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Abstract 16 

 17 

E. coli is a highly diverse bacterial species that generates a huge global burden of 18 

antimicrobial-resistant infections. A wealth of whole genome sequence data is available on 19 

public databases for this species, presenting new opportunities to analyse the distribution of 20 

antimicrobial resistance (AMR) genes across its genetic and ecological diversity. We 21 

extracted and categorised metadata on host species and geographic location and combined 22 

this with in silico phylogrouping to describe the characteristics of ~16,000 assembled E. coli 23 

genomes from the NCBI RefSeq database. We estimated AMR carriage using various 24 

metrics: counts of overall genes, multidrug- and extensively drug-resistant categories, and 25 

selected β-lactamases of current global concern - blaCTX-M and carbapenemase genes. We 26 

present estimates of AMR carriage for these metrics by species type (human, 27 

agricultural/domestic animal, wild birds and other wild animals), geographic subregion, and 28 

across phylogroups. In addition, we describe the distribution of phylogroups within host types 29 

and geographic subregions. Our findings show high AMR carriage in commensal-associated 30 

phylogroups, agricultural and wild animal hosts and in many subregions. However, we also 31 

quantify large biases in sequencing data, the substantial gaps in our knowledge of AMR in 32 

many hosts, regions and environmental settings, and the need for systematic sampling to gain 33 

a more accurate picture. 34 
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 2

Introduction 35 

 36 

Escherichia coli is a remarkably diverse species both genetically and ecologically. It occupies 37 

various niches, ranging from a commensal of many warm-blooded organisms, to a globally 38 

devastating pathogen, to a free-living environmental bacterium [1]. It is a leading cause of 39 

mortality associated with drug-resistant infections and was the pathogen responsible for the 40 

most deaths attributed to antimicrobial resistance (AMR) in 2019 [2]. In addition, 41 

carbapenem-resistant and extended-spectrum β-lactamase (ESBL)-producing E. coli are 42 

World Health Organization priority pathogens, for which development of new antibiotics is 43 

urgently needed [3]. In light of the ongoing AMR crisis, it is necessary to understand how 44 

resistance genes are distributed across the ecological and genetic diversity of this species, 45 

highlighting the potential risks they pose across contexts.  46 

 47 

AMR genes (ARGs) are part of the substantial accessory gene content found in E. coli [4], 48 

and therefore are not distributed uniformly across the species phylogeny. Acquired ARGs are 49 

particularly important due to their extensive ability to transmit horizontally in populations on 50 

mobile elements such as plasmids, leading to AMR spread across more distant locations and 51 

genetic lineages [5]. Some of these ARGs present significant clinical risks in humans, 52 

particularly those with current or potential spread across bacterial host genetic backgrounds, 53 

including to other species, and along the commensal-pathogen continuum [6].  54 

 55 

Most research has focused on AMR in human-associated and pathogenic isolates [7]. A study 56 

focusing on ~1,000 isolates selected to represent the diversity of E. coli, mostly including 57 

isolates from non-clinical origins, found ARGs were associated with strains from humans and 58 

domesticated animals, independent of phylogroup [8]. Therapeutic and growth promoter 59 

usage of antibiotics in agriculture is well-documented, and has been linked to high rates of 60 

AMR in livestock-associated isolates [9]. Resistance may also spill over into wild animal 61 

populations, and there is increasing evidence of wildlife as potential reservoirs of AMR [10].  62 

A One Health approach to AMR emphasises the interconnectedness of human, animal and 63 

environmental microbiomes [11], with the potential for bidirectional flow of ARGs between 64 

animal (wild or domesticated), crop, natural and built environment, and human microbiomes. 65 

There are also geographic and socioeconomic biases in studies of AMR in E. coli. Whilst 66 

antibiotics are used most in high-resource settings, the burden of AMR is estimated to 67 
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disproportionately affect lower and middle income countries, despite the scarcity of data in 68 

these regions [2].  69 

 70 

A wealth of previous work on E. coli has investigated AMR trends in specific settings, such 71 

as individual hospitals or farms. As sequencing technologies become more accessible and 72 

public genomic databases grow, much larger genomics-based studies of AMR in highly-73 

sampled species like E. coli are becoming increasingly feasible. For example, a recent large-74 

scale study of over 70,000 E. coli genomes found that the number of distinct ARGs varied 75 

between phylogroups, and that specific resistance genes were found more frequently in some, 76 

though the pattern of resistance to antibiotic classes remained stable across groups [12]. 77 

Another study curated a collection of ~10,000 E. coli isolates sampled from human sources, 78 

and identified lineages where >50% of isolates were MDR [13].  79 

 80 

In this work we expand on previous large-scale genomic studies of ARGs in E. coli by 81 

investigating diversity across different host categories and geographic subregions, as well as 82 

phylogroups. We characterise a final dataset of ~16,000 publicly-available assembled E. coli 83 

genomes, documenting the distribution of ARGs according to several metrics: counts of 84 

ARGs, multidrug- and extensively drug-resistant (MDR and XDR) classifications, and 85 

presence of clinically-important β-lactamases (blaCTX-M and carbapenemases). First, we used 86 

model comparison to assess the contributions of host, subregion and phylogroup towards 87 

explaining ARG variation in E. coli. Then, we used generalised linear models (GLMs) to 88 

describe the probabilities of MDR, blaCTX-M and carbapenemase presence according to the 89 

same predictors. To do so, we used subsampling and resampling approaches to correct for 90 

sample size disparities between groupings, and investigate the sensitivity of trends according 91 

to subsample sizes.  92 

 93 

Methods 94 

 95 

Genomes 96 

 97 

The initial complete dataset of 26,881 E. coli genomes was retrieved from the National 98 

Center for Biotechnology Information (NCBI) RefSeq database in February 2022 in 99 

nucleotide fasta format using ncbi-genome-download v0.3.0 (https://github.com/kblin/ncbi-100 

genome-download).  101 
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 102 

Detection of ARGs, phylogrouping and retrieval of metadata  103 

 104 

NCBI AMRFinderPlus v3.10.21 was used to predict the identity of acquired ARGs [14]. 105 

Clermont phylogrouping [15] was performed in silico using the EzClermont command-line 106 

tool [16]. Snakemake v6.2.1 [17] was used to generate a pipeline for phylogrouping and 107 

detecting ARGs, which was run using the University of Exeter's Advanced Research 108 

Computing facilities. We removed efflux (acrF, emrD and mdtM) and blaEC β-lactamase 109 

genes from the dataset, as they were either very common or ubiquitous. As we could not use 110 

phenotypic resistance categories, we used the classes included in NCBI AMRFinderPlus 111 

output as a proxy for categorising genomes as multidrug-resistant (MDR; ARGs conferring 112 

resistance to ≥ 3/20 antibiotic classes) and extensively drug-resistant (XDR; ARGs conferring 113 

resistance to ≥ 10/20 antibiotic classes) [18].  114 

 115 

Host and location metadata were retrieved and categorised using the Bio.Entrez utilities from 116 

Biopython v1.77. We filtered genomes for those with complete metadata for host species and 117 

geographic location, as well as those not typed as E. coli by phylogrouping, which excluded 118 

10,609 genomes, resulting in a final dataset of 16,272 genomes. Geographic locations were 119 

split into 20 subregions (Fig. S1) according to Natural Earth data 120 

(https://www.naturalearthdata.com/).  121 

 122 

All genomes were sorted into the following host species categories: ‘Human’, 123 

‘Agricultural/Domestic animals’, ‘Wild birds’ and ‘Wild animals’. This was achieved using 124 

regular expressions constructed by manually reviewing text in the ‘host’ field of the 125 

biosample data for each accession number. Wild birds were separated from other wild 126 

animals due to their comparatively large numbers of genomes, high mobility and potential for 127 

ARG spread [19]. Any animal that is most likely to be associated with humans, such as 128 

‘mouse’ or ‘canine’, was assigned to the ‘Agricultural/Domestic animals’ category, which 129 

also included farm animals such as cows and chickens. Broader responses that could not be 130 

reliably classified into any specific group, such as ‘Animal’, and ‘Avian’, were not included 131 

in further analyses, as well as animals likely to be human food sources such as mussels. 132 

Though a conservative approach was taken when assigning genomes to wild animal or bird 133 

host groups, these classifications determine the likely category of the host based on species, 134 

and cannot rule out cases such as zoo animals. 135 
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 136 

Statistical analysis  137 

 138 

Data tidying and statistical analysis was done using R v4.0.4, with dplyr v1.0.1, ggplot2 139 

v3.3.6 [20] and MetBrewer [21] for colour palettes. Maps additionally used the R packages sf 140 

1.0-7 [22] and rnaturalearth v0.1.0.  141 

 142 

In all cases, binomial GLMs were fitted using glmmTMB v1.1.5 [23]. To assess model fit, 143 

simulated residuals were plotted and their dispersion tested using DHARMa v0.4.5 [24]. 144 

Prior to all statistical modelling, subgroupings with sample sizes ≤ 100 (e.g. Central Asia) 145 

were removed from the dataset. Sample sizes for each predictor in the full dataset are shown 146 

in Figure 1A-C.  147 

 148 

Initially, maximal models were fitted using the entire dataset with MDR, XDR or blaCTX-M 149 

genes as a binomial response variable (presence/absence) and all explanatory variables 150 

included (host, phylogroup and subregion). For carbapenemase genes, the same response 151 

variables were used, but only host and phylogroup were included as predictors due to lack of 152 

data coverage for many subregions for these comparatively rare genes. Sample sizes for all 153 

combinations of response variable and predictor are shown in Tables S1-3. Next, Akaike 154 

information criterion (AIC) scores were used to assess the fit of all possible models using the 155 

dredge function from MuMIn v1.46.0. In all cases, large ΔAIC values (>50) were seen 156 

between the maximal model and the next best model (Table S4), emphasising the 157 

contribution of all variables to the distribution of AMR gene measures. Model coefficients for 158 

all maximal models are shown in Table S5.  159 

 160 

Next, subsampling approaches were used to circumvent disparities in sampling sizes between 161 

groups. Separate models were made for each predictor due to the difficulty in 1) taking single 162 

representative subsamples spanning all hosts, phylogroups and subregions and 2) estimating 163 

means from models with multiple categorical explanatory variables. A subsample was taken 164 

for each predictor, giving datasets with equal numbers of genomes from each phylogroup, 165 

host or subregion. Several subsample sizes were used to determine the sensitivity of trends to 166 

the sample size. Firstly, the dataset was subsampled without replacement down to the lowest 167 

group size for each model (e.g. all host categories were sampled to n=234, the sample size for 168 

wild birds). In addition, samples with replacement were taken with increasing sizes (n=500, 169 
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1000, 2000 and 4000) for hosts, phylogroups and subregions, to investigate the robustness of 170 

trends to changing sample sizes. All single predictor models were also run with the full, non-171 

subsampled dataset.  172 

 173 

Model estimated means and 95% confidence intervals (CIs) were calculated using ggpredict 174 

from the ggeffects package [25]. Model coefficients are presented in Table S6 for host, Table 175 

S7 for subregion and Table S8 for phylogroup. We did not perform post-hoc comparisons or 176 

report P-values in the manuscript due to the large number of pairwise comparisons that would 177 

be necessary (e.g. 91 comparisons for each model of subregion data). In addition, we did not 178 

have a priori hypotheses about group differences to test, but rather aimed to describe the 179 

patterns in the data with our modelling approaches. Finally, many groups had large sample 180 

sizes, which can produce a significant result even for a biologically insignificant effect size 181 

[26, 27].  182 

 183 

Results  184 

 185 

Quantification of sample sizes across hosts, phylogroups and subregions in the RefSeq 186 

dataset 187 

 188 

Initially, we characterised the RefSeq dataset by looking at sample sizes across phylogroups, 189 

host categories, and geographic subregions (Fig. 1A-C, Tables S1-3). Phylogroups B1, A and 190 

B2 collectively made up 74% (12,109/16,272) of genomes, with smaller numbers found 191 

across C, E, F, G and U (Fig. 1A). Sixty-five genomes were typed as U/cryptic or cryptic. 192 

The majority of genomes had a sampling location in North America (n=5,202) or Eastern 193 

Asia (n=3,790), whilst many regions were represented poorly such as Micronesia, Melanesia 194 

and Polynesia (n=1 for all), Central Asia and Caribbean (n=3 for both) and Middle Africa 195 

(n=10) (Fig. 1B). Finally, 96% of the E. coli genomes were isolated from humans and 196 

agricultural or domestic animals (15,549/16,272) with only 234 from wild birds and 489 from 197 

other wild animals (Fig. 1C).  198 

 199 
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Figure 1 – Total number of genomes per A) phylogroup, B) geographic subregion and C) host species 201 

category. Counts of ARGs for D) phylogroup, E) geographic subregion and F) host species category, 202 

with raw data plotted below boxplots. G) Proportion of genomes in each phylogroup per host 203 

category. 204 

 205 

ARG counts across the diversity of E. coli sequences 206 

 207 

We measured counts of ARGs detected across the diversity of genomes to get an overall 208 

measure of how AMR carriage was distributed across the dataset (Fig. 1D-F). Overall, the 209 

mean number of ARGs per genome for the entire dataset was 5.75. Median ARG counts were 210 

highest in phylogroups C, F and A (9, 8 and 7 respectively; Fig. 1D). Meanwhile the lowest 211 

median counts were in groups E (0) and B1 (1). A wide range of ARG counts was also seen 212 

between and within subregions (Fig. 1E). Among the most well-sampled regions, genomes 213 

from Eastern Asia had the highest median ARG count (8), though relatively high numbers 214 

were also seen in Western Europe (median ARG count = 5). Additionally, higher median 215 

ARG numbers were seen in less represented regions such as Northern (8.5), Middle (9) and 216 

Southern Africa (6) and Central Asia (9). High within-group diversity in ARG counts was 217 

again seen for host categories, with highest median counts in genomes from humans (5) and 218 

agricultural animals (3).  219 

 220 

Hosts and subregions show different phylogroup patterns 221 

 222 

We investigated the distribution of E. coli phylogroups within hosts (Fig. 1G) and geographic 223 

subregions (Fig. S2). E. coli isolates from agricultural and domestic animals mostly belonged 224 

to phylogroups A and B1 (n=1,863 and n=2,354, respectively). Those from humans were 225 

most likely to belong to phylogroup B2 (n=2,870), as well as A and B1 (n=2,071 and 226 

n=2,000 respectively). There were also comparatively high numbers of phylogroup D isolates 227 

in genomes from human hosts (n=1,237). A higher proportion of phylogroup F isolates were 228 

seen in wild birds (n=54), whilst wild animals had slightly higher proportions of B2 isolates 229 

(n=74) than agricultural or domesticated animals.  230 

 231 

The frequencies of different phylogroups varied between geographic subregions (Fig. S2). 232 

While A, B1 and B2 were typically the largest groups, their relative proportions varied. For 233 

example, B1 was more common in Eastern (n=195) and Western (n=94) Africa, B2 was 234 
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highest in Australia and New Zealand (n=216) and Eastern Europe (n=112), while A was 235 

most common in South-Eastern (n=131) and Western (n=117) Asia. Isolates belonging to 236 

phylogroup D were also relatively common, with notably higher proportions in regions 237 

including Northern Africa (n=17) and Eastern Europe (n=86).   238 

  239 

Specific measures of AMR carriage  240 

 241 

Following characterisation of the dataset, we began analysing more specific measures of 242 

AMR carriage. First, we categorised genomes as MDR (≥ 1 ARGs conferring resistance to ≥ 243 

3 classes) and XDR (≥ 1 ARGs conferring resistance to ≥ 10 classes) following detection of 244 

402 unique resistance genes conferring predicted resistance to 19 classes. We also looked at 245 

the presence of selected β-lactamase genes of current global health concern. We detected 40 246 

unique blaCTX-M genes across the final dataset, most commonly blaCTX-M-15 (n=2,536), blaCTX-247 

M-14 (n=1,063) and blaCTX-M-55 (n=903). Meanwhile, a total of 46 different carbapenemases 248 

from the NDM, KPC, OXA, IMP, VIM, IMI and GES classes were identified, the most 249 

frequent being NDM-5 (n=893), KPC-2 (n=264), NDM-1 (n=219) and OXA-48 (n=189).  250 

 251 

We generated model estimated mean proportions with 95% CIs for models of MDR (Fig. 2), 252 

XDR (Fig. S3) and blaCTX-M (Fig. 3) presence, according to host, phylogroup and subregion 253 

for both the full dataset, and a dataset subsampled down to the smallest group size without 254 

replacement to adjust for large sample size differences between groups. The same process 255 

was repeated for carbapenemase gene presence (Fig. 4), but subregion was not used as a 256 

predictor due the rarity of carbapenemase-positive genomes across many regions. Trends 257 

were broadly consistent across the two datasets and estimates for the full dataset are quoted in 258 

the subsequent text.  259 

 260 

1. MDR and XDR  261 

 262 

MDR genomes were common, with a given genome from the majority of phylogroups, 263 

subregions and hosts having > 0.4 probability of being MDR (Fig. 2). Within phylogroups, 264 

multidrug resistance was most common in groups C (0.83, 95% CI=0.80-0.86), F (0.75, 95% 265 

CI=0.71-0.78) and A (0.72, 95% CI=0.70-0.73), whilst being comparatively uncommon in 266 

group E isolates (0.25, 95% CI=0.22-0.28). Isolates from humans (0.60, 95% CI=0.58-0.60) 267 

and agricultural/domestic hosts (0.51, 95% CI=0.50-0.52) had the highest probabilities of 268 
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MDR, though estimates from wild animals (0.44, 95% CI=0.39-0.48) and birds (0.43, 95% 269 

CI= 0.37-0.50) were reasonably high. Finally, South-Eastern Asia (0.86, 95% CI = 0.83-0.90) 270 

and Western Africa (0.78, 95% CI=0.15-0.72) had the highest estimated proportions of MDR 271 

genomes, while the lowest were in Northern America (0.40, 95% CI=0.38-0.41) and Central 272 

America (0.42, 95% CI=0.33-0.52).  273 

 274 

XDR genomes were less common, and not detected at high enough frequencies to estimate 275 

their probabilities in the minimum subsampled dataset for phylogroup B2 and wild animal 276 

hosts (Fig. S3). The phylogroups with the highest probabilities of XDR were A (0.092, 95% 277 

CI=0.083-0.10) and F (0.07, 95% CI=0.052-0.093), whilst remaining very low for B2 (0.003, 278 

95% CI=0.0018-0.0058) and E (0.018, 95% CI=0.012-0.03). The highest XDR probabilities 279 

were estimated in wild birds (0.13, 95% CI=0.091-0.18), with probabilities below 0.06 for 280 

other host categories. Finally, XDR genomes were by far the most likely to occur in Eastern 281 

Asia (0.16, 95% CI=0.14-0.17), and below 0.08 for all other regions.  282 

 283 
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 284 

Figure 2 –Estimated mean probabilities and 95% CIs of MDR from binomial GLMs for datasets 285 

subsampled without replacement to the minimum group size for A) phylogroup, B) host category and 286 

C) geographic subregion. The same model types for the full non-subsampled dataset for D) 287 

phylogroup, E) host category and F) geographic subregion. CIs for subregion models can be found in 288 

Figure S6. 289 

 290 

2. blaCTX-M and carbapenemase genes 291 

 292 

The presence of the blaCTX-M class of β-lactamases was highly variable between groups (Fig. 293 

3). Estimated probabilities ranged from 0.08 (95% CI = 0.066-0.11) in phylogroup E to 0.51 294 

(95% CI=0.47-0.55) in phylogroup F, whilst blaCTX-M genes were more associated with 295 

human hosts (0.33, 95% CI=0.32-0.34) than other host categories. The probabilities of 296 
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blaCTX-M genes being present also varied widely between subregions, with the highest in 297 

South-Eastern Asia (0.59, 95% CI=0.53-0.64) and Eastern Europe (0.52, 95% CI=0.47-0.57), 298 

and all other subregions below 0.45.  299 

 300 

Figure 3 – Estimated mean probabilities and 95% CIs of blaCTX-M presence from binomial GLMs for 301 

datasets subsampled without replacement to the minimum group size for A) phylogroup, B) host 302 

category and C) geographic subregion. The same model types for the full non-subsampled dataset for 303 

D) phylogroup, E) host category and F) geographic subregion. CIs for subregion models can be found 304 

in Figure S12. 305 

  306 

Carbapenamase genes were far less common than blaCTX-M genes (Fig. 4). There was a clear 307 

split between phylogroups C, F, A and D, which were more likely to possess carbapenemases 308 

(probabilities >0.15), and the remaining groups which had probabilities of 0.05 or below. The 309 
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highest proportions of carbapenemases were estimated in wild bird (0.25, 95% CI=0.20-0.31) 310 

and human (0.14, 95% CI= 0.13-0.15) hosts. 311 

 312 

We further investigated sampling bias for carbapenemase-positive isolates in wild birds due 313 

to the high proportion of genomes possessing these genes. Isolates from wild birds possessing 314 

carbapenemases were only represented in 3 subregions: Australia and New Zealand (n=25), 315 

Eastern Asia (n=32) and Western Asia (n=1). Sequencing bias was evident; for example, 68 316 

out of 234 wild bird isolates were from one study of silver gulls in Australia (which made up 317 

68 out of the 93 isolates from this region). This study (PRJNA630096) specifically sought 318 

and sequenced isolates conferring resistance to critically important antimicrobials. Further 319 

carbapenemase-producing isolates came from studies in China (PRJNA669620 and 320 

PRJNA349231) that specifically studied carbapenem-resistant E. coli.  321 

 322 

 323 
Figure 4 – Estimated mean probabilities and 95% CIs of carbapenemase presence from binomial 324 

GLMs for datasets subsampled without replacement to the minimum group size for A) phylogroup 325 

and B) host category. The same model types for the full non-subsampled dataset for C) phylogroup 326 

and D) host category. 327 

 328 

Subsampling and resampling approaches do not alter major trends 329 
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 330 

Due to the large discrepancies in sample size between hosts, regions and phylogroups in this 331 

dataset, we used additional sampling with replacement to examine the sensitivity of the 332 

observed trends to changing sample sizes of 500, 1000, 2000 and 4000 (Fig. S4-S12). This 333 

showed that, although fluctuations in estimated proportions occurred (as well as expected 334 

reductions in CIs with increased sample size), broader trends were reproducible across wide 335 

variations in subsample size. In some smaller subsamples, insufficient genomes possessed the 336 

metric of AMR carriage (e.g. a carbapenemase gene) to make estimates in some 337 

subgroupings.  338 

 339 

Discussion 340 

 341 

Though we are in the era of large-scale genomics studies, with thousands of genomes 342 

available for species such as E. coli, it remains challenging to collate this information to 343 

answer questions about AMR prevalence. In this study, we characterised the RefSeq E. coli 344 

dataset for which metadata was available, investigating sampling bias and AMR carriage 345 

according to various metrics for different hosts, phylogroups and geographic subregions.  346 

 347 

How evenly sampled are publicly-available E. coli genomes? 348 

 349 

In first characterising this dataset, large sample size discrepancies in the locations and hosts 350 

E. coli genomes were sourced from were apparent. This was not unexpected. Previous large-351 

scale work on E. coli genomes isolated from human hosts has emphasised the sampling 352 

biases towards clinically-important isolates and lineages, as well as high-income countries, 353 

even in the most well-sampled host species [13]. Other work has used literature searches to 354 

quantify how poorly sampled wild animals are for E. coli, with small within-group sample 355 

sizes in the few studies available [28]. Our data adds to this body of knowledge emphasising 356 

how little is known about ARG burden across the diversity of this species, despite the vast 357 

amount of sequencing data available.  358 

 359 

We investigated the effects of subsampling all groups to the minimum sample size, as well as 360 

resampling up to larger sample sizes. This approach cannot replace unbiased sampling, 361 

particularly for those groups that are less well represented. However, it is interesting to note 362 

that estimates of AMR carriage for larger groups, such as phylogroup A or human hosts, did 363 
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not alter substantially regardless of the subsampling regime. Additionally, the spread of 364 

counts of ARGs was wide in these groups, indicating that they were not necessarily 365 

dominated by one or few lineages. 366 

 367 

Previous work has also investigated the potential effect of sampling bias on AMR estimates 368 

using E. coli genomes from GenBank [29]. These authors found that 1) the average distance 369 

of a given newly sequenced E. coli genome is equivalent to that between known close 370 

relatives, such as O157:H7 genomes, and 2) the results of a population genetics analysis of 371 

AMR did not change substantially when all human or unknown source genomes were 372 

removed, or all genomes for which the GenBank record referenced antibiotic resistance. 373 

Therefore, it is possible that, for more well-sampled subgroupings of E. coli, our current 374 

sequence collection already spans a high diversity of this species. 375 

 376 

Phylogroup distributions within hosts and subregions 377 

 378 

Though the most common phylogroups were A, B1 and B2, their proportions varied 379 

substantially between hosts. Phylogroup B1 was the most frequent in agricultural and wild 380 

animals. This is broadly consistent with many smaller-scale studies for which B1 was the 381 

most frequent in agricultural settings. For example, B1 made up 71% of agriculture-382 

associated isolates in a study in the Philippines [30], 50% of those in a study of sheep farming 383 

in China [31], and 35% of isolates from cattle and their attendants in Tanzania [32]. The wide 384 

variation in actual proportions observed in these different studies may be due to smaller 385 

sample sizes (n=17-100 in those referenced), as well as location and species effects. Human 386 

isolates were proportionally more likely to be B2 than those from other hosts. E. coli isolates 387 

from group B2 tend to possess more virulence traits than those from A and B1, though this 388 

virulence is proposed to be a by-product of commensalism [33]. Geographic differences in 389 

predominant commensal E. coli phylogroups have broadly represented a shift from A to B2 390 

in industrialised nations over the past decades, with these being the most common 391 

phylogroups in humans [34]. We saw this trend to some extent – European regions and 392 

Australia and New Zealand had high proportions of B2. Contrastingly, we found that other 393 

regions such as North America and Eastern Asia had B1 as the predominant phylogroup.  394 

 395 

Estimating AMR carriage across phylogroups, hosts and subregions 396 

 397 
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We used various metrics of AMR carriage to get an overview of ARG distribution in 398 

publicly-available E. coli genomes. When comparing phylogroups, A, C and F were 399 

repeatedly associated with more ARGs as well as clinically-important β-lactamases. 400 

Phylogroup A is a major group that appears to be more generalist. It is spread across 401 

vertebrate hosts [8], and contains mostly human commensal strains [35] as well as laboratory 402 

strains [36]. Although the presence of engineered strains may partly explain the high AMR 403 

metrics in this group, our results also imply that ARGs may be frequent in commensal 404 

lineages. Phylogroups commonly present in the human gut could be a reservoir for resistance 405 

genes and plasmids [37], potentially allowing their horizontal spread into other, more 406 

problematic lineages or species. 407 

 408 

As they are minor phylogroups, comparatively less is known about groups C and F. In terms 409 

of pathogenic potential, the sequence type complex 88 (STc88) lineage of group C is one of 410 

the main avian pathogenic E. coli (APEC) strains [38]. This phylogroup also includes ST410, 411 

a recently-emerged MDR lineage with fluoroquinolone resistance, ESBL (blaCTX-M-15) and 412 

carbapenemase (blaOXA-181 and blaNDM-5) genes [38]. Meanwhile, phylogroup F has been 413 

associated with fewer virulence traits than closely related groups [39], though it has also been 414 

linked to extraintestinal pathogenic (ExPEC) infections [38] and contains the MDR STc648 415 

lineage [40]. Therefore, these phylogroups could represent highly virulent and/or drug-416 

resistant lineages and may warrant further investigation.  417 

 418 

Unsurprisingly, human hosts were associated with more ARGs than other host categories. 419 

However, high levels were also seen in agricultural and domestic animal species for some 420 

measures, such as MDR. In addition, blaCTX-M and carbapenemase genes were detected in all 421 

the animal host categories to some degree. Antibiotics are still extensively used in animal 422 

agriculture, selecting for ARGs both directly in the gut and through excretion of antibiotics 423 

into soil and the local environment [41]. Despite this there is no standardised global 424 

surveillance system used in animal agriculture that is equivalent to those used in humans 425 

[41]. There is evidence for transmission of blaCTX-M variants in E. coli from humans to farmed 426 

animals and the environment, which also occurs in the reverse direction via food products 427 

[42]. Only limited studies document the occurrence of carbapenemases in E. coli strains from 428 

wildlife, agricultural animals and soils, though they have been reported in these contexts [43, 429 

44]. This highlights the need for further prevalence studies to determine the extent to which 430 

these genes are spreading in different environments. 431 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2022.08.05.22278465doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.05.22278465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

 432 

The proportionally high numbers of carbapenemase-possessing isolates (and potentially XDR 433 

isolates) from wild birds in this work are likely due to studies that enriched for ARGs. 434 

However, this emphasizes our lack of knowledge on the true extent of AMR spread in the 435 

natural world. High levels of problematic ARGs in wild birds, particularly generalist species, 436 

could occur due to their relatively high mobility compared to other taxa, and their utilisation 437 

of diverse foraging habitats, both of which increase potential exposure to anthropogenic 438 

sources of resistant bacteria [45, 46]. 439 

 440 

Finally, estimates of ARG prevalence varied geographically depending on the metric used. 441 

The highest AMR carriage was generally estimated for Eastern and South-Eastern Asia 442 

across measures. However, other regions were particularly high for individual measures. For 443 

example, Eastern Europe had high levels of blaCTX-M genes and MDR genomes were more 444 

common in Western Africa. These trends could either reflect genuine differences in AMR 445 

levels and individual gene prevalence, or regional differences in sampling strategies and 446 

genomic surveillance. There are large gaps in AMR surveillance for low and middle income 447 

(LMIC) countries. A recent study utilised the relationship between socioeconomic 448 

characteristics and AMR prevalence to model AMR levels for underrepresented countries, 449 

estimating high levels of third-generation cephalosporin resistance in E. coli from Western 450 

Asia [47]. Genomic surveillance has been leveraged during the COVID-19 pandemic and for 451 

other infectious diseases, but next-generation sequencing capacity is low in many regions 452 

[48]. However, the development of more many sequence analysis tools to detect ARGs [49], 453 

as well as developing capacity to incorporate whole genome sequencing into AMR 454 

surveillance in LMICs [50], may lead to this becoming a powerful tool in the future.  455 

 456 

Public genomic databases – limitations, benefits and future work  457 

 458 

We show the void in sequencing data from E. coli isolates outside of human and agricultural 459 

settings in a very large dataset, as well as stark regional disparities, with scarce publicly-460 

available data representing the majority of global regions. Whilst this study characterises this 461 

currently available dataset, representative estimates of ARG burden in E. coli sequences 462 

cannot be made without systematic, representative sampling. Notably, it is concerning that 463 

ARGs that inactivate our last-resort antibiotics are being detected and potentially spread in 464 

any environmental context, and that we do not have sufficient genomic data to investigate 465 
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this. Despite their limitations, publicly-available datasets are important, allowing access to 466 

sequencing data for scientists and the public across the globe, as well as improving 467 

reproducibility. Future systematic sampling and genomic surveillance in previously under-468 

investigated settings will give a more accurate picture of the scale of the AMR problem.  469 

 470 

Data Summary  471 

 472 

All code used to generate and analyse data are available at 473 

https://github.com/elliekpursey/AMR-Ecoli. 474 
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