95 

fewer proportions of cis and trans eQTLs than protein-coding genes in both diseases.  96 

 97 

Table 2. Number of gene and miRNA eQTLs in different diseases. 98 
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Integrated network analysis implicates the miR-34/449 family in COPD and ILD. 00 

Key miRNA regulators of gene expression can more readily be identified in disease states can be more readily 01 

identified by “anchoring” expression data with genetic information and building integrative networks.26 Genes 02 

and miRNAs associated with at least one SNP were included in the network analysis (p < 0.0005). To build 03 

integrative networks within each cohort, we leveraged the causality inference test (CIT).25 CIT assesses the 04 

hypothesis that a potential mediator between an initial random variable and an outcome variable is causal for 05 

that outcome. Causal and independent relationships are defined as series of conditions of associations 06 

between the three variables, corresponding to SNP, microRNA and mRNA nodes (Figure 2A). The number of 07 

significant associations obtained at each step of the network construction are presented in Supplementary 08 

Figure 4. For our study, we focused on relationships where the miRNA is predicted to be the modulator of 09 

mRNA expression. A common property of biological networks is that they often display a scale-free topology 10 

where a few nodes contain the majority of interactions in the network (i.e. the power law).48,49 We confirmed 11 

that our three networks followed a scale-free topology by observing a strong negative linear relationship 12 

between the number of predicted interactions for each microRNA and the frequency of microRNA with a 13 

certain number of interactions in log scale (Figure 2B). We further examined the miRNAs predicted to interact 14 

with the most genes in each network (Figure 2C, Supplementary Table 5). 15 

  16 
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 17 

Figure 2. Examining top miRNA in disease-specific integrative networks. A. We select those SNP-miRNA-mRNA triplets where the SNP-mRNA 18 
relationship is defined by a miRNA mediator; we filter out independent relationships and those triplets where the SNP is not associated with the miRNA. 19 
B. The CIT networks follow a power law. The negative correlation between the frequency of node degree and the node degree indicates that the 20 
networks are scale-free. C. Number of genes regulated by each miRNA. miR-449/34 family members were found to be among the top 20 differentially 21 
connected in COPD and ILD compared to control group. The red dots indicate the significantly differentially connected miRNAs by a Fisher’s exact test 22 
(FDR<0.2). 23 

 24 
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Members of the miR-449 and miR-34 families were found to be among the most connected to genes in COPD 25 

and ILD networks (Figure 2C), indicating that the miR-449/34 family has a greater impact on gene expression 26 

regulation in the disease groups compared to the control group. The miRNAs in the miR449/34 family had 27 

larger numbers of associated genes compared to the network in control samples (Figure 3A). Members of 28 

miR-449/34 family can promote airway differentiation by repressing the Notch pathway50. We observed that the 29 

union set of genes (n=406) that positively correlated with any of the miRNAs in this family in COPD or ILD was 30 

enriched among genes that increase in expression over time when airway basal cells are differentiated at an 31 

air-liquid interface (ALI)40. Gene enrichment results were significant by both GSVA (p < 0.05; Figure 3B) and 32 

GSEA (q < 0.001; Figure 3C). 75 SNPs in COPD (Supplementary Table 6) and 60 SNPs in ILD 33 

(Supplementary Table 6) were associated with members of the miR-449/34 family using the CIT. Some of 34 

these SNPs have been previously found to be associated with asthma, inflammation, cancer and other 35 

degenerative diseases in the Genome-Wide Repository of Associations Between SNPs and Phenotypes 36 

(GRASP)51. Allele frequencies for 10 of these SNPs were also significantly associated with COPD and 4 of 37 

them with ILD by a Fisher’s exact test (q<0.25; Supplementary Figure 5). 38 
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 40 

Figure 3. Enrichment of miR-449/34 modules. A. Clustering of miRNA modules based on the Jaccard index revealed a group of strongly overlapping 41 
miRNA in the miR-449/34 family. B. GSVA was used to predict the activity of the miR-449/34 family in a gene-expression dataset of airway epithelial 42 
differentiation. The set of genes that positively correlated with miR-449/34 family (406 genes) were enriched among genes that increase in expression 43 
with the airway epithelial cells differentiation (p < 0.05; Linear mixed-effects model). C. Similarly, enrichment of miR-449/34 gene set family with the 44 
airway cells differentiation is shown by GSEA (FDR q-value <0.001). 45 
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The canonical and 5’ isomiR seeds for miR-34c-5p regulate members of distinct signaling pathways  47 

As noted previously, expression for members of the miR-449/34 family were a part of a miRNA module (M2) 48 

that could distinguish two distinct groups of ILD patients and were found among the most connected 49 

microRNAs in COPD and ILD specific networks. The miR-449/34 family has been shown to promote 50 

ciliogenesis by down-regulating anti-differentiation genes such as NOTCH152. The majority of miRNAs in this 51 

family share the same seed sequence, GGCAGTG, which is a conserved heptametrical sequence on the 5’ 52 

end. Previous studies have revealed that variation in the 5’ end of miRNAs can create a novel seed sequence, 53 

which allows the 5’ isomiR to target a distinct set of genes from the canonical seed27.  Within the miR-34/449 54 

family, we found relatively high expression of isomiRs within the miR-34c-5p locus that contained an alternative 55 

seed sequence representing a 1-base shift to the left from the canonical seed, AGGCAGT (Figure 4A). 24 of 56 

the top 25 sequences from the miR-34c-5p locus were up-regulated in ILD sample compared to the Control 57 

samples (Supplementary Table 8), demonstrating that the majority of sequences follow the same expression 58 

pattern across samples with respect to disease status.  59 

 60 

To explore similarities and differences in putative mRNA targets between canonical and isomiR seeds of miR-61 

34c-5p, Targetscan v6.041 was used to predict mRNA targets for each seed. mRNAs were grouped into four 62 

categories: predicted targets of the canonical and 5’ isomiR seeds, predicted targets of the canonical seed 63 

only, predicted targets of the the 5’ isomiR seed only, or those not predicted to be a target of either seed. 64 

Additionally, the expression of each gene was correlated to the overall expression levels of miR-34c-5p using 65 

Spearman correlation within the ILD samples. The distribution of correlation coefficients for groups of genes 66 

that were predicted targets of the canonical and/or 5’ isomiR seeds were more negative compared to non-67 

predicted targets (Kolmogorov-Smirnov test; p < 1e-7; Figure 4B), suggesting that both the canonical seed 68 

and the 5’ isomiR seed may be negatively regulating target gene expression. We also explored the degree of 69 

overlap between genes that were significantly negatively correlated to miR-34c-5p expression (Spearman 70 

correlation; FDR q-value < 0.25) and were also a predicted target of either the canonical or 5’ isomiR (Figure 71 

4C). Interestingly, 47% of the miR-34c-5p 5’ isomiR targets were distinct from the miR-34c-5p canonical 72 

targets. Using Enrichr,53  we found that the anti-correlated predicted targets specific to the 5’ isomiR were 73 
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enriched for genes in the “Ras protein signal transduction” pathway including GRAP, GRB2, YWHAB, RHOA, 74 

RAPGEF6, MAPKAPK3, RALA, and SHC3 (p = 0.0001; Supplementary Table 9). Anti-correlated predicted 75 

targets specific to the miR-34c-5p canonical seed were enriched for the “notch signaling pathway” which 76 

contained other Notch-related genes beyond NOTCH1 including ADAM10, PSEN1, HEY1, DLL4, and 77 

NOTCH4 (p = 0.003 Supplementary Table 10). The predicted targets specific to the canonical seed were also 78 

enriched in other Ras-related pathways such as “Ras GTPase binding” and “small GTPase binding” suggesting 79 

that the canonical seed and the isomiR seed may be regulating different members of the same signaling 80 

pathway. 81 

 82 

Validation of expression and miR-34c-5p isomiR activity  83 

The expression of miR-34c-5p was measured in a subset of ILD and Control samples (n = 10 per group) via 84 

qRT-PCR and was significantly upregulated with disease (p<0.05, Supplementary Table 11, Supplementary 85 

Figure 6). Similarly, NOTCH1 which is a known target of the canonical miR-34c-5p54,55 and a predicted target 86 

of the 5’ isomiR, was validated to be down-regulated in ILD samples compared to Controls when measured by 87 

qRT-PCR (p < 0.05; Supplementary Figure 7). Finally, qRT-PCR was used to measure the expression of 88 

genes in Ras signaling pathway that were anti-correlated predicted targets of the canonical seed (CRK) or the 89 

5’ isomiR seed (RALA, GRB2, GRAP, RHOA, ARAP2, CRKL). Five of the seven predicted targets were 90 

significantly down-regulated in the subset of ILD samples compared to Controls (p < 0.05; Supplementary 91 

Figure 7). Additionally, two genes not predicted to be targets of miR-34c-5p seed were examined. An 92 

association between RHOC expression and ILD was observed with the mRNA microarrays (p = 0.002) and 93 

confirmed with qRT-PCR (p < 0.01) while a lack of association between EGF expression and ILD was 94 

observed with the mRNA microarrays (p = 0.230) and confirmed with qRT-PCR (p > 0.05; Supplementary 95 

Figure 7). These results confirm that associations with ILD determined by mRNA microarrays are largely 96 

recapitulated by qRT-PCR. 97 

 98 
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 00 

 01 

Figure 4. Functional roles of an isomiR for hsa-miR-34c. A. The top 25 highest expressed sequences are shown for the hsa-miR-34c locus02 

these sequences represented an isomiR on the 5’ end which contained a non-canonical miRNA seed  (purple).  B. 5’ UTR-site predicted mRN03 

by Targetscan are more negatively correlated with the miR-34c isomiR seed than non-predicted targets (Kolmogorov-Smirnov test, p<1e-04 

overlap of negatively correlated (FDR<0.25) and 5’ UTR-site predicted targets of miR-34c and 5’ isomiR. miR-34c targets are significantly en05 

Notch signaling pathway by Enrichr (p<0.02); 5’ isomiR targets are significantly enriched for Ras signaling pathway by Enrichr (p<0.002). 06 

fibroblast cells show significant repression of NOTCH1 with all experimental transfections (p<0.005, p<0.005, p<0.005). E. NOTCH4 express07 

downregulated by miR-34c mimic transfection (p<0.005) and not by transfection of the isomiR. F. GRB2 is significantly downregulated with th08 

5’ isomiR mimic transfection (p<0.005, p<0.005) but not the miR-34c canonical transfection. G. CRKL is also significantly downregulated with09 

34c 5’ isomiR mimic transfection (p<0.05, p<0.05) but not the miR-34c canonical transfection.  10 
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Given the differences in the sets of predicted target genes for each miR-34c-5p seed sequence, we next 11 

sought to validate activity of the miR-34c 5’ isomiR. Human lung fibroblasts (IMR90) were transfected with 12 

mimics of miR-34c-5p, the miR-34c-5p 5’ isomiR, or both sequences. In the ILD cohort, NOTCH1, a known 13 

target of miR-34c-5p, was significantly anti-correlated with miR-34c-5p expression (FDR q-value = 0.016) and 14 

was a predicted target of the 5’ isomiR seed as well. Fibroblasts transfected with any mimics had significant 15 

down-regulation of NOTCH1 expression (p<0.005, Figure 4D). NOTCH4 is a validated target of the canonical 16 

form of miR-34c-5p,55 but was not a predicted targeted by the miR-34c-5p 5’ isomiR. Expression of NOTCH4 17 

was only significantly decreased with canonical miR-34c-5p overexpression (p<0.005, Figure 4E). GRB2 and 18 

CRKL, genes involved in the Ras pathway and predicted targets of only the isomiR, were significantly 19 

downregulated only with the miR-34c-5p 5’ isomiR mimic transfections and not the canonical miR-34c-5p 20 

transfection (p<0.05, Figure 4F,G). Overall, these results demonstrate the ability of the miR-34c-5p isomiR to 21 

modulate the expression of predicted targets distinct from the canonical seed sequence. 22 

 23 

Discussion 24 

We applied unsupervised and integrative analyses to multi-omic data to characterize the role of miRNAs in the 25 

setting of COPD and ILD. Novel subgroups of patients were identified with miRNAs that were differentially 26 

expressed in either disease. Several sample subgroups were enriched for disease patients and/or had 27 

significantly worse lung function phenotypes compared the subgroup with the most Control subjects (sample 28 

cluster S1). Interestingly, several disease patients were also in cluster S1. We have previously shown that both 29 

gene and miRNA expression can vary with regional emphysema severity across different sections within the 30 

lungs of patients with COPD15. Therefore, COPD or ILD patients clustering with Control patients could be due 31 

to variable sampling of diseased regions within the lung. Conversely, a smaller number of control patients 32 

clustered in one of the disease-associated subgroups. This could be due to the fact that in diseases such as 33 

COPD, aberrant processes like emphysema can begin to occur before the onset of overall lung function 34 

decline56. Overall, these molecular subgroups defined by miRNA expression represent previously 35 

unappreciated patient subclasses that may require distinct therapeutic modalities. 36 

 37 
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In order to identify potential miRNA regulators of gene expression, we leveraged genetic and gene expression 38 

data available on a subset of samples. We first identified eQTLs for both miRNAs and genes and found that, in 39 

contrast to gene expression, relatively fewer miRNAs were associated a cis SNP compared to protein-coding 40 

genes, suggesting that their regulation is more dependent on other factors within this disease setting. 41 

However, we were able to detect a large number of trans interactions, suggesting the lack of cis interactions is 42 

not simply due to lack of power. To identify potential miRNA-gene interactions within each disease, we applied 43 

the CIT and observed a significantly higher proportion of interactions for specific miRNA between disease and 44 

normal networks, including interactions for the miR-34 and miR-449 families. These miRNA families regulates 45 

mucociliary differentiation by directly targeting the NOTCH pathway50,52,54,55,57. Gene modules for these 46 

miRNAs in the COPD and ILD integrative networks were associated with airway epithelial cell differentiation in 47 

an independent dataset. Interestingly, miR-34b and miR-34c have been associated with emphysema 48 

severity58. We also found that the primate-specific miR-4423 was differentially connected in the COPD 49 

network. Expression of this miRNA is highly connected with the miR-449/34 family and has been previously 50 

associated with airway differentiation in smokers with lung cancer45. As the SNPs associated with the miR-51 

449/34 family were on different chromosomes than the miRNAs, future studies will be needed to elucidate the 52 

mechanisms by which the trans-genetic variants can modulate the expression of these miRNAs.  53 

 54 

Finally, we leveraged the ability of small-RNA sequencing to characterize sequence variation beyond 55 

expression levels and identified an isomiR with a novel seed sequence at the miR-34c-5p locus. This seed 56 

sequence was predicted to target a distinct set of genes from the canonical seed sequence and was enriched 57 

for genes involved in Ras signaling. This pathway has been previously implicated in tight junction formation in 58 

normal airway epithelial barrier formation.59 Down-regulation of this pathway may be necessary for normal 59 

differentiation of ciliary cells in the airway as well as the aberrant differentiation observed in a subset of ILD 60 

patients. Additional experiments in animal models will be necessary to determine if inhibition of these miRNAs 61 

can ameliorate disease phenotypes. The aggregation of these findings suggests a role for aberrant miRNA and 62 

isomiR regulation of airway differentiation in a subset of COPD or ILD patients and the inhibition of this process 63 

may represent a novel therapeutic approach for disease treatment.  64 
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