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Abstract  54 
 55 
Background  56 
Household air pollution (HAP) from solid fuel use is associated with adverse birth outcomes, 57 
but data on exposure-response relationships are limited. We examined associations 58 
between HAP exposures and birthweight in rural Guatemala, India, Peru, and Rwanda 59 
during the Household Air Pollution Intervention Network (HAPIN) trial.  60 
 61 
Methods 62 
We recruited 3200 pregnant women between 9 and <20 weeks of gestation. Women 63 
randomized to the intervention arm received a liquified petroleum gas (LPG) stove and fuel 64 
during pregnancy, while control arm women continued using biomass. We measured 24-hr 65 
personal exposures to particulate matter (PM2·5), carbon monoxide (CO), and black carbon 66 
(BC) once pre-intervention (baseline), twice post-intervention, and birthweight within 24 67 
hours of birth. We examined the relationship between the average prenatal exposure and 68 
birthweight/weight-for-gestational age z-scores using multivariate-regression models.  69 
 70 
Findings 71 
Results showed an inter-quartile increase in average prenatal exposure to PM2.5 (74·5 72 
µg/m3) and BC (7·3 µg/m3) was associated with a 14·8 (95% confidence interval [CI]: -28·7g, -73 
0·8g) and 21·9g (95% CI: -37·3g, -6·1g) reduction in birthweight and reduced weight-for-74 
gestational age z-scores of -0·03 (95% CI: -0.06, 0·00) and -0·05 (95%CI: -0·08, -0·01) 75 
standard deviations, respectively. We found no associations for birthweight or weight-for-76 
gestational age z-scores with CO exposures.  77 
 78 
Interpretation 79 
Results provide support for continuing efforts to reduce HAP exposure alongside other 80 
drivers of low birthweight in low- and middle-income countries.    81 
 82 
Funding  83 
The study is registered with ClinicalTrials.gov (NCT02944682) and funded by the U.S. 84 
National Institutes of Health (1UM1HL134590) in collaboration with the Bill & Melinda Gates 85 
Foundation (OPP1131279). 86 
 87 
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Introduction  101 
 102 
Household air pollution (HAP) exposures from the use of solid cooking fuels such as wood, 103 
coal, charcoal, dung, and agricultural residues are a leading risk factor for ill-health in low- 104 
and middle-income countries (LMICs), accounting for an estimated 2·3 million premature 105 
deaths annually and 91·5 million disability-adjusted life years.1  Systematic reviews have 106 
summarized the evidence for an association between HAP exposure and adverse health 107 
effects, including child pneumonia, chronic obstructive lung disease, lung cancer, and 108 
cataracts.2 Relatively few studies or reviews have focused on adverse perinatal outcomes 109 
including low birthweight.3–6  110 
 111 
LMICs bear a disproportionate share of low birthweight (LBW, defined as <2500 g regardless 112 
of gestational age), accounting for nearly 91% of the global burden.7 The etiology of LBW is 113 
complex, and despite ongoing efforts to address known risk factors such as maternal 114 
malnutrition, malaria, and smoking,8 progress has been slow towards the ambitious global 115 
nutrition target of a 30% reduction of LBW by 2025.7 As nearly 3·8 billon people worldwide 116 
rely on solid fuels,9 a strengthened understanding of the relationship between HAP and LBW 117 
would be extremely valuable for prioritizing efforts to decrease HAP exposures during 118 
pregnancy to improve birth outcomes. 119 
 120 
Most previous studies that examine the association between HAP exposures and LBW have 121 
used categorical indicators of exposure based on primary fuel use, with only a handful 122 
reporting quantitative exposure-response (E-R) relationships for particulate matter with an 123 
aerodynamic diameter ≤	2·5 micrometers (PM2·5)10,11 or carbon monoxide (CO).12–14 These 124 
E-R studies report significant associations between prenatal PM2·5 and/or CO exposures and 125 
LBW, but also report many limitations: small sample sizes, an inability to measure multiple 126 
pollutants, and the use of single personal exposure measures during pregnancy and/or 127 
longitudinal kitchen area measurements as proxies of longer-term personal exposure. 128 
Recent randomized control trials (RCTs) of HAP interventions in Nepal,15 Nigeria,12 and 129 
Ghana16 have reported null effects from intention-to-treat analyses for impacts on 130 
birthweight, but E-R analyses within these studies have been limited.13 To our knowledge, 131 
no studies have examined E-R relationships between prenatal black carbon (BC) exposures 132 
and birthweight. 133 
 134 
We present results from E-R analyses performed as part of the Household Air Pollution 135 
Intervention Network (HAPIN) RCT, an efficacy study of a free prenatal liquefied petroleum 136 
gas (LPG) stove and fuel intervention conducted across four LMICs (Guatemala, India, Peru, 137 
Rwanda) with repeated personal exposure measurements. We hypothesized that higher 138 
pregnancy period PM2·5, BC, and CO exposures would result in lower birthweight among 139 
infants born to mothers enrolled in the HAPIN trial in each of – and across – the four 140 
countries.      141 
 142 
Methods  143 
 144 
Study participants and settings 145 
Participants were pregnant women enrolled in the HAPIN trial, details of which have been 146 
published previously17–19 and are summarized in the trial registration (ClinicalTrials.gov 147 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2022. ; https://doi.org/10.1101/2022.08.06.22278373doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.06.22278373
http://creativecommons.org/licenses/by/4.0/


 4 

Identifier NCT02944682). The specific study areas in each country (Jalapa Municipality, 148 
Guatemala; Villupuram and Nagapatinam districts of Tamil Nadu, India; Department of 149 
Puno, Peru; and Eastern Province, Rwanda) were selected based on high prevalence of 150 
cooking with biomass, low background ambient PM2·5 concentrations, and acceptable field 151 
feasibility as assessed during an 18-month period of planning and formative research.20,21 152 
Between March 2018 and February 2020, we recruited a total of 3200 (800 per country) 153 
non-smoking, pregnant women who were between 18 and ≤35 years of age, between 9 and 154 
≤ 20 weeks of gestation (determined via ultrasound), and who used biomass as a primary 155 
fuel. In accordance with the trial protocol, half of the participants in each country were 156 
randomized to an intervention arm that received a liquefied petroleum gas (LPG) stove and 157 
a continuous supply of LPG fuel following enrollment and throughout their pregnancy, while 158 
the balance served as controls and continued to rely chiefly on solid biomass for cooking.  159 
 160 
Personal exposure monitoring during pregnancy 161 
Prenatal personal exposure monitoring protocols and results have been described 162 
previously.19,22 Briefly, at each study site, pregnant women participated in three 24-hr 163 
personal exposure assessments, once at baseline (between 9 and <20 weeks of gestation) 164 
and twice after randomization into the control or intervention arms (between 24-32 weeks 165 
and 32-36 weeks of gestation, respectively).  During each session, women wore customized 166 
vests or aprons fitted so that instrumentation was situated close to their breathing zone. 167 
PM2·5 monitoring was performed using the Enhanced Children’s MicroPEM™ (ECM) (RTI 168 
International), which collects (a) gravimetric samples on pre-weighed 15mm Teflon filters 169 
(MTL,USA) utilizing a 2·5 micron impactor at a flow rate of 0·3 liters per minute and (b) real-170 
time nephelometric data.23 BC was estimated post-sampling on the ECM filters using the 171 
SootScan® Model OT-21 Optical Transmissometer (Magee Scientific, USA). CO monitoring 172 
was performed using the Lascar EL-CO-USB-300 DataLogger (Lascar Electronics, USA). 173 
Participants were instructed to always wear the vest or apron during the 24-hr 174 
measurement period, except when sleeping, bathing, or when conducting other activities 175 
during which the equipment could not be safely worn. During these times, they were 176 
instructed to keep the vest or apron nearby. Additionally, data were collected on 177 
sociodemographic and household characteristics and activity patterns that may influence 178 
exposure. 179 
 180 
Procedures for assuring data quality, weighing filters, and estimating missing gravimetric 181 
data based on nephelometry have been described previously.22 Briefly, gravimetric data 182 
quality assurance involved a combination of threshold values for flow rates, inlet pressure, 183 
and sampling duration, as well as visual inspection of damaged filters by weighing room 184 
technicians. In cases where nephelometric but not gravimetric data were available, PM2·5 185 
exposure was estimated based on nephelometric data, using an instrument-specific 186 
regression coefficient for the association between nephelometric and gravimetric data for 187 
that specific ECM instrument as described previously.22 CO quality assurance protocols 188 
included calibrations with zero air and span gas and a visual inspection system similar to 189 
what was applied in the GRAPHS trial in Ghana.24  190 
 191 
For E-R analyses, gestational exposures were defined for the intervention group as the 192 
average of the pre- and post-intervention exposures, weighted by the amount of gestational 193 
time spent in each period. The pre-intervention period exposure was estimated using the 194 
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baseline measurement, while the post-intervention exposure was estimated using one or 195 
both personal measurements performed after intervention. This allowed for exposure 196 
changes resulting from the introduction of the intervention to be weighted according to the 197 
length of time participants had the intervention during gestation.  An unweighted average 198 
of the baseline and other available (1-2) gestational period measurements was used for 199 
controls, as they continued using biomass as the primary cooking fuel throughout gestation.   200 
 201 
Birthweight Outcome Measurements  202 
Following a standard protocol, birthweight was measured within 24 hours of birth by a 203 
trained field worker or nurse using a Seca 334 mobile digital baby scale. 204 
Newborns were weighed naked to the nearest 10 g and duplicate measurements were 205 
recorded on tablet-based REDCap forms. If the first two measured birthweights differed by 206 
more than 10 g, a third measurement was taken. The average of the measurements was 207 
used in the data analysis. Infants were typically assessed at health facilities where they were 208 
born. Each scale was calibrated weekly in the field offices before deployment using standard 209 
5-lb and 10-lb weights; scales not within ±2·5% of the standard weight were re-calibrated. In 210 
cases in which we were unable to reach the child during the prescribed 24-hr window—due 211 
mainly to COVID restrictions or critically ill infants admitted to ICUs or referral hospitals—we 212 
used measurements provided by the facility, if available, but conducted sensitivity analyses 213 
to compare results.   214 
 215 
As gestational age is a potential mediator in the causal pathway between HAP exposure and 216 
birthweight, we did not adjust for it in the E-R models; had we done so, its inclusion would 217 
not allow estimation of the total effect of exposure.25 However, we additionally estimated z-218 
scores for weight adjusted by gestational age defined using INTERGROWTH tables 219 
(intergrowth21.tghn.org) as a secondary analysis. These weight-for-gestational age z-scores 220 
were derived by subtracting off the standard INTERGROWTH sex-specific weight for a given 221 
gestational age and dividing by the INTERGROWTH standard deviation of that weight. 222 
Measurements were considered invalid if the gestational age at birth was greater than 300 223 
days or if the birth weight-for-gestational age z-score did not fall between -6 and 5.   224 
 225 
Exposure-Response Modeling 226 
The statistical analysis plan was agreed upon in advance and published with the trial 227 
registration prior to unblinding. Analyses were independently replicated by a second 228 
member of the study team. E-R analyses were modeled separately for each pollutant (PM2·5, 229 
BC, and CO) and birthweight/birthweight-for-gestational age z-score.  230 
 231 
Covariate selection for models was guided by a directed acyclic graph (DAG) (Figure S3). A 232 
minimal set of potential confounders or strong risk factors (e.g., infant sex) were identified 233 
in systematic reviews of birthweight,3,6 and from previous studies of HAP and birthweight.10–234 
12,24,26 We used 10% change-in-estimate (CIE) methods as outlined in Greenland (1989)27 to 235 
evaluate and determine covariates included in the model. Final models included the 236 
following covariates: mother’s age (categorical: <20/20-24/25-29/30-35), nulliparity 237 
(categorical: yes/no), diet diversity (categorical: low/median/high), food insecurity 238 
(categorical: food secure/mild/moderate), baseline BMI (continuous), mother’s education 239 
(categorical), child gender (categorical), baseline hemoglobin (continuous), and second-hand 240 
smoke (categorical: yes/no). We also included a variable for ten geographical randomization 241 
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strata (one in Rwanda, one in Guatemala, two in India, six in Peru). Eighteen and twenty-six 242 
subjects were missing BMI and hemoglobin, respectively, and we created a category of 243 
missing for these variables so that they were not excluded from the analysis.  244 
 245 
For both birthweight and z-scores, we first fitted linear models with different exposure 246 
metrics (i.e., linear, log linear). We then evaluated nonlinear categorical (quartile modes), as 247 
well as  quadratic, 2-piece linear and restricted cubic spline model with three knots28 248 
models, and assessed model fit using Akaike’s Information Criterion (AIC).  The knots for the 249 
2-piece spline were chosen based on AIC (using quartile cutpoints initially and then 250 
narrowing down), while knots for restricted cubic splines were placed at the 5th, 50th, and 251 
75th percentiles of exposure. We also used thin plate smoothing splines via generalized 252 
additive models, with penalization determined by generalized cross-validation score, using R 253 
package mgcv. We also examined effect modification by country, as well as by infant sex, via 254 
interaction terms between our exposure metrics and these variables.  255 
 256 
Ethics/registration/funding 257 
The study protocol was reviewed and approved by institutional review boards (IRBs) or 258 
Ethics Committees at Emory University (00089799), Johns Hopkins University (00007403), 259 
Sri Ramachandra Institute of Higher Education and Research (IEC-N1/16/JUL/54/49) and the 260 
Indian Council of Medical Research – Health Ministry Screening Committee (5/8/4-261 
30/(Env)/Indo-US/2016-NCD-I), Universidad del Valle de Guatemala (146-08-2016/11-2016) 262 
and Guatemalan Ministry of Health National Ethics Committee (11-2016), A.B. PRISMA, the 263 
London School of Hygiene and Tropical Medicine  (11664-5) and the Rwandan National 264 
Ethics Committee (No·357/RNEC/2018), and Washington University in St. Louis 265 
(201611159). The study was funded by the U.S. National Institutes of Health 266 
(1UM1HL134590) in collaboration with the Bill & Melinda Gates Foundation (OPP1131279). 267 
The funding sources were not involved in study design, collection, analysis, and 268 
interpretation of data, or decisions to submit the paper for publication. 269 
 270 
Results 271 
Participant Characteristics 272 
While 3200 women were enrolled in the study, 5 enrollees were determined to be ineligible 273 
after randomization and exited the study. After accounting for miscarriages, stillbirth, and 274 
withdrawals, the 3195 pregnancies yielded 3060 live births. Of these, 3018 had valid 275 
birthweights (others had birthweights measured outside the 24-hr window or the study 276 
team was unable to obtain any birthweight measurement, see CONSORT diagram, Figure 277 
S1). Sixteen additional births were excluded on account of a gestational age >300 days; 278 
weight-for-gestational age z-scores are unavailable in the INTERGROWTH database beyond 279 
300 days of gestation. 3002 subjects were thus eligible for inclusion in E-R analyses. These 280 
were further restricted by the availability of exposure data for each of the three pollutants 281 
of interest (Table 1). 282 
 283 
Participant characteristics are summarized in Table 2. The average age was 27·6 years, with 284 
38% of participants reporting nulliparity. The average (SD) gestational age at enrollment was 285 
15·3 (± 3·1) weeks. Only 33% women reported acquiring secondary or higher levels of 286 
education. India had the lowest BMI, hemoglobin, and diet diversity scores, while Peru had 287 
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the highest. India had the highest proportion of smokers in the household. Mobile phone 288 
ownership was uniformly high across  countries.  289 
 290 
PM2·5 , BC, and CO exposures   291 
We obtained 2717, 2560, and 2772 valid 24-hr prenatal personal PM 2·5, BC, and CO 292 
exposure measurements, respectively. Mean (SD) weighted exposures during pregnancy 293 
were 92·2 (83·9) µg/m3 for PM2·5, 10·0 (7·4) µg/m3 for BC, and 2.0 (2·9) ppm for CO (Table 294 
S6). PM2·5 and BC exposures were highly correlated (Spearman’s 𝜌	= 0·79), but correlations 295 
between exposure to PM2·5 and CO (Spearman’s 𝜌	= 0·34) as well as BC and CO (Spearman’s 296 
𝜌 = 0·39) were relatively weak. The intervention resulted in marked reduction in exposure. 297 
Post-intervention mean personal PM2·5 was 24.0 μg/m3 in the intervention arm and 298 
70.7μg/m3 in the control arm. Similar reductions of exposure were seen for BC and CO. 299 
 300 
Exposure distributions are depicted in Figure 1 and described in Supplemental Table 6. 301 
Details on exposure settings and additional sociodemographic characteristics are reported 302 
elsewhere.22 Missing exposure data was largely due to equipment failure and was likely to 303 
be missing at random (MAR); for more details see Johnson et al. (2021).22   304 
 305 
Birthweight   306 
The mean (SD) birthweight of live born infants was 2909 (471) g with mean gestational age 307 
at delivery of 39·3 (1·5) weeks; 5·3% of births were classified as preterm (163/3002) and 308 
17·7% as LBW (Figure 1). Mean (SD) birthweight was 2921 g (474·3 g) in the intervention 309 
arm and 2898 g (467·9 g) in the control arm, a difference of 19·6 g (95% CI: -10·1 g, 49·2 g).   310 
 311 
Exposure-response analyses 312 
Results for linear and log-linear models for birthweight and for weight-for-gestational age z-313 
score are shown in Table 3 and Table 4, respectively, for each of the three measured 314 
pollutants. Quartile models are presented in Tables S1 and S2. In linear models, an inter-315 
quartile increase in gestational exposure for PM2·5 (74·5 µg/m3) and BC (7·3 µg/m3) was 316 
associated with a change in birthweight of -14.8 g (95% CI: -28·7 g, -0·8 g] and -21·9 g (95% 317 
CI: -37·7 g, -6·1 g], respectively (Table 3). For weight-for-gestational age z-scores, the same 318 
exposure increases were associated with a decrease of 0·03 (95% CI: -0·06, 0·00) and 0·05 319 
(95%CI: -0·08, -0·01) standard deviations, respectively (Table 4). No associations were 320 
apparent between CO exposures and birthweight in the linear models or between any of the 321 
measured pollutants and LBW prevalence. Quartile analyses (Tables S1 and S2) showed that 322 
the decrease in birthweight and z-scores were not monotonic for PM2.5, while decreases 323 
were monotonic for z-scores but not birthweight for BC. 324 
 325 
Evaluation of different models indicated that the linear fit presented above was appropriate 326 
to model the relationships between the birthweight outcomes and BC. For PM2.5, however, 327 
a quadratic (non-linear) fit was better suited to the birthweight outcome (Table S3 and 328 
Figure S2), with a positive linear coefficient (0·2325) and a negative quadratic coefficient (-329 
0·009), indicating an initial increase in birthweight with higher PM2·5 followed by a 330 
subsequent decrease at the higher exposures. Both categorical and cubic spline models 331 
supported this relationship (Figure S2). Linear models fit best for BC for both birthweight 332 
and z-scores, as well as PM2.5 and z-scores. Smoothed E-R curves for PM2·5/BC and 333 
birthweight and weight-for-gestational age z-scores can be seen in Figure 2 and Figure 3. 334 
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 335 
Trends for full term births (95% of births) were similar to trends for all births (Table S4). No 336 
statistically significant interactions (at the 0·05 level) were observed with infant sex, but 337 
female births showed a larger effect than male births for birthweight, and for z-scores 338 
(Table S5). Trends were reasonably consistent across countries for the association between 339 
PM2.5 and BC with both birthweight and z-scores (Tables S7 and S8). We also ran separate 340 
models for our three exposure measurements during gestation, i.e. for baseline, mid-point, 341 
and end of gestation measurements (these corresponding roughly to early 2nd trimester, 342 
end of 2nd trimester, and end of 3rd trimester). These models, for both birthweight and z-343 
score, showed no pattern whereby early or later exposures had stronger effects on the 344 
outcome (Table S9).  Indeed all time-specific E-R coefficients were weaker than those 345 
coefficients using average exposure.  This might occur because single measurements involve 346 
more measurement error than average exposure across gestation, biasing results to the 347 
null. 348 
 349 
Discussion 350 
 351 
The findings of this study suggest that reducing prenatal HAP exposure could yield modest 352 
potential benefits for birthweight that are not consistent across all pollutants. To our 353 
knowledge, ours is the first study reporting on E-R relationships between gestational BC 354 
exposures from HAP and birthweight. Notably, a 7·3 µg/m3 reduction in prenatal BC 355 
exposure was associated with an increase in birthweight of about 22 g, which could have 356 
positive implications for populations with a high prevalence of low birthweight.  357 
 358 
Only three prior studies have published quantitative E-R results for birth outcomes in 359 
relation to HAP exposure, focusing on PM2·5 and/or CO. In a cohort of 239 pregnant women 360 
in Tanzania, there was a negative association between CO exposure and new-born 361 
birthweight, but results were not statistically significant.29 The Tanzania study also reported 362 
a 150 g (95% CI: −300 g, 0 g) reduction in birthweight per 23·0 μg/m3 increase in PM2·5. The 363 
second study, among 1285 women in the Tamil Nadu region of India, reported a 4 g (95% CI: 364 
1·08 g, 6·76 g) decrease in birthweight and a 2% increase in the prevalence of LBW (95% CI: 365 
0·05%, 4·1%) for each 10 μg/m3 increase in kitchen area PM2·5 measured during 366 
pregnancy.10 The third study, conducted as part of the GRAPHS trial in Ghana,13 observed 367 
effects of CO on birthweight, birth length, and gestational age that were modified by 368 
placental malarial status. Among infants from pregnancies without evidence of placental 369 
malaria, each 1 ppm increase in CO was associated with reduced birthweight (−53·4 g [95% 370 
CI: −84·8, −21·9 g]), birth length (−0·3 cm [95% CI: −0·6, −0·1 cm]), gestational age (−1·0 days 371 
[95% CI: −1·8, −0·2 days]), and weight-for-gestational age z-score (−0·08 [95% CI: −0·16, 372 
−0·01] standard deviations]). These associations were not observed in pregnancies with 373 
evidence of placental malaria. PM2·5 measurements were, however, limited in the GRAPHS 374 
trial and no association between PM2·5 exposure and birthweight was observed.  375 
 376 
The negative associations between PM2·5 exposures and birthweight in our study are 377 
consistent with previous studies, but at the lower end of reported estimates. In contrast, 378 
the lack of an association between prenatal CO exposure and birthweight was unexpected. 379 
However, this is not entirely surprising as the correlations between PM2·5 and CO have not 380 
been uniform across HAP settings. A systematic review examining this relationship30 found 381 
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inconsistent correlation with slightly stronger correlation among exclusive biomass users 382 
relative to mixed fuel users (R2 = 0·29 versus 0·18). The relatively modest correlations 383 
between either PM2·5 or BC and CO observed in our study may have been driven under our 384 
study conditions of exclusive biomass and LPG use.  385 
 386 
Trials of cookstove interventions to improve birth outcomes have had mixed outcomes: an 387 
improved biomass cookstove in a cohort of 174 infants in Guatemala was associated with 388 
89 g higher birth weight (95% CI: –27 g, 204 g) in adjusted analysis 14, and a clean-burning 389 
ethanol stove intervention in Nigeria was associated with 128 g higher birth weight (95% CI: 390 
20 g, 236 g) among 258 infants in adjusted analysis.12 Meanwhile, neither an improved 391 
biomass nor an LPG stove improved birth outcomes in two linked trials covering almost 392 
3000 individuals in southern Nepal.15 These trials have not reported quantitative E-R 393 
relations. In the GRAPHS trial, while there was a significant E-R relationship between CO 394 
exposures and birthweight,13 neither prenatally-introduced LPG nor improved biomass 395 
cookstoves improved birthweight. The investigators in all previous trials hypothesize that 396 
this is perhaps due to lower-than-expected exposure reductions in the intervention arm.  397 
 398 
The HAP exposure levels associated with biomass use (such as at baseline and in the control 399 
arm) in our study are at the lower end of what has been reported in previous trials, with the 400 
possible exception of the GRAPHS trial. Based on pilot phase exposure reductions 20,21 and 401 
estimated supra-linear E-R relationships for HAP and birthweight,31 we hypothesised that 402 
the levels observed during pilot work implied that exposure reductions would occur on the 403 
steep part of the response curve for birthweight.  Given the relative paucity of studies on 404 
quantitative E-R analyses for HAP based on personal exposures, it is quite possible that the 405 
shape of the E-R curve is different than what was previously estimated. Our study 406 
contributes important information regarding this relationship based on high quality personal 407 
HAP exposure and birthweight measurements from four diverse settings that can inform 408 
future development of pooled E-R coefficients spanning the range of experienced HAP 409 
exposures and may inform future E-R curves that integrate across air pollution sources.   410 
 411 
Finally, we note that other unmeasured factors including placental malaria, water and 412 
sanitation, and nutritional deficiencies may have outweighed the effects of HAP on 413 
birthweight outcomes.  414 
 415 
Conclusions 416 
 417 
In this study population drawn from diverse socio-demographic settings across four 418 
countries, exposure to HAP – particularly to BC and to a lesser extent to PM2·5 during 419 
pregnancy was associated with reduced  birthweight and weight-for-gestational age z-420 
scores. To our knowledge, ours is the first study reporting on E-R relationships between 421 
gestational BC exposures from HAP and birthweight. The association, while modest, 422 
provides strong support for continuing efforts to address HAP exposures alongside other 423 
drivers of impaired fetal growth in LMICs.    424 
 425 
 426 
 427 
 428 
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Data Sharing 429 
Will individual participant data be 
available (including data 
dictionaries)? 

Yes 

What data in particular will be 
shared? 

Individual participant data that underlie the results 
reported in this article, after de-identification (all 
results summarized in text, tables, figures, and 
appendices) 

What other documents will be 
available? 

Study protocol, statistical analysis plan, informed 
consent form, analytic code 

When will data be available (start 
and end dates)? 

Beginning 6 months following article publication 

With whom? Anyone who wishes to access the data 
For what types of analyses? Any purpose 
By what mechanism will data be 
made available? 

Data are available indefinitely at DataVerse (link to be 
included) 
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Table 1. Summary of number of observations used in the exposure-response analysis 1 

Research 
center 

Pregnant women 
enrolled 

Valid 
birthweights1 

Valid PM2·5 

exposure 
measures  

Valid BC exposure 
measures 

Valid CO exposure 
measures 

Guatemala 800 750 703 677 727 
India 799 773 710 698 735 
Peru 798 730 609 567 600 
Rwanda 798 749 695 618 710 
Total N (%) 3195* 3002 2717 (91%) 2560 (85%) 2772 (92%) 
1 Women with valid birthweights, excluding children whose birth with gestational age greater than 300 days (z-scores unavailable from INTERGROWTH) 2 
 3 
 4 
  5 
 6 
  7 
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Table 2. Trial-wide and country-specific maternal characteristics 8 
Maternal characteristics1 Guatemala India Peru Rwanda Total 
  N=750 N=773 N=730 N=749 N=3002 
Age (years), N (%)      
     <20 115 (15) 122 (15) 93 (12) 46 (6) 376 (12) 
     20 – 24 303 (40) 373 (48) 261 (35) 187 (25) 1124 (37) 
     25-29 221 (29) 223 (28) 232 (31) 280 (37) 956 (31) 
     30-35 111 (15) 55 (7) 144 (19) 236 (31) 546 (18) 
Gestational age at recruitment (weeks), mean (SD) 14·3 (3) 16 (3) 15·7 (3·3) 15·4 (2·8) 15·3 (3·1) 
Nulliparous, N (%)           
     Yes 213 (28) 442 (57) 278 (38) 218 (29) 1151 (38) 
     No 537 (71) 337 (42) 448 (61) 529 (70) 1845 (61) 
Highest level of education completed, N (%)      
     No formal education / some primary school 358 (47) 275 (35) 32 (4) 316 (42) 981 (32) 
     Primary school / some secondary school 298 (38) 219 (28) 224 (30) 299 (40) 1034 (35) 
     Secondary / Vocational /Some University 100 (13) 279 (36) 474 (65) 134 (18) 987 (33) 
Height (cm), mean (SD) 148 (5·3) 151 (5·6) 152 (4·5) 156 (5·8) 152 (6·2) 
Body mass index (kg/m2) mean (SD) 23·7 (3·3) 19·7 (3·1) 26 (3·5) 23·4 (3·4) 23·2 (4·1) 
Hemoglobin (gm/dl), mean (SD) 12·7 (1·04) 10·3 (1·2) 14 (1·2) 12·4 (1·5) 12·4 (1·9) 
Minimum dietary diversity, Category (score) N (%)      
     Low (<4) 514 (68) 600 (77) 73 (10) 505 (67) 1692 (56) 
     Medium (4-5) 206 (27) 149 (20) 403 (55) 208 (27) 966 (32) 
     High (>5) 30 (4) 24 (3) 254 (34) 35 (4) 343 (11) 
Household food insecurity, Category (score), N (%)           
     Food secure 415 (56) 628 (81) 378 (52) 276 (37) 1697 (57) 
     Mild (1, 2, 3) 238 (32) 108 (14) 251 (34) 212 (29) 809 (27) 
     Moderate (4, 5, 6) / Severe (7, 8) 88 (11) 33 (4) 91 (12) 243 (33) 455 (15) 
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Number of people sleeping in house, mean (SD)  5·1 (2·6) 3·7 (1·5)  4·5 (1·7) 3·4 (1·4) 4·3 (2) 
Someone in the household smokes, N (%)      
     Yes 39 (5) 244 (31) 7 (1) 28 (4) 318 (11) 
     No 711 (94) 529 (68) 722 (99) 719 (96) 2681 (89) 
Owns household assets, N (%)      
     Color Television 344 (45) 577 (74) 470 (64) 98 (13) 1489 (49) 
     Radio 283 (37) 105 (13) 540 (73) 420 (56) 1348 (45 
     Mobile phone 687 (91) 635 (82) 699 (95) 594 (79) 2815 (87) 
     Bicycle 94 (12) 120 (15) 278 (38) 229 (30) 721 (24) 
     Bank account 186 (24) 695 (89) 172 (23) 221 (29) 1274 (42) 
1 Descriptive statistics summary based on 3002 pregnant women included in the final analyses, which includes women with live births, valid birthweights, 9 
and gestational age at birth < 300 days 10 
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Table 3. Change in birthweight for an IQR increase in PM2·5, BC, and CO1 11 
Pollutant Model Type Estimate (95% CI) p-value AIC 
PM2·5 Linear -14·8 (-28·7, -0·8) 0·04 40211 
  Log linear -11·2 (-33·6, 11·2) 0·33 40215 
BC Linear -21·9 (-37·7, -6·1) 0·01 37876 
  Log linear -19·2 (-40·1, 1·7) 0·07 37880 
CO Linear -3·1 (-12·1, 5·8) 0·50 41017 
 Log Linear 10·6 (-7.2, 28·4) 0·24 41017 
1 All models adjusted for mother’s education, baseline BMI, nulliparity, diet diversity, food insecurity 12 
score, second-hand smoke, baseline hemoglobin, age, infant sex, and 10 randomization strata. IQRs 13 
for PM2·5, BC, and CO were 74·51, 7·30, and 1·68 respectively. On the log scale, IQRs for PM2.5, BC, 14 
and CO were 1·04, 0·85, and 1·40 respectively.  15 
 16 
 17 
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 Table 4. Change in weight-for-gestational age z-scores with an IQR increase in PM2·5, BC, and CO1 18 
Pollutant  Model Estimate (95% CI) p-value AIC 
PM2·5 Linear -0·03 (-0·06, 0·00) 0·04 7021 
  Log linear -0·04 (0·09, 0·01) 0·10 7023 
BC linear -0·05 (-0·08, -0·01) 0·01 6591 
  Log linear -0·06 (-0·10, -0.01) 0·02 6593 
CO linear -0·003 (-0·023, 0·017) 0·78 7215 
  Log linear 0·02 (-0·02, 0·06) 0·24 7214 
1 All models adjusted for mother’s education, baseline BMI, nulliparity, diet diversity, food insecurity 19 
score, second-hand smoke, baseline hemoglobin, age, infant sex and 10 randomization strata. IQRs 20 
for PM2·5, BC, and CO were 74·51, 7·30, and 1·68 respectively. On the log scale, IQRs for PM2.5, BC, 21 
and CO were 1·04, 0·85, and 1·40 respectively. 22 
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Figure 1. Distribution of (A) birthweight and time-weighted (B) PM2·5, (C) BC, and (D) CO. Corresponding numeric data are in Supplemental Table 
6. Results are presented separately for each study site and in combination for the entire trial. Dots are individual datapoints. X-axes are log 
transformed. Thick solid lines inside the box are medians. The lower and upper hinges (i.e., the ends of the box) correspond to the 25th and 75th 
percentiles. The whiskers (i.e., the lines beyond the box) extend from the hinge to 1·5 * IQR. The panel-wide dotted vertical lines are study-wide 
medians. In panel (A), the shaded area indicates low birthweight (< 2500 g). In Panel (B), the dashed line is the WHO Interim Target 1 annual 
guideline value of 35 µg/m3. 
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Figure 2. Exposure-response relationships between birthweight and prenatal PM2·5, BC, and CO personal exposures. Vertical dashes along the x-
axis are observed measurements. 
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Figure 3. Exposure-response relationships between weight-for-gestational age z-scores and prenatal PM2·5, BC, and CO personal exposures. 
Vertical dashes along the x-axis are observed measurements.  
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