The tryptophan catabolite or kynurenine pathway in a major depressive episode with melancholia, psychotic features and suicidal behaviors; a systematic review and meta-analysis ================================================================================================================================================================================ * Abbas F. Almulla * Yanin Thipakorn * Asara Vasupanrajit * Chavit Tunvirachaisakul * Gregory Oxenkrug * Hussein K. Al-Hakeim * Michael Maes ## Abstract **Background** Major depressive disorder (MDD) and bipolar disorder (BD) with melancholia and psychotic features and suicidal behaviors are accompanied by activated immune-inflammatory and oxidative pathways which may stimulate indoleamine 2,3- dioxygenase (IDO), the first and rate-limiting enzyme of the tryptophan catabolite (TRYCAT) pathway resulting in increased tryptophan degradation and elevated tryptophan catabolites (TRYCTAs). **Objective** The purpose of the current study is to systematically review and meta-analyze levels of TRP, its competing amino-acids (CAAs) and TRYCATs in patients with severe affective disorders. **Methods** PubMed, Google Scholar and SciFinder were searched in the present study and we recruited 35 studies to examine 4,647 participants including 2,332 unipolar (MDD) and bipolar (BD) depressed patients and 2,315 healthy controls. **Results** Severe patients showed significant lower (p<0.0001) TRP (standardized mean difference, SMD=-0.517, 95% confidence interval, CI: -0.735; -0.299) and TRP/CAA (SMD= -0.617, CI: -0.957; -0.277) levels with moderate effect sizes, while no significant difference in CAAs were found. Kynurenine (KYN) levels were unaltered in severe MDD/BD phenotypes, while the KYN/TRP ratio showed a significant increase only in patients with psychotic features (SMD= 0.224, CI: 0.012; 0.436). Quinolinic acid (QA) was significantly increased (SMD= 0.358, CI: 0.015; 0.701) and kynurenic acid (KA) significantly decreased (SMD= -0.260, CI: -0.487; -0.034) in severe MDD/BD. **Conclusion** Patients with affective disorders with melancholic and psychotic features and suicidal behaviors show normal IDO enzyme activity but a lowered availability of plasma/serum TRP to the brain, which is probably due to other processes such as low albumin levels. Keywords * Melancholia * Psychotic depression * affective disorders * neuro-immune * inflammation ## Introduction Major depression disorder (MDD) and bipolar disorder (BD) may involve severe phenotypes including melancholia and psychotic depression (American Psychiatric Association 2000). Delusions and hallucinations are the main characteristics of the psychotic features in MDD, while melancholic MDD is characterized by severe depressed mood, anhedonia, hypoesthesia, lack of reactivity, early morning awakening, diurnal variation, and anorexia resulting in weight loss, and psychomotor retardation. These subtypes of MDD are strongly associated with suicidal behaviors in MDD patients (Sowa- Kućma, Styczeń et al. 2018). Suicide is one of the major causes of death worldwide, one of each 100 deaths is due to suicide, and globally 800,000 individuals die per year (World Health 2019, World Health 2021). The presence of psychiatric illness, particularly MDD and BD, is the major leading cause of suicide, particularly MDD (around 90% of the victims) (Henriksson, Aro et al. 1993, Lesage, Boyer et al. 1994). Extensive evidence is now available indicating the involvement of activated immune-inflammatory and oxidative and nitrosative stress pathways (IO&NS) in the pathophysiology of mental disorders including MDD, BD and schizophrenia (Maes, Galecki et al. 2011, Martin-Subero, Anderson et al. 2016, Maes, Sirivichayakul et al. 2020, Solmi, Suresh Sharma et al. 2021, Vasupanrajit, Jirakran et al. 2022). Moreover, MDD and BD are accompanied by activation of the immune-inflammatory response system (IRS) reflected by alterations of acute phase proteins (APPs) (e.g. C-reactive protein and albumin) and activation of cell-mediated immunity as shown by increased interleukin (IL)- 6, tumor necrosis factor (TNF)-α, IL-1β, IL-2, interferon (IFN)-γ, soluble IL-2 receptor (sIL-2R), sCD8, high levels of activated T cells such as CD25+ and HLA-DR+) (Vasupanrajit, Jirakran et al. 2022). IRS is usually counterbalanced by the compensatory immune-regulatory system (CIRS), which increases T-regulatory cytokines such as IL-10 and transforming growth factor (TGF)-β (Maes, Galecki et al. 2011, Maes and Carvalho 2018, Roomruangwong, Noto et al. 2020, Maes, Moraes et al. 2021). A large body of studies indicates that MDD and BD are associated with elevated peripheral levels of lipopolysaccharide (LPS), which augment inflammation and cell-mediated immunity (CMI) (Maes, Kubera et al. 2008, Maes, Twisk et al. 2012). In comparison with simple MDD, MDD with melancholic and psychotic features and suicidal behaviors are reported to be associated with increased pro-inflammatory markers, namely APPs (e.g., haptoglobin), upregulated T cell markers, besides failure to suppress the production of IL-1β and sIL-2R by administration of dexamethasone (Maes, Bosmans et al. 1991, Maes, Lambrechts et al. 1992, Maes, Scharpé et al. 1994, Maes, Mihaylova et al. 2012, Sowa-Kućma, Styczeń et al. 2018). Hyperactive immune- inflammatory pathways may induce O&NS pathways which are accompanied by elevated reactive oxygen and nitrogen species (ROS, RNS), especially in case of lowered total antioxidant capacity levels (Maes, Galecki et al. 2011). Additionally, increased levels of myeloperoxidase (MPO), a key enzyme in the innate immune response, has been frequently reported in depression (Gałecki, Gałecka et al. 2012, Somani, Singh et al. 2022). The latter may increase reactive chlorine species (RCS, e.g. hydrochlorous acid) resulting in chlorinative stress followed by high levels of advanced oxidation protein products (AOPP) (Maes, Landucci Bonifacio et al. 2019). Moreover, high levels of oxidative mediators impact the integrity of lipids, proteins, DNA, and mitochondria (Maes, Galecki et al. 2011). Stimulated IRS and O&NS pathways explain, in part, key characteristics of affective disorders, namely the frequency of episodes (disease’s staging), the severity of illness, and suicidal behaviors, including suicidal ideation and attempts (Vasupanrajit, Jirakran et al. 2021, Maes 2022, Maes, Rachayon et al. 2022). Furthermore, the neurotoxic properties of ROS, RNS, and M1 macrophage and T helper (Th)-1 cytokines generate neuro-affective toxicity, which may explain the staging and phenome of MDD and BD (Maes 2022, Maes, Rachayon et al. 2022). High levels of IFN-γ, IL-1β, LPS, along with ROS and RNS are implicated in induction the rate-limiting enzyme of the tryptophan catabolite (TRYCAT) pathway, namely indole 2,3-dioxygenase (IDO) enzyme (Saito, Markey et al. 1992, Anderson and Maes 2013, Reyes Ocampo, Lugo Huitrón et al. 2014, Almulla and Maes 2022). The TRYCAT pathway is the major catabolic pathway of tryptophan (TRP) which when overactive may deplete TRP thereby producing neuroactive metabolites, including kynurenine (KYN), kynurenic acid (KA), 3-hydroxykynurenine (3HK), anthranilic acid (AA), 3-hydroxyanthranilic acid (3-HA), xanthurenic acid (XA), quinolinic acid (QA), and picolinic acid (PA). The latter TRYCATs show neuroprotective as well as neurotoxic effects as shown in Figure 1 (Maes, Leonard et al. 2011, Almulla and Maes 2022). Besides, the depletion of central and peripheral TRP levels (a precursor of serotonin) may lower serotonin levels in the CNS which have been reported in impulsive suicidal patients (Brown, Ebert et al. 1982, Maes, Leonard et al. 2011, Maes 2015, Almulla and Maes 2022). Some TRYCATs cause neuro-oxidative toxicity with oxidative cell damage and lipid peroxidation, such as 3HA, 3HK and QA (Guidetti and Schwarcz 1999, Santamaría, Galván-Arzate et al. 2001, Smith, Smith et al. 2009, Reyes Ocampo, Lugo Huitrón et al. 2014, Almulla and Maes 2022). Additionally, a substantial amount of hydrogen peroxide and superoxide anions are produced by 3HA and 3HK (Goldstein, Leopold et al. 2000). ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/07/2022.08.06.22278492/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/F1) Figure 1: Summery of tryptophan catabolite (TRYCAT) pathway in severe affective disorders CNS: Central nervous system, TRYCATs: Tryptophan catabolites, E.S.: Effect size, TRYCAT: Tryptophan catabolite, LAT 1: Large neutral amino acid transporter 1, IFN-γ: Interferon-Gamma, IL-6: Interleukin 6, IL-1β: Interleukin-1 beta, O&NS: Oxidative and nitrosative stress, NO: Nitric Oxide, 5-HT: 5-Hydroxytryptamine, LPS: Lipopolysaccharides, CNS: Central nervous system, IDO: Indoleamine 2,3 dioxygenase, TDO: Tryptophan 2,3-dioxygenase, KAT: Kynurenine Aminotransferase, KMO: Kynurenine 3- monooxygenase, KYNU: Kynureninase, TRP: Tryptophan, KYN: Kynurenine, KA: Kynurenic Acid, 3HK: 3-Hydroxykynurenine, AA: Anthranilic Acid, XA: Xanthurenic Acid, 3HA: 3-Hydroxyanthranilic Acid, PA: Picolinic Acid, QA: Quinolinic Acid. Furthermore, frequent agonistic effects of QA on the hippocampal N-methyl-D- Aspartate (NMDA) receptors may induce atrophy and apoptosis of the hippocampus (Maes, Leonard et al. 2011). Elevated XA levels may cause neurotoxicity by overactivation of the cationic channels that lead to intracellular hypercalcemia and, hence, accelerate damage to neural circuits in the brain along with mitochondrial dysfunction and apoptosis. These processes may substantially damage the neurons, produce poor glutamate transmission and restrict presynaptic transmission via triggering NMDA receptors (Kanchanatawan, Hemrungrojn et al. 2018, Almulla and Maes 2022). PA promotes immune-inflammatory response and reduces neuroprotection via reducing AA and KA levels which additionally have antidepressant roles (Kanchanatawan, Hemrungrojn et al. 2018, Tanaka, Bohár et al. 2020). In contrast, KYN may exert depressogenic and anxiogenic effects (Maes, Leonard et al. 2011). We recently found, in a large-scale meta-analysis, that affective disorders, including mild to moderate severe MDD and BD, are associated with a reduction in TRP levels but without any signs of an overactivated TRYCAT pathway (Almulla, Thipakorn et al. 2022). However, in MDD patients with suicidal, melancholic, and psychotic features, central and peripheral reductions in TRP levels, activation of the TRYCAT pathway, and increased TRYCATs levels were frequently reported in previous studies, which may reveal upregulation of the IDO enzyme is the leading cause for TRP depletion and increased TRYCATs levels (Sublette, Galfalvy et al. 2011, Erhardt, Lim et al. 2013, Bay-Richter, Linderholm et al. 2015). Nonetheless, the TRP, competing amino acids (CAAs) and TRYCATs levels were not systematically reviewed in MDD/BD patients with the most severe phenotypes. Thus, in the purpose of the current study is to systematically review and meta-analyze TRP, CAAs, and the activity of TRYCAT pathway as reflected by KYN/TRP ratio (IDO enzyme index), KA/KYN (kynurenine Aminotransferase, KAT enzyme index), neurotoxicity indices and solitary levels of TRYCATs in MDD/BD patients with melancholic or psychotic features and suicidal behaviors. ## Material and methods In the present meta-analysis, we investigated TRP, CAAs, the TRP/CAA ratio, KYN, KA, AA and QA levels, and KYN/TRP and KA/KYN ratios as indicators for IDO and KAT enzyme activities, respectively. Additionally, we also computed a neurotoxic composite, namely (KYN+3HK+3HA+QA+XA+PA). These biomarkers were examined in serum and plasma (peripherally), cerebrospinal fluid (CSF) and brain tissue (centrally) of patients with severe affective disorders who show features of melancholia, psychosis, or suicidal behavior versus healthy controls. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 criteria (Page, McKenzie et al. 2021), the Cochrane Handbook for Systematic Reviews and Interventions guidelines (Higgins JPT 2019), and the Meta-Analyses of Observational Studies in Epidemiology (MOOSE) guidelines. ### Search strategy ESF, Table 1 displays the keywords and MESH terms utilized to search the electronic databases, including PubMed/MEDLINE, Google Scholar, and SciFinder, for publications concerning TRP and TRYCATs in melancholia, psychotic features, and suicides of affective disorders. Moreover, to ensure the comprehensiveness of our search, we reviewed the reference lists of all eligible papers and prior meta-analyses. The current data collection processes extended from January 10 to March 31, 2022. View this table: [Table 1.](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/T1) Table 1. The outcomes and number of patients with affective disorders and healthy control along with the side of standardized mean difference (SMD) and the 95% confidence intervals with respect to zero SMD. ### Eligibility criteria Articles in English that were published in peer-reviewed journals were included in our meta-analysis. Nevertheless, manuscripts in different other languages, namely Thai, French, Spanish, German, Italian, and Arabic, along with grey literature, were also selected. Other inclusion criteria were a) observational case-control and cohort studies that employed serum, plasma, CSF and brain tissues to evaluate TRP, CAAs, and/or TRYCATs, b) Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International Classification of Diseases (ICD) must have been utilized to diagnose MDD and BD with either melancholia, psychotic feature and/or suicidal behavior, and c) the number of patients with melancholia, psychotic features, or suicidal behavior should be reported. Exclusion criteria were: a) genetic, animal-based and translational studies, b) research that lacked a control group, c) studies that utilized samples such as saliva, hair, whole blood, or platelet-rich plasma, and d) duplicate articles along with systematic review and meta-analyses. We emailed the authors when they did not report the mean and standard deviation (SD) or standard error (SE) of the measured biomarkers. We employed the Wan et al (Wan, Wang et al. 2014) approach to estimate the mean (SD) and the median (interquartile range or range) when we did not receive a response from authors. If graphical data were provided, the mean and SD values were extracted using the Web Plot Digitizer ([https://automeris.io/WebPlotDigitizer/](https://automeris.io/WebPlotDigitizer/)). ### Primary and secondary outcomes As the primary outcomes, we examined TRP, TRP/CAAs, CAAs, KYN/TRP ratios and KYN levels in patients with affective disorders with melancholic or psychotic features, and/or suicidal behaviors versus healthy control. Secondary outcomes involved the KA/KYN ratio (KAT enzyme) and the neurotoxic composite score (KYN+3HK+3HA+QA+XA+PA) along with solitary KA, AA and QA levels. ### Screening and data extraction Using the above inclusion criteria, the first two authors (AA and YT) performed the elementary search processes. We checked the titles and abstracts of relevant manuscripts to evaluate including them in the current meta-analysis. Once the articles passed this checking step, we downloaded the full-text articles. The first author (AA) made a Microsoft Excel file to accommodate the extracted data, mainly mean (SD) and sample size of the assessed biomarkers. Furthermore, we also recorded the medium in which the analytes were determined (serum, plasma, CSF, brain tissues), type of affective disorder and whether they showed melancholic or psychotic features, and/or suicidal behaviors, authors’ names, publication dates, location of study, and study design, as well as sex, age of the participants, psychiatric ratings scales, and the psychiatric and physical comorbidities of patients and controls. The second and third authors (YT and AV) performed double-checks for the Excel file, and they consulted the last author (MM) is case of disagreements. The last author MM, adjusted the immunological confounder scales for TRP and TRYCATs studies to evaluate the methodological quality of the included articles (Andrés-Rodríguez, Borràs et al. 2020). ESF, Table 2 shows these two rating scales, namely quality and redpoint scales which were used to examine the quality of immune- based articles on schizophrenia (Almulla, Vasupanrajit et al. 2022), Alzheimer’s disease (Almulla, Supasitthumrong et al. 2022), Coronavirus disease 2019 (Almulla, Supasitthumrong et al. 2022) and affective disorders (Almulla, Thipakorn et al. 2022). Sample size, confounder control, and the time of sampling were the main items of the quality scale, which ranged from 0 to 10, and the best quality is achieved when the score is close to 10. The redpoint scale examines the quality level of the study design in terms of major confounders, including biological and analytical bias, which can be detected by higher redpoint scale scores (ranging from 0 to 26). View this table: [Table 2.](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/T2) Table 2. Results of meta-analysis performed on several outcome (TRYCATs) variables with combined different media and separately. ### Data analysis ESF, Table 3 shows the PRISMA criteria which were employed in the present meta- analysis that used the CMA program V3 to analyze all of the data. The criterion to conduct a meta-analysis was that the biomarker levels should be available in at least three studies. We assumed dependency while computing the mean values of the outcomes to compare the neurotoxicity index and the KYN/TRP (an index for IDO enzyme activity) and KA/KYN (an index for KAT enzyme activity) ratios in depressed patients versus healthy controls (Almulla, Supasitthumrong et al. 2022, Almulla, Vasupanrajit et al. 2022). We evaluate the following ratios by specifying the effect size direction a) KYN/TRP with KYN in positive direction and TRP in negative direction, b) KA/KYN with KA in positive and KYN in negative direction; c) TRP/CAAs ratio: TRP in positive and CAA in negative direction. We employed the random-effects model with restricted maximum likelihood to extract the effect size and report the standardized mean difference (SMD) with 95 percent confidence intervals (95% CI) as an indicator for the effect size with a two-tailed p-value less than 0.05 to describe the statistical significance. According to the values of SMD, namely 0.2, 0.5, and 0.8, the effect sizes were considered small, medium, and large, respectively (Cohen 1988). We used tau squared statistics to delineate heterogeneity in the data but also assessed the Q and I2 metrics (Almulla, Supasitthumrong et al. 2022, Almulla, Vasupanrajit et al. 2022, Vasupanrajit, Jirakran et al. 2022). We also performed meta- regression analyses to detect the sources of heterogeneity. Subgroup analysis was utilized to find the variations in TRP and TRYCATs among patients with melancholia, psychotic features, and suicidal behavior and central nervous system (CNS, brain tissues + CSF), serum and plasma, while selecting each of the latter groups as a unit of analysis. Since we did not find any significant difference between CSF and brain tissues, we combined the results from CSF and brain tissues into one group, called CNS. The effect sizes obtained from melancholic, psychotic, and suicidal patients were pooled in the absence of any significant difference between the above groups. Nevertheless, if there were significant intergroup differences, we report the effect sizes separately in the various subgroups. The strength of the effect sizes was examined by carrying out sensitivity analysis utilizing a leave-one-out approach. The fail-safe N technique along with one-tailed p-values for Kendall tau with continuity correction and Egger’s regression intercept were computed to investigate possible publication bias. The adjusted effect sizes were computed after imputing missing studies by the trim-and-fill method when the Egger’s test showed significant asymmetry. Funnel plots are generated and show study precision plotted versus SMD (with both observed and imputed values). View this table: [Table 3.](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/T3) Table 3. Results on publication bias. ## Results ### Search results The number of included and excluded studies and the final search outcome are displayed in the PRISMA flow chart Figure 2. We employed MESH terms and keywords (all shown in ESF, Table 1) to perform the initial search process, including inspection of 10861 articles. Based on our exclusion criteria 35 studies were selected as eligible in our systematic review and meta-analysis (Cowen, Parry-Billings et al. 1989, Anderson, Parry-Billings et al. 1990, Maes, Jacobs et al. 1990, Price, Charney et al. 1991, Quintana 1992, Maes, Meltzer et al. 1993, Møller 1993, Maes, De Backer et al. 1995, Maes, Wauters et al. 1996, Song, Lin et al. 1998, Hoekstra, Fekkes et al. 2006, Miller, Llenos et al. 2006, Myint, Kim et al. 2007, Myint, Kim et al. 2007, Gabbay, Klein et al. 2010, Steiner, Walter et al. 2011, Sublette, Galfalvy et al. 2011, Erhardt, Lim et al. 2013, Bay-Richter, Linderholm et al. 2015, Bradley, Case et al. 2015, Busse, Busse et al. 2015, Dahl, Andreassen et al. 2015, Savitz, Drevets et al. 2015, Brundin, Sellgren et al. 2016, Clark, Pocivavsek et al. 2016, Zhou, Zheng et al. 2018, Aarsland, Leskauskaite et al. 2019, Pompili, Lionetto et al. 2019, Sellgren, Gracias et al. 2019, Achtyes, Keaton et al. 2020, Ryan, Allers et al. 2020, van den Ameele, van Nuijs et al. 2020, Milaneschi, Allers et al. 2021, Trepci, Sellgren et al. 2021). ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/07/2022.08.06.22278492/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/F2) Figure 2: The PRISMA flow chart. One of the included studies reported two separate cohorts of patients namely those with melancholia and psychotic features. Therefore, we entered it two times and thus we pooled the overall effect sizes from 36 studies in the present systematic review and meta-analysis (8 CNS, 21 plasma, and 7 serum). We included 11 studies on depression with melancholia (9 plasma and 2 serum), 8 studies of depression with psychotic features (1 CNS, 5 plasma and 2 serum) and 17 studies with suicidal behavior (7 CNS, 7 plasma and 3 serum). The current meta-analysis included 4,647 participants distributed as 2,332 patients and 2,315 healthy controls. The mean ages of the individuals in the studies extended from 30 to 59 years. ESF, Table 4 shows that USA, Belgium, and Sweden contributed most to the total number of studies (8, 6 and 5 studies), respectively. Norway, the United Kingdom, Germany, Netherlands, and South Korea contributed with 2 studies and Italy, Spain, Ireland, China and Tunisia contributed each one study. High-performance liquid chromatography (HPLC) has been used in 14 studies and was, therefore, the most commonly technique employed to assess TRP and TRYCATs (see ESF, table 4). This table also shows the quality (median=5.62, min=2.75, max=7.75) and redpoint (median=13.75, min=9.5, max=18.5) scores. ### Primary outcome variables #### TRP, CAAs levels and the TRP/CAAs ratio **Table 1** shows that the effect size of the TRP level was pooled from 29 studies. The CI was completely on the negative side of zero in 13 studies, whereas only 2 studies showed that the CIs were on the positive side of zero. Furthermore, 14 studies intersected with zero with a negative SMD in 12 and a positive SMD in 2 studies. TRP levels were significantly decreased with a moderate effect size (SMD= -0.517) in patients compared to healthy controls. Figure 3 shows the forest plot of the TRP results. Publication bias analysis revealed 5 missing studies to the right side of the funnel plot and imputing these studies resulted in a lowered effect size although it remained significant. ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/07/2022.08.06.22278492/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/F3) Figure 3: The forest plot of tryptophan (TRP) between severe affective disorder patients and healthy control. CAAs results were obtained from 5 studies which involved only MDD with melancholia. Table 1 shows that the CIs of 2 studies fell entirely on the negative side of zero and 3 studies intersected with zero, 2 with negative and 1 with positive SMD values. ESF, Figure 1 shows that CAAs was not significantly different between patients and controls. The effect size of TRP/CAAs ratio was extracted from 7 studies performed in MDD with melancholia features. The 95% CI was entirely on the negative size of zero in 2 studies and 5 studies showed an overlap with zero. Melancholic MDD patients showed a significant reduction in TRP/CAAs with moderate effect size (SMD= -0.617). There were 2 missing studies on the left side of the funnel plot and after adjusting the effect size for these missing studies the SMD value was -0.748. ### The KYN/TRP ratio and KYN levels **Table 1** and Figure 4 revealed no significant differences in the KYN/TRP ratio between patients and controls. Due to the high heterogeneity, we performed group analysis which showed significant differences between melancholic, suicidal and psychotic patients and a significant increase with a small effect size was established in psychotic depression. Z Kendall’s and Egger’s test showed no signs of publication bias. ![Figure 4:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/07/2022.08.06.22278492/F4.medium.gif) [Figure 4:](http://medrxiv.org/content/early/2022/08/07/2022.08.06.22278492/F4) Figure 4: The forest plot of kynurenine (KYN)/tryptophan (TRP) ratio between severe affective disorder patients and healthy control. **Table 1** and **2** and ESF, Figure 3 show no significant difference in KYN levels between patients and controls. Group analysis displayed a significant difference (p=0.041) between CNS, serum and plasma KYN levels which were significantly decreased in plasma. **Table 3** revealed 3 missing studies on the right side of funnel plot and imputing these missing data yielded a non-significant effect size. ### Secondary outcome variables #### Neurotoxicity composite (KYN+3HK+3HA+XA+QA+PA) and KA/KYN ratio Table 1 and ESF, figure 4 show no significant differences in this neurotoxicity composite between patients and controls. We obtained the effect size of KA/KYN ratio from 14 studies and Table 2 and ESF, Figure 5 indicate no overall difference between patients and controls. However, group analysis showed a significant difference between melancholic, psychotic and suicidal patients, while only the latter displayed a significant decrease with a small effect size in the KA/KYN ratio compared to controls. Table 3 shows that there were 2 missing studies on the left side of the funnel plot of the KA/KYN ratio in suicidal patients and the adjusted estimate value was more decreased after imputing these missing studies. ### Solitary levels of KA, AA and QA Table 2 and ESF, Figure 6 show that KA levels in patients were significantly lower with a small effect size in patients as compared with controls. **Table 1** and ESF, Figure 7 show that the effect size of AA was obtained from three studies and that AA is significantly decreased with small effect size in patients. Table 3 shows one missing study to the right side of the funnel plot and after imputing this missing study showed that the results were no longer significant. **Table 1 and 2** and ESF, Figure 8 show that the QA levels were significantly increased with small effect size in patients versus controls. Publication bias analysis showed that there were 3 missing studies on the right of the funnel plot and after imputing these studies, the effect size increased to 0.646. ### Meta-regression analyses In order to examine factors which could explain heterogeneity, we carried out meta- regression analyses (ESF, table 5). Plasma was the most important confounder increasing heterogeneity with significant effects on TRP, KYN, KA, QA and (KYN+3HK+3HA+XA+QA+PA). Moreover, male/female gender, absence of electroconvulsive therapy (ECT), medications and latitude also impact heterogeneity. ## Discussion ### Availability of TRP to the brain The first major finding in the current study is that TRP levels and the TRP/CAA ratio are significantly decreased in patients with MDD/BD with melancholia and psychotic features, and suicidal behaviors as compared with healthy controls and that there was no significant difference between the latter phenotypes in TRP and TRP/CAA levels. The current results align with findings of a recent study conducted on MDD and BD patients with mild to moderate forms of depression (Almulla, Thipakorn et al. 2022). Moreover, previous studies revealed a significant TRP reduction in affective disorders with melancholic, psychotic and suicidal features (Maes, Wauters et al. 1996, Hoekstra, Fekkes et al. 2006, Gabbay, Klein et al. 2010, Bradley, Case et al. 2015). We also found that melancholic MDD patients have normal levels of CAAs and a decreased TRP/CAAs ratio, which is therefore solely determined by diminished TRP levels. These findings are consistent with our recent findings in mild to moderate MDD/BD (Almulla, Thipakorn et al. 2022). We could not examine the CAA levels and TRP/CAA ratio in MDD/BD patients with psychotic features and/or suicidal behaviors because there were not sufficient studies. Thus, the current meta-analysis confirms previous studies about MDD patients with melancholia (Maes, Jacobs et al. 1990, Maes, Meltzer et al. 1993, Maes, De Backer et al. 1995, Maes, Wauters et al. 1996). It is important to measure the TRP/CAA ratio because both peripheral TRP (whether total or free) and CAA (tyrosine, valine, phenylalanine, leucine and isoleucine) levels determine at least in part brain TRP concentration (Yuwiler, Oldendorf et al. 1977, Pardridge 1979). Indeed, specific receptors in the blood-brain barrier (BBB), named the large amino acid transporter 1 (LAT 1), are responsible for delivering TRP to the brain from the peripheral blood and the above CAAs compete with TRP to the cross BBB (Almulla, Vasupanrajit et al. 2022). In this respect, Moller (Møller 1985) reported that a decreased TRP/CAAs ratio predicted a successful response to the selective serotonin reuptake inhibitors (SSRIs). ### KYN levels and IDO enzyme The second major finding of the present study is that patients with severe affective disorders showed unchanged KYN levels compared with healthy controls. However, these results showed high heterogeneity, and, hence, we performed group analysis which revealed that only plasma KYN level was significantly decreased which is consistent with previous results in mild to moderate MDD/ BD (Almulla, Thipakorn et al. 2022, Almulla, Vasupanrajit et al. 2022). We also found that the KYN/TRP ratio was unaltered in all patients combined although patients with psychotic features showed a trend towards significant increases in the KYN/TRP ratio. Nonetheless, since KYN is not significantly increased, such changes do not result from IDO activation. While some prior studies are in line with our findings and showed neither significant changes in KYN/TRP ratio nor KYN level in suicidal patients (Savitz, Drevets et al. 2015, Trepci, Sellgren et al. 2021), Messaoud et al. reported a significant plasma elevation of KYN level and KYN/TRP ratio in suicidal MDD patients (Messaoud, Mensi et al. 2019). However, another study showed a high serum KYN/TRP ratio without changes in KYN level (Zhou, Zheng et al. 2018). The KYN/TRP ratio was significantly increased in MDD patients with psychotic features, while the KYN level decreased significantly (Ryan, Allers et al. 2020). Other studies that included melancholic patients reported no significant changes in plasma KYN levels and the KYN/TRP ratio (Dahl, Andreassen et al. 2015, Milaneschi, Allers et al. 2021). The current meta-analysis indicates that there is no overactivation of the TRYCAT pathway in severe forms of affective disorders, which are, nevertheless, accompanied by a mild chronic immune-inflammatory response. Similar findings were recently reported in Alzheimer’s disease, another disorder accompanied by a mild chronic inflammatory process (Almulla, Supasitthumrong et al. 2022, Almulla, Thipakorn et al. 2022). In contrast, the TRYCAT pathway is more pronounced in conditions characterized by severe acute inflammatory conditions such as COVID-19 infection (Almulla, Supasitthumrong et al. 2022) and treatment with IFN-α (Bonaccorso, Marino et al. 2002). In those conditions, cytokine induced TRP depletion (also known as TRP starvation) is a key element in the innate immune response that impedes intruding pathogens and results in anti-inflammatory effects (Maes, Leonard et al. 2011, Almulla and Maes 2022). Nevertheless, several factors influence the activity of the IDO enzyme and probably lead to inhibition of the TRYCAT pathway. First, lowered TRP levels may drive the self- regulation of the IDO enzyme which is accompanied by an inactive ferric IDO form and autoxidation (Booth, Basran et al. 2015, Nelp Micah, Kates Patrick et al. 2018). Second, elevated nitric oxide levels are reported in severe MDD and BD and may inhibit the IDO enzyme (Kim, Paik et al. 2006, Lee, Lee et al. 2006, Maes, Simeonova et al. 2019). Third, cellular IDO is probably inhibited at the post-translational level by high hydrogen peroxides concentrations (Freewan, Rees et al. 2013) which is another hallmark of depression (Leonard and Maes 2012). Moreover, other substantial factors which influence the TRYCAT pathway are deficiencies of riboflavin (vitamin B2), a coenzyme of kynurenine 3-monooxygenase (KMO), and pyridoxal 5′-phosphate (PLP, vitamin B6) which is the coenzyme for KAT and kynureninase (KYNU) (Ryan, Allers et al. 2020). Both vitamins are repeatedly reported to be decreased in depression (Naghashpour, Amani et al. 2011, Mikkelsen, Stojanovska et al. 2017). Since IDO is not activated in severe depression, other factors should explain the lower TRP availability to the brain. First, depression is accompanied by lowered levels of albumin, a negative APP, whilst a large part of the TRP pool is bound to albumin in the peripheral circulation (Mc and Oncley 1958, Fernstrom, Larin et al. 1973). As such, lowered albumin will decrease total TRP levels, thereby lowering brain TRP concentrations and maybe impacting serotonin synthesis in the brain (Maes, Vandewoude et al. 1991, Maes, Wauters et al. 1996, Maes, Smith et al. 1997). In this respect, lowered albumin showed a negative correlation with depressive symptoms in patients with suicidal attempts (Ambrus and Westling 2019). Second, platelet uptake of TRP may be increased in MDD (Morel-Kopp, McLean et al. 2009, Moreno, Gaspar et al. 2013). Third, increased free fatty acids, partially mediated by insulin, may affect TRP levels in MDD (Almulla, Vasupanrajit et al. 2022). All the above-mentioned causes are probably responsible for reduced levels of TRP in severe affective disorders in the absence of upregulated TRYCAT pathway. It should be stressed that patients with severe forms of affective disorders are probably treated with many antidepressants, mood stabilizers and antipsychotics, which may have substantial effects on IDO activity and TRYCATs levels (Ara and Bano 2012, Qiu, Yang et al. 2014). Moreover, some antidepressants have anti-inflammatory properties by a) inhibiting overactivated cell-mediated immunity and decreasing IFN-γ levels (a potent stimulator of IDO enzyme), therefore impeding stimulation of the TRYCAT pathway (Maes 2011), and b) reducing various acute-phase proteins, such as haptoglobin, fibrinogen, C3, C4, and α-antitrypsin (Maes, Delange et al. 1997). Furthermore, animal- based studies reported that valproate and citalopram negatively regulate the IDO and tryptophan 2,3-dioxygenase (TDO) enzymes and reserve TRP for the 5-HT pathway (Ara and Bano 2012, Qiu, Yang et al. 2014). Therefore, in severe affective disorders, many factors control the activity of the TRYCAT pathway. ### Neurotoxic indexes and TRYCATs The third major finding of the current study is that the neurotoxicity index (including the composite score KYN+3HK+3HA+XA+QA+PA) is unaltered in patients with severe affective disorders. In addition, the KA/KYN ratio (another neurotoxicity index) was significantly decreased in patients with suicidal behavior and psychotic features but not in those with melancholia. The alteration in the KA/KYN ratio is probably due to decreased KA levels since we did not find any abnormality in KYN levels. We recently found that mild to moderate MDD/BD patients showed unchanged neurotoxicity composite scores and an increased KA/KYN ratio (Almulla, Thipakorn et al. 2022). In line with the current study, previous studies showed a reduced KA/KYN ratio in suicidal depressed patients (Zhou, Zheng et al. 2018). Nevertheless, severe affective disorder was accompanied by a significantly increased level of QA, a neurotoxic TRYCAT. Previous studies concerning QA were often inconsistent. For example, in the CSF of suicidal MDD patients, QA levels were elevated (Erhardt, Lim et al. 2013, Bay-Richter, Linderholm et al. 2015), while postmortem studies of suicide patients showed that in the CA1 and CA2/3 areas of the hippocampus, QA levels were either significantly decreased or unchanged (Busse, Busse et al. 2015). In contrast, QA levels were increased in subgenual anterior cingulate cortex (sACC), and anterior midcingulate cortex (aMCC) areas of the brain of depressed patients with suicidal behaviors (Steiner, Walter et al. 2011). Moreover, in the plasma of suicidal MDD patients, QA levels were either significantly decreased (Achtyes, Keaton et al. 2020) or unaltered (Brundin, Sellgren et al. 2016). No significant changes in QA levels were found in depressed patients with psychotic features or melancholia (Dahl, Andreassen et al. 2015, Aarsland, Leskauskaite et al. 2019). In the current study, we did not find any difference between peripheral and central QA levels or between patients with melancholia, psychotic features, and suicidal behavior, but, overall, there was a significant increase. ### Neuroprotective TRYCATs The fourth major finding of this study is that severe forms of affective disorders are linked to lower KA levels without a change in AA levels (after bias correction), even though the effect size was only computed in 3 studies. Recently, we found in mild to moderate MDD and BD patients that there was a peripheral reduction in KA and no changes in central levels (Almulla, Thipakorn et al. 2022). In this regard, we did not find any significant difference among central and peripheral levels in the present study. Some previous papers indicated significantly lower central and peripheral KA levels (Bay- Richter, Linderholm et al. 2015, Aarsland, Leskauskaite et al. 2019). However, other studies showed no aberration in KA levels, whether centrally or peripherally, in suicidal and melancholic MDD patients (Erhardt, Lim et al. 2013, Dahl, Andreassen et al. 2015). The main cause of lower KA is probably a decrease in KYN, the substrate of the KAT enzyme, although dietary factors cannot be excluded (Tomaszewska, Muszyński et al. 2019). Recently, Steiner et al found a strong negative correlation between AA and severity of depression scores in unmedicated depressed females implying that the severity of depression is associated with lowered AA levels (Steiner, Dobrowolny et al. 2021). All in all, it appears that MDD/BD may be accompanied by lowered neuroprotection and consequent increased neurotoxicity. First, our findings indicating decreased KA but increased QA in severe affective patients indicate QA-based neurotoxicity (Almulla and Maes 2022). Second, lowered levels of TRP (in itself an antioxidant) may lead to decreased antioxidant metabolites, namely serotonin, melatonin, 3HK and XA (Reiter, Tan et al. 1999, Xu, Liu et al. 2018). Moreover, serotonin enhances proper neuroplasticity and maintains healthy neurons (Croonenberghs, Verkerk et al. 2005, Rădulescu, Drăgoi et al. 2021). Third, KA has a neuroprotective role by antagonizing the action of QA inhibiting excitatory receptors namely NMDA, α-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid (AMPA) and kainate glutamate ionotropic receptors, in addition, to impede alpha 7 nicotinic acetylcholine receptor (α7nAChr) and thereby decrease glutamate release (Morris, Carvalho et al. 2016, Almulla and Maes 2022). Fourth, inhibition of the TRYCAT pathway results in decreased KYN, KA and XA levels, which is associated with an indirect increase in neurotoxicity since these metabolites exert an anti- inflammatory role by diminishing IFN-γ/IL-10 ratio (Maes, Mihaylova et al. 2007). In addition, KA, 3HK, 3HA, and XA display antioxidant properties (Goda, Hamane et al. 1999, Maes, Leonard et al. 2011). ## Limitations Some limitations should be noticed while interpreting the current findings. The lack of information concerning treatment histories restricted our potential to examine the impact of drugs on TRP, CAAs and TRYCATs levels. We could not examine the status of TRP and TRYCATs in the central nervous system because only a limited number of studies on CSF and brain were available. Furthermore, no studies assessed CAAs in MDD with psychotic features or suicidal behaviors, and, therefore, we could not examine CAA levels and the TRP/CAAs ratio in these subgroups. ## Conclusions Figure 1 shows the summary of our findings. Severe affective disorders are accompanied by a decreased availability of TRP to the brain, whilst the TRYCAT pathway is not upregulated, probably due to the multiple treatments administered to those patients. However, there was a significant increase in neurotoxic QA and a significant decrease in neuroprotective KA, indicating increased neurotoxicity. ## Supporting information supplementary file [[supplements/278492_file02.pdf]](pending:yes) ## Declaration of Competing Interests We declare there is no conflict of interest. ## Ethical approval and consent to participate Not applicable. ## Consent for publication Not applicable. ## Availability of data and materials The dataset generated during and/or analyzed during the current study will be available from the corresponding author (MM) upon reasonable request and once the dataset has been fully exploited by the authors. ## Funding The study was funded by the C2F program, Chulalongkorn University, Thailand, No. 64.310/169/2564. ## Author’s contributions The design of the study was made by AA and MM. AA and YT searched and collected the relevant data. AA and MM conducted the statistical analysis. All authors contributed to the writing of this study. ## Data Availability The dataset generated during and/or analyzed during the current study will be available from the corresponding author (MM) upon reasonable request and once the dataset has been fully exploited by the authors. ## Acknowledgments Not applicable. ## Footnotes * E-mail addresses: Abbass.chem.almulla1991{at}gmail.com, Yanin.T{at}chula.ac.th, asara.vasu{at}gmail.com, Chavit.tun{at}gmail.com, goxenkrug{at}tuftsmedicalcenter.org, headm2010{at}yahoo.com, dr.michaelmaes{at}hotmail.com * Received August 6, 2022. * Revision received August 6, 2022. * Accepted August 7, 2022. * © 2022, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## References 1. Aarsland, T. I., I. Leskauskaite, O. Midttun, A. Ulvik, P. M. Ueland, L. Oltedal, V. J. Erchinger, K. J. Oedegaard, J. Haavik and U. Kessler (2019). “The effect of electroconvulsive therapy (ECT) on serum tryptophan metabolites.” Brain Stimul 12(5): 1135–1142. 2. Aarsland, T. I., I. Leskauskaite, Ø. Midttun, A. Ulvik, P. M. Ueland, L. Oltedal, V. J. Erchinger, K. J. Oedegaard, J. Haavik and U. Kessler (2019). “The effect of electroconvulsive therapy (ECT) on serum tryptophan metabolites.” Brain Stimul 12(5): 1135–1142. 3. Achtyes, E., S. A. Keaton, L. Smart, A. R. Burmeister, P. L. Heilman, S. Krzyzanowski, M. Nagalla, G. J. Guillemin, M. L. Escobar Galvis, C. K. Lim, M. Muzik, T. T. Postolache, R. Leach and L. Brundin (2020). “Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression.” Brain Behav Immun 83: 239–247. 4. Almulla, A. F., T. Supasitthumrong, A. Amrapala, C. Tunvirachaisakul, A. K. A. Jaleel, G. Oxenkrug, H. K. Al-Hakeim and M. Maes (2022). “The Tryptophan Catabolite or Kynurenine Pathway in Alzheimer’s Disease: A Systematic Review and Meta-Analysis.” J Alzheimers Dis. 5. Almulla, A. F., T. Supasitthumrong, C. Tunvirachaisakul, A. A. A. Algon, H. K. Al- Hakeim and M. Maes (2022). “The tryptophan catabolite or kynurenine pathway in COVID-19 and critical COVID-19: a systematic review and meta-analysis.” medRxiv: 2022.2002.2001.22270268. 6. Almulla, A. F., T. Supasitthumrong, C. Tunvirachaisakul, A. A. A. Algon, H. K. Al- Hakeim and M. Maes (2022). “The tryptophan catabolite or kynurenine pathway in COVID-19 and critical COVID-19: a systematic review and meta-analysis.” BMC Infectious Diseases 22(1): 615. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-022-07582-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35840908&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 7. Almulla, A. F., Y. Thipakorn, A. Vasupanrajit, A. A. Abo Algon, C. Tunvirachaisakul, A. A. Hashim Aljanabi, G. Oxenkrug, H. K. Al-Hakeim and M. Maes (2022). “The tryptophan catabolite or kynurenine pathway in major depressive and bipolar disorder: a systematic review and meta-analysis.” medRxiv: 2022.2006.2013.22276359. 8. Almulla, A. F., A. Vasupanrajit, C. Tunvirachaisakul, H. K. Al-Hakeim, M. Solmi, R. Verkerk and M. Maes (2022). “The tryptophan catabolite or kynurenine pathway in schizophrenia: meta-analysis reveals dissociations between central, serum, and plasma compartments.” Molecular Psychiatry. 9. Almulla, F. A. and M. Maes (2022). “The Tryptophan Catabolite or Kynurenine Pathway’s Role in Major De-pression.” Current Topics in Medicinal Chemistry 22: 1–5. 10. Almulla, F. A. and M. Maes (2022). “The tryptophan catabolite or kynurenine pathway’s role in major depression.” Current Topics in Medicinal Chemistry 22: 1–1. 11. Ambrus, L. and S. Westling (2019). “Inverse association between serum albumin and depressive symptoms among drug-free individuals with a recent suicide attempt.” Nordic Journal of Psychiatry 73(4-5): 229–232. 12. American Psychiatric Association, A. (2000). Diagnostic and Statistical Manual of Mental Disorders. Washington DC, APA. 13. Anderson, G. and M. Maes (2013). “Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression.” Prog Neuropsychopharmacol Biol Psychiatry 42: 5–19. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2012.06.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22800757&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 14. Anderson, I. M., M. Parry-Billings, E. A. Newsholme, J. R. Poortmans and P. J. Cowen (1990). “Decreased plasma tryptophan concentration in major depression: relationship to melancholia and weight loss.” J Affect Disord 20(3): 185–191. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-0327(90)90143-V&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2148339&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1990EG75700006&link_type=ISI) 15. Andrés-Rodríguez, L., X. Borràs, A. Feliu-Soler, A. Pérez-Aranda, N. Angarita-Osorio, P. Moreno-Peral, J. Montero-Marin, J. García-Campayo, A. F. Carvalho, M. Maes and J. V. Luciano (2020). “Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression.” Brain, Behavior, and Immunity 87: 881–889. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2019.12.02&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31887417&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 16. Ara, I. and S. Bano (2012). “Citalopram decreases tryptophan 2,3-dioxygenase activity and brain 5-HT turnover in swim stressed rats.” Pharmacol Rep 64(3): 558–566. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1734-1140(12)70851-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22814009&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 17. Bay-Richter, C., K. R. Linderholm, C. K. Lim, M. Samuelsson, L. Träskman-Bendz, G. J. Guillemin, S. Erhardt and L. Brundin (2015). “A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality.” Brain Behav Immun 43: 110–117. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2014.07.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25124710&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 18. Bonaccorso, S., V. Marino, A. Puzella, M. Pasquini, M. Biondi, M. Artini, C. Almerighi, R. Verkerk, H. Meltzer and M. Maes (2002). “Increased Depressive Ratings in Patients With Hepatitis C Receiving Interferon-α–Based Immunotherapy Are Related to Interferon- α–Induced Changes in the Serotonergic System.” Journal of Clinical Psychopharmacology 22(1). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00004714-200202000-00001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11799335&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000173457200001&link_type=ISI) 19. Booth, E. S., J. Basran, M. Lee, S. Handa and E. L. Raven (2015). “Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.” The Journal of biological chemistry 290(52): 30924–30930. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyOTAvNTIvMzA5MjQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8wNy8yMDIyLjA4LjA2LjIyMjc4NDkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 20. Bradley, K. A. L., J. A. C. Case, O. Khan, T. Ricart, A. Hanna, C. M. Alonso and V. Gabbay (2015). “The role of the kynurenine pathway in suicidality in adolescent major depressive disorder.” Psychiatry Research 227(2): 206–212. 21. Brown, G. L., M. H. Ebert, P. F. Goyer, D. C. Jimerson, W. J. Klein, W. E. Bunney and F. K. Goodwin (1982). “Aggression, suicide, and serotonin: relationships to CSF amine metabolites.” Am J Psychiatry 139(6): 741–746. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/ajp.139.6.741&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=6177256&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1982NR33800005&link_type=ISI) 22. Brundin, L., C. M. Sellgren, C. K. Lim, J. Grit, E. Pålsson, M. Landén, M. Samuelsson, K. Lundgren, P. Brundin, D. Fuchs, T. T. Postolache, L. Traskman-Bendz, G. J. Guillemin and S. Erhardt (2016). “An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation.” Transl Psychiatry 6(8): e865. 23. Busse, M., S. Busse, A. M. Myint, T. Gos, H. Dobrowolny, U. J. Müller, B. Bogerts, H. G. Bernstein and J. Steiner (2015). “Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses?” Eur Arch Psychiatry Clin Neurosci 265(4): 321–329. 24. Clark, S. M., A. Pocivavsek, J. D. Nicholson, F. M. Notarangelo, P. Langenberg, R. P. McMahon, J. E. Kleinman, T. M. Hyde, J. Stiller, T. T. Postolache, R. Schwarcz and L. H. Tonelli (2016). “Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals.” J Psychiatry Neurosci 41(6): 386–394. 25. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences Routledge. 26. Cowen, P. J., M. Parry-Billings and E. A. Newsholme (1989). “Decreased plasma tryptophan levels in major depression.” J Affect Disord 16(1): 27–31. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-0327(89)90051-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2521647&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1989R900600005&link_type=ISI) 27. Croonenberghs, J., R. Verkerk, S. Scharpe, D. Deboutte and M. Maes (2005). “Serotonergic disturbances in autistic disorder: L-5-hydroxytryptophan administration to autistic youngsters increases the blood concentrations of serotonin in patients but not in controls.” Life Sci 76(19): 2171–2183. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15733932&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 28. Dahl, J., O. A. Andreassen, R. Verkerk, U. F. Malt, L. Sandvik, L. Brundin and H. Ormstad (2015). “Ongoing episode of major depressive disorder is not associated with elevated plasma levels of kynurenine pathway markers.” Psychoneuroendocrinology 56: 12–22. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psyneuen.2015.02.011&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25770856&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 29. Erhardt, S., C. K. Lim, K. R. Linderholm, S. Janelidze, D. Lindqvist, M. Samuelsson, K. Lundberg, T. T. Postolache, L. Träskman-Bendz, G. J. Guillemin and L. Brundin (2013). “Connecting inflammation with glutamate agonism in suicidality.” Neuropsychopharmacology 38(5): 743–752. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/npp.2012.248&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23299933&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 30. Fernstrom, J. D., F. Larin and R. J. Wurtman (1973). “Correlation between brain tryptophan and plasma neutral amino acid levels following food consumption in rats.” Life Sciences 13(5): 517–524. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0024-3205(73)90044-1&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1973Q666600013&link_type=ISI) 31. Freewan, M., M. D. Rees, T. S. Plaza, E. Glaros, Y. J. Lim, X. S. Wang, A. W. Yeung, P. K. Witting, A. C. Terentis and S. R. Thomas (2013). “Human indoleamine 2,3-dioxygenase is a catalyst of physiological heme peroxidase reactions: implications for the inhibition of dioxygenase activity by hydrogen peroxide.” J Biol Chem 288(3): 1548–1567. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEwOiIyODgvMy8xNTQ4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjIvMDgvMDcvMjAyMi4wOC4wNi4yMjI3ODQ5Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 32. Gabbay, V., R. G. Klein, Y. Katz, S. Mendoza, L. E. Guttman, C. M. Alonso, J. S. Babb, G. S. Hirsch and L. Liebes (2010). “The possible role of the kynurenine pathway in adolescent depression with melancholic features.” J Child Psychol Psychiatry 51(8): 935–943. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1469-7610.2010.02245.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20406333&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000279736900009&link_type=ISI) 33. Gałecki, P., E. Gałecka, M. Maes, M. Chamielec, A. Orzechowska, K. Bobińska, A. Lewiński and J. Szemraj (2012). “The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder.” Journal of Affective Disorders 138(3): 360–366. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2012.01.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22331023&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 34. Goda, K., Y. Hamane, R. Kishimoto and Y. Ogishi (1999). “Radical scavenging properties of tryptophan metabolites. Estimation of their radical reactivity.” Adv Exp Med Biol 467: 397–402. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-4615-4709-9_50&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10721081&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000086779600050&link_type=ISI) 35. Goldstein, L. E., M. C. Leopold, X. Huang, C. S. Atwood, A. J. Saunders, M. Hartshorn, J. T. Lim, K. Y. Faget, J. A. Muffat, R. C. Scarpa, L. T. Chylack, E. F. Bowden, R. E. Tanzi and A. I. Bush (2000). “3-Hydroxykynurenine and 3-Hydroxyanthranilic Acid Generate Hydrogen Peroxide and Promote α-Crystallin Cross-Linking by Metal Ion Reduction.” Biochemistry 39(24): 7266–7275. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/bi992997s&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10852726&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000087778300027&link_type=ISI) 36. Guidetti, P. and R. Schwarcz (1999). “3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum.” Eur J Neurosci 11(11): 3857–3863. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1460-9568.1999.00806.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10583474&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000084424400009&link_type=ISI) 37. Henriksson, M. M., H. M. Aro, M. J. Marttunen, M. E. Heikkinen, E. T. Isometsä, K. I. Kuoppasalmi and J. K. Lönnqvist (1993). “Mental disorders and comorbidity in suicide.” Am J Psychiatry 150(6): 935–940. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/ajp.150.6.935&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8494072&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993LD84300015&link_type=ISI) 38. Higgins JPT, T. J., Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019). Cochrane Handbook for Systematic Reviews of Interventions. Chichester (UK), John Wiley & Sons. 39. Hoekstra, R., D. Fekkes, A. J. Loonen, L. Pepplinkhuizen, S. Tuinier and W. M. Verhoeven (2006). “Bipolar mania and plasma amino acids: increased levels of glycine.” Eur Neuropsychopharmacol 16(1): 71–77. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.euroneuro.2005.06.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16023835&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000234818800009&link_type=ISI) 40. Kanchanatawan, B., S. Hemrungrojn, S. Thika, S. Sirivichayakul, K. Ruxrungtham, A. F. Carvalho, M. Geffard, G. Anderson and M. Maes (2018). “Changes in Tryptophan Catabolite (TRYCAT) Pathway Patterning Are Associated with Mild Impairments in Declarative Memory in Schizophrenia and Deficits in Semantic and Episodic Memory Coupled with Increased False-Memory Creation in Deficit Schizophrenia.” Molecular Neurobiology 55(6): 5184–5201. 41. Kim, Y. K., J. W. Paik, S. W. Lee, D. Yoon, C. Han and B. H. Lee (2006). “Increased plasma nitric oxide level associated with suicide attempt in depressive patients.” Prog Neuropsychopharmacol Biol Psychiatry 30(6): 1091–1096. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2006.04.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16725247&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 42. Lee, B. H., S. W. Lee, D. Yoon, H. J. Lee, J. C. Yang, S. H. Shim, D. H. Kim, S. H. Ryu, C. Han and Y. K. Kim (2006). “Increased Plasma Nitric Oxide Metabolites in Suicide Attempters.” Neuropsychobiology 53(3): 127–132. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000092542&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16601363&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000238188900002&link_type=ISI) 43. Leonard, B. and M. Maes (2012). “Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression.” Neuroscience & Biobehavioral Reviews 36(2): 764–785. 44. Lesage, A. D., R. Boyer, F. Grunberg, C. Vanier, R. Morissette, C. Ménard-Buteau and M. Loyer (1994). “Suicide and mental disorders: a case-control study of young men.” Am J Psychiatry 151(7): 1063–1068. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/ajp.151.7.1063&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7503818&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1994NU65600019&link_type=ISI) 45. Maes, M. (2011). “Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression.” Prog Neuropsychopharmacol Biol Psychiatry 35(3): 664–675. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2010.06.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20599581&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 46. Maes, M. (2015). “A review on citation amnesia in depression and inflammation research.” Neuro Endocrinol Lett 36(1): 1–6. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25789583&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 47. Maes, M. (2022). “Precision Nomothetic Medicine in Depression Research: A New Depression Model, and New Endophenotype Classes and Pathway Phenotypes, and A Digital Self.” J Pers Med 12(3). 48. Maes, M., E. Bosmans, E. Suy, C. Vandervorst, C. DeJonckheere and J. Raus (1991). “Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1 beta and soluble interleukin-2 receptor production.” Acta Psychiatr Scand 84(4): 379–386. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1600-0447.1991.tb03163.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1746291&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1991GL21100015&link_type=ISI) 49. Maes, M. and A. F. Carvalho (2018). “The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder.” Mol Neurobiol 55(12): 8885–8903. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-018-1016-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 50. Maes, M., G. De Backer, E. Suy and B. Minner (1995). “Increased plasma serine concentrations in depression.” Neuropsychobiology 31(1): 10–15. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7708176&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 51. Maes, M., G. De Backer, E. Suy and B. Minner (1995). “Increased Plasma Serine Concentrations in Depression.” Neuropsychobiology 31(1): 10–15. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7708176&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 52. Maes, M., J. Delange, R. Ranjan, H. Y. Meltzer, R. Desnyder, W. Cooremans and S. Scharpé (1997). “Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs.” Psychiatry Res 66(1): 1–11. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0165-1781(96)02915-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9061799&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WK50600001&link_type=ISI) 53. Maes, M., P. Galecki, Y. S. Chang and M. Berk (2011). “A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness.” Prog Neuropsychopharmacol Biol Psychiatry 35(3): 676–692. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2010.05.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20471444&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 54. Maes, M., M. P. Jacobs, E. Suy, B. Minner, C. Leclercq, F. Christiaens and J. Raus (1990). “Suppressant effects of dexamethasone on the availability of plasma L-tryptophan and tyrosine in healthy controls and in depressed patients.” Acta Psychiatr Scand 81(1): 19–23. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1600-0447.1990.tb06443.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2330824&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1990CQ65400005&link_type=ISI) 55. Maes, M., M. Kubera and J. C. Leunis (2008). “The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression.” Neuro Endocrinol Lett 29(1): 117–124. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18283240&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 56. Maes, M., J. Lambrechts, E. Bosmans, J. Jacobs, E. Suy, C. Vandervorst, C. de Jonckheere, B. Minner and J. Raus (1992). “Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining.” Psychol Med 22(1): 45–53. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291700032712&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1574566&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1992HK68700007&link_type=ISI) 57. Maes, M., K. Landucci Bonifacio, N. R. Morelli, H. O. Vargas, D. S. Barbosa, A. F. Carvalho and S. O. V. Nunes (2019). “Major Differences in Neurooxidative and Neuronitrosative Stress Pathways Between Major Depressive Disorder and Types I and II Bipolar Disorder.” Molecular Neurobiology 56(1): 141–156. 58. Maes, M., B. E. Leonard, A. M. Myint, M. Kubera and R. Verkerk (2011). “The new ‘5- HT’ hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3- dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 35(3): 702–721. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2010.12.017&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21185346&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 59. Maes, M., H. Y. Meltzer, S. Scharpé, E. Bosmans, E. Suy, I. De Meester, J. Calabrese and P. Cosyns (1993). “Relationships between lower plasma L-tryptophan levels and immune- inflammatory variables in depression.” Psychiatry Res 49(2): 151–165. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-1781(93)90102-M&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7908745&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993MX09000005&link_type=ISI) 60. Maes, M., I. Mihaylova, M. Kubera and K. Ringel (2012). “Activation of cell-mediated immunity in depression: Association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 36(1): 169–175. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2011.09.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21945535&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 61. Maes, M., I. Mihaylova, M. D. Ruyter, M. Kubera and E. Bosmans (2007). “The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression - and other conditions characterized by tryptophan depletion induced by inflammation.” Neuro Endocrinol Lett 28(6): 826–831. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18063923&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 62. Maes, M., J. B. Moraes, K. L. Bonifacio, D. S. Barbosa, H. O. Vargas, A. P. Michelin and S. O. V. Nunes (2021). “Towards a new model and classification of mood disorders based on risk resilience, neuro-affective toxicity, staging, and phenome features using the nomothetic network psychiatry approach.” Metab Brain Dis 36(3): 509–521. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11011-020-00656-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33411213&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 63. Maes, M., M. Rachayon, K. Jirakran, P. Sodsai, S. Klinchanhom, P. Gałecki, A. Sughondhabirom and A. Basta-Kaim (2022). “The Immune Profile of Major Dysmood Disorder: Proof of Concept and Mechanism Using the Precision Nomothetic Psychiatry Approach.” Cells 11(7). 64. Maes, M., S. Scharpé, H. Y. Meltzer, G. Okayli, E. Bosmans, P. D’Hondt, B. V. Vanden Bossche and P. Cosyns (1994). “Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response.” Psychiatry Res 54(2): 143–160. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-1781(94)90003-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7761549&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1994QH91500003&link_type=ISI) 65. Maes, M., D. Simeonova, D. Stoyanov and J. C. Leunis (2019). “Upregulation of the nitrosylome in bipolar disorder type 1 (BP1) and major depression, but not BP2: Increased IgM antibodies to nitrosylated conjugates are associated with indicants of leaky gut.” Nitric Oxide 91: 67–76. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.niox.2019.07.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31323278&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 66. Maes, M., S. Sirivichayakul, A. K. Matsumoto, A. P. Michelin, L. de Oliveira Semeão, J. V. de Lima Pedrão, E. G. Moreira, D. S. Barbosa, A. F. Carvalho, M. Solmi and B. Kanchanatawan (2020). “Lowered Antioxidant Defenses and Increased Oxidative Toxicity Are Hallmarks of Deficit Schizophrenia: a Nomothetic Network Psychiatry Approach.” Mol Neurobiol 57(11): 4578–4597. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-020-02047-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32754898&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 67. Maes, M., R. Smith, A. Christophe, E. Vandoolaeghe, A. Van Gastel, H. Neels, P. Demedts, A. Wauters and H. Y. Meltzer (1997). “Lower serum high-density lipoprotein cholesterol (HDL-C) in major depression and in depressed men with serious suicidal attempts: relationship with immune-inflammatory markers.” Acta Psychiatr Scand 95(3): 212–221. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1600-0447.1997.tb09622.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9111854&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WT00400007&link_type=ISI) 68. Maes, M., F. N. M. Twisk, M. Kubera, K. Ringel, J.-C. Leunis and M. Geffard (2012). “Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome.” Journal of Affective Disorders 136(3): 909–917. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2011.09.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21967891&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 69. Maes, M., M. Vandewoude, S. Scharpé, L. De Clercq, W. Stevens, L. Lepoutre and C. Schotte (1991). “Anthropometric and biochemical assessment of the nutritional state in depression: evidence for lower visceral protein plasma levels in depression.” J Affect Disord 23(1): 25–33. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-0327(91)90032-N&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1774420&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1991GH44600003&link_type=ISI) 70. Maes, M., A. Wauters, R. Verkerk, P. Demedts, H. Neels, A. Van Gastel, P. Cosyns, S. Scharpé and R. Desnyder (1996). “Lower serum L-tryptophan availability in depression as a marker of a more generalized disorder in protein metabolism.” Neuropsychopharmacology 15(3): 243–251. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0893-133X(95)00181-C&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8873107&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 71. Martin-Subero, M., G. Anderson, B. Kanchanatawan, M. Berk and M. Maes (2016). “Comorbidity between depression and inflammatory bowel disease explained by immune- inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.” CNS Spectr 21(2): 184–198. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 72. Mc, M. R. and J. L. Oncley (1958). “The specific binding of L-tryptophan to serum albumin.” J Biol Chem 233(6): 1436–1447. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czozOiJqYmMiO3M6NToicmVzaWQiO3M6MTA6IjIzMy82LzE0MzYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8wNy8yMDIyLjA4LjA2LjIyMjc4NDkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 73. Messaoud, A., R. Mensi, W. Douki, F. Neffati, M. F. Najjar, G. Gobbi, F. Valtorta, L. Gaha and S. Comai (2019). “Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide.” World J Biol Psychiatry 20(9): 703–711. 74. Mikkelsen, K., L. Stojanovska, M. Prakash and V. Apostolopoulos (2017). “The effects of vitamin B on the immune/cytokine network and their involvement in depression.” Maturitas 96: 58–71. 75. Milaneschi, Y., K. A. Allers, A. T. F. Beekman, E. J. Giltay, S. Keller, R. A. Schoevers, S. D. Süssmuth, H. G. Niessen and B. Penninx (2021). “The association between plasma tryptophan catabolites and depression: The role of symptom profiles and inflammation.” Brain Behav Immun 97: 167–175. 76. Miller, C. L., I. C. Llenos, J. R. Dulay and S. Weis (2006). “Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder.” Brain Res 1073-1074: 25-37. 77. Møller, S. E. (1985). “Tryptophan to competing amino acids ratio in depressive disorder: relation to efficacy of antidepressive treatments.” Acta Psychiatr Scand Suppl 325: 3–31. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2418637&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 78. Møller, S. E. (1993). “Plasma amino acid profiles in relation to clinical response to moclobemide in patients with major depression. Danish University Antidepressant Group.” J Affect Disord 27(4): 225–231. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8509523&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 79. Morel-Kopp, M. C., L. McLean, Q. Chen, G. H. Tofler, C. Tennant, V. Maddison and C. M. Ward (2009). “The association of depression with platelet activation: evidence for a treatment effect.” J Thromb Haemost 7(4): 573–581. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1538-7836.2009.03278.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19192119&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 80. Moreno, J., E. Gaspar, G. López-Bello, E. Juárez, S. Alcázar-Leyva, E. González-Trujano, L. Pavón and N. Alvarado-Vásquez (2013). “Increase in nitric oxide levels and mitochondrial membrane potential in platelets of untreated patients with major depression.” Psychiatry Research 209(3): 447–452. 81. Morris, G., A. F. Carvalho, G. Anderson, P. Galecki and M. Maes (2016). “The Many Neuroprogressive Actions of Tryptophan Catabolites (TRYCATs) that may be Associated with the Pathophysiology of Neuro-Immune Disorders.” Curr Pharm Des 22(8): 963–977. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/1381612822666151215102420&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26667000&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 82. Myint, A. M., Y. K. Kim, R. Verkerk, S. H. Park, S. Scharpé, H. W. Steinbusch and B. E. Leonard (2007). “Tryptophan breakdown pathway in bipolar mania.” J Affect Disord 102(1-3): 65–72. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2006.12.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17270276&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 83. Myint, A. M., Y. K. Kim, R. Verkerk, S. Scharpé, H. Steinbusch and B. Leonard (2007). “Kynurenine pathway in major depression: evidence of impaired neuroprotection.” J Affect Disord 98(1-2): 143–151. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2006.07.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16952400&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000244116700016&link_type=ISI) 84. Naghashpour, M., R. Amani, R. Nutr, S. Nematpour and M. H. Haghighizadeh (2011). “Riboflavin Status and Its Association with Serum hs-CRP Levels among Clinical Nurses with Depression.” Journal of the American College of Nutrition 30(5): 340–347. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/07315724.2011.10719977&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22081620&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 85. Nelp Micah, T., A. Kates Patrick, T. Hunt John, A. Newitt John, A. Balog, D. Maley, X. Zhu, L. Abell, A. Allentoff, R. Borzilleri, A. Lewis Hal, Z. Lin, P. Seitz Steven, C. Yan and T. Groves John (2018). “Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form.” Proceedings of the National Academy of Sciences 115(13): 3249–3254. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTE1LzEzLzMyNDkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8wNy8yMDIyLjA4LjA2LjIyMjc4NDkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 86. Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting and D. Moher (2021). “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.” PLoS medicine 18(3): e1003583–e1003583. 87. Pardridge, W. M. (1979). “Tryptophan transport through the blood-brain barrier: in vivo measurement of free and albumin-bound amino acid.” Life Sci 25(17): 1519–1528. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0024-3205(79)90378-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=513969&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1979HS11000009&link_type=ISI) 88. Pompili, M., L. Lionetto, M. Curto, A. Forte, D. Erbuto, F. Montebovi, M. E. Seretti, I. Berardelli, G. Serafini, M. Innamorati, M. Amore, R. J. Baldessarini, P. Girardi and M. Simmaco (2019). “Tryptophan and Kynurenine Metabolites: Are They Related to Depression?” Neuropsychobiology 77(1): 23–28. 89. Price, L. H., D. S. Charney, P. L. Delgado and G. R. Heninger (1991). Serotonin function and depression: Neuroendocrine and mood responses to intravenous L-tryptophan in depressed patients and healthy comparison subjects. US, American Psychiatric Assn. 148: 1518–1525. 90. Qiu, H. M., J. X. Yang, X. H. Jiang, H. Z. Fei, D. Liu, X. Y. Hu and Q. X. Zhou (2014). “Upregulating serotonin transporter expression and downregulating monoamine oxidase- A and indoleamine 2, 3-dioxygenase expression involved in the antidepressant effect of sodium valproate in a rat model.” Neuroreport 25(17): 1338–1343. 91. Quintana, J. (1992). “Platelet serotonin and plasma tryptophan decreases in endogenous depression. Clinical, therapeutic, and biological correlations.” J Affect Disord 24(2): 55–62. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-0327(92)90019-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1541767&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1992HE02900001&link_type=ISI) 92. Rădulescu, I., A. M. Drăgoi, S. C. Trifu and M. B. Cristea (2021). “Neuroplasticity and depression: Rewiring the brain’s networks through pharmacological therapy (Review).” Exp Ther Med 22(4): 1131. 93. Reiter, R. J., D. X. Tan, J. Cabrera and D. D’Arpa (1999). “Melatonin and tryptophan derivatives as free radical scavengers and antioxidants.” Adv Exp Med Biol 467: 379–387. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10721079&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000086779600048&link_type=ISI) 94. Reyes Ocampo, J., R. Lugo Huitrón, D. González-Esquivel, P. Ugalde-Muñiz, A. Jiménez-Anguiano, B. Pineda, J. Pedraza-Chaverri, C. Ríos and V. Pérez de la Cruz (2014). “Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases.” Oxid Med Cell Longev 2014: 646909. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24693337&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 95. Reyes Ocampo, J., R. Lugo Huitrón, D. González-Esquivel, P. Ugalde-Muñiz, A. Jiménez-Anguiano, B. Pineda, J. Pedraza-Chaverri, C. Ríos and V. Pérez de la Cruz (2014). “Kynurenines with Neuroactive and Redox Properties: Relevance to Aging and Brain Diseases.” Oxidative Medicine and Cellular Longevity 2014: 646909. 96. Roomruangwong, C., C. Noto, B. Kanchanatawan, G. Anderson, M. Kubera, A. F. Carvalho and M. Maes (2020). “The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: the IRS-CIRS Theory of Schizophrenia.” Mol Neurobiol 57(2): 778–797. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-019-01737-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31473906&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 97. Ryan, K. M., K. A. Allers, A. Harkin and D. M. McLoughlin (2020). "Blood plasma B vitamins in depression and the therapeutic response to electroconvulsive therapy.” Brain, Behavior, & Immunity - Health 4: 100063. 98. Ryan, K. M., K. A. Allers, D. M. McLoughlin and A. Harkin (2020). “Tryptophan metabolite concentrations in depressed patients before and after electroconvulsive therapy.” Brain Behav Immun 83: 153–162. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 99. Saito, K., S. P. Markey and M. P. Heyes (1992). “Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse.” Neuroscience 51(1): 25–39. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0306-4522(92)90467-G&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1465184&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1992JY67200005&link_type=ISI) 100.Santamaría, A., S. Galván-Arzate, V. Lisý, S. F. Ali, H. M. Duhart, L. Osorio-Rico, C. Ríos and F. Sut’astný (2001). “Quinolinic acid induces oxidative stress in rat brain synaptosomes.” NeuroReport 12(4). 101.Savitz, J., W. C. Drevets, B. E. Wurfel, B. N. Ford, P. S. Bellgowan, T. A. Victor, J. Bodurka, T. K. Teague and R. Dantzer (2015). “Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder.” Brain Behav Immun 46: 55–59. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2015.02.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25686798&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 102.Savitz, J., W. C. Drevets, B. E. Wurfel, B. N. Ford, P. S. F. Bellgowan, T. A. Victor, J. Bodurka, T. K. Teague and R. Dantzer (2015). “Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder.” Brain, Behavior, and Immunity 46: 55–59. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2015.02.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25686798&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 103.Sellgren, C. M., J. Gracias, O. Jungholm, R. H. Perlis, G. Engberg, L. Schwieler, M. Landen and S. Erhardt (2019). “Peripheral and central levels of kynurenic acid in bipolar disorder subjects and healthy controls.” Transl Psychiatry 9(1): 37. 104.Smith, A. J., R. A. Smith and T. W. Stone (2009). “5-Hydroxyanthranilic Acid, a Tryptophan Metabolite, Generates Oxidative Stress and Neuronal Death via p38 Activation in Cultured Cerebellar Granule Neurones.” Neurotoxicity Research 15(4): 303–310. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19384564&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 105.Solmi, M., M. Suresh Sharma, E. F. Osimo, M. Fornaro, B. Bortolato, G. Croatto, A. Miola, E. Vieta, C. M. Pariante, L. Smith, P. Fusar-Poli, J. I. Shin, M. Berk and A. F. Carvalho (2021). “Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability.” Brain Behav Immun 97: 193–203. 106.Somani, A., A. K. Singh, B. Gupta, S. Nagarkoti, P. K. Dalal and M. Dikshit (2022). “Oxidative and Nitrosative Stress in Major Depressive Disorder: A Case Control Study.” Brain Sci 12(2). 107.Song, C., A. Lin, S. Bonaccorso, C. Heide, R. Verkerk, G. Kenis, E. Bosmans, S. Scharpe, A. Whelan, P. Cosyns, R. de Jongh and M. Maes (1998). “The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression.” J Affect Disord 49(3): 211–219. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0165-0327(98)00025-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9629951&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000073709900006&link_type=ISI) 108.Sowa-Kućma, M., K. Styczeń, M. Siwek, P. Misztak, R. J. Nowak, D. Dudek, J. K. Rybakowski, G. Nowak and M. Maes (2018). “Are there differences in lipid peroxidation and immune biomarkers between major depression and bipolar disorder: Effects of melancholia, atypical depression, severity of illness, episode number, suicidal ideation and prior suicide attempts.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 81: 372–383. 109.Steiner, J., H. Dobrowolny, P. C. Guest, H. G. Bernstein, D. Fuchs, J. Roeser, P. Summergrad and G. F. Oxenkrug (2021). “Plasma Anthranilic Acid and Leptin Levels Predict HAM-D Scores in Depressed Women.” Int J Tryptophan Res 14: 11786469211016474. 110.Steiner, J., M. Walter, T. Gos, G. J. Guillemin, H.-G. Bernstein, Z. Sarnyai, C. Mawrin, R. Brisch, H. Bielau, L. M. zu Schwabedissen, B. Bogerts and A.-M. Myint (2011). “Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?” Journal of Neuroinflammation 8(1): 94. 111.Sublette, M. E., H. C. Galfalvy, D. Fuchs, M. Lapidus, M. F. Grunebaum, M. A. Oquendo, J. J. Mann and T. T. Postolache (2011). “Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder.” Brain Behav Immun 25(6): 1272–1278. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2011.05.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21605657&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 112.Tanaka, M., Z. Bohár, D. Martos, G. Telegdy and L. Vécsei (2020). “Antidepressant-like effects of kynurenic acid in a modified forced swim test.” Pharmacological Reports 72(2): 449–455. 113.Tomaszewska, E., S. Muszyński, D. Kuc, P. Dobrowolski, K. Lamorski, K. Smolińska, J. Donaldson, I. Świetlicka, M. Mielnik-Błaszczak, P. Paluszkiewicz and J. Parada-Turska (2019). “Chronic dietary supplementation with kynurenic acid, a neuroactive metabolite of tryptophan, decreased body weight without negative influence on densitometry and mandibular bone biomechanical endurance in young rats.” PLOS ONE 14(12): e0226205. 114.Trepci, A., C. M. Sellgren, E. Pålsson, L. Brundin, N. Khanlarkhani, L. Schwieler, M. Landén and S. Erhardt (2021). “Central levels of tryptophan metabolites in subjects with bipolar disorder.” European Neuropsychopharmacology 43: 52–62. 115.van den Ameele, S., A. L. van Nuijs, F. Y. Lai, J. Schuermans, R. Verkerk, L. van Diermen, V. Coppens, E. Fransen, P. de Boer, M. Timmers, B. Sabbe and M. Morrens (2020). “A mood state-specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder.” Bipolar Disord 22(1): 59–69. 116.Vasupanrajit, A., K. Jirakran, C. Tunvirachaisakul and M. Maes (2021). “Suicide attempts are associated with activated immune-inflammatory, nitro-oxidative, and neurotoxic pathways: A systematic review and meta-analysis.” J Affect Disord 295: 80–92. 117.Vasupanrajit, A., K. Jirakran, C. Tunvirachaisakul, M. Solmi and M. Maes (2022). “Inflammation and nitro-oxidative stress in current suicidal attempts and current suicidal ideation: a systematic review and meta-analysis.” Molecular Psychiatry 27(3): 1350–1361. 118.Vasupanrajit, A., K. Jirakran, C. Tunvirachaisakul, M. Solmi and M. Maes (2022). “Inflammation and nitro-oxidative stress in current suicidal attempts and current suicidal ideation: a systematic review and meta-analysis.” Mol Psychiatry 27(3): 1350–1361. 119.Wan, X., W. Wang, J. Liu and T. Tong (2014). “Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.” BMC Med Res Methodol 14: 135. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2288-14-135&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25524443&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) 120.World Health, O. (2019). Suicide in the world: global health estimates. Geneva, World Health Organization. 121.World Health, O. (2021). “One in 100 deaths is by suicide.” from https://www.who.int/news/item/17-06-2021-one-in-100-deaths-is-by-suicide#:~:text=Suicide%20remains%20one%20of%20the,%CC%B6%20or%20war%20and%20homicide. 122.Xu, K., G. Liu and C. Fu (2018). “The Tryptophan Pathway Targeting Antioxidant Capacity in the Placenta.” Oxidative medicine and cellular longevity 2018: 1054797–1054797. 123.Yuwiler, A., W. H. Oldendorf, E. Geller and L. Braun (1977). “Effect of albumin binding and amino acid competition on tryptophan uptake into brain.” J Neurochem 28(5): 1015–1023. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1471-4159.1977.tb10664.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16985&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F07%2F2022.08.06.22278492.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1977DG00200016&link_type=ISI) 124.Zhou, Y., W. Zheng, W. Liu, C. Wang, Y. Zhan, H. Li, L. Chen, M. Li and Y. Ning (2018). “Antidepressant effect of repeated ketamine administration on kynurenine pathway metabolites in patients with unipolar and bipolar depression.” Brain Behav Immun 74: 205–212. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2018.09.007&link_type=DOI)