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Abstract 23 

Background: The generation time distribution, reflecting the time between successive infections 24 

in transmission chains, is one of the fundamental epidemiological parameters for describing 25 

COVID-19 transmission dynamics. However, because exact infection times are rarely known, it is 26 

often approximated by the serial interval distribution, reflecting the time between illness onsets of 27 

infector and infectee. This approximation holds under the assumption that infectors and infectees 28 

share the same incubation period distribution, which may not always be true.  29 

Methods: We analyzed data on observed incubation period and serial interval distributions in 30 

China, during January and February 2020, under different sampling approaches, and developed an 31 

inferential framework to estimate the generation time distribution that accounts for variation over 32 

time due to changes in epidemiology, sampling biases and public health and social measures.  33 

Results: We analyzed data on a total of 2989 confirmed cases for COVID-19 during January 1 to 34 

February 29, 2020 in Mainland China. During the study period, the empirical forward serial 35 

interval decreased from a mean of 8.90 days to 2.68 days. The estimated mean backward 36 

incubation period of infectors increased from 3.77 days to 9.61 days, and the mean forward 37 

incubation period of infectees also increased from 5.39 days to 7.21 days. The estimated mean 38 

forward generation time decreased from 7.27 days (95% confidence interval: 6.42, 8.07) to 4.21 39 

days (95% confidence interval: 3.70, 4.74) days by January 29. We used simulations to examine 40 

the sensitivity of our modelling approach to a number of assumptions and alternative dynamics. 41 

Conclusions: The proposed method can provide more reliable estimation of the temporal variation 42 

in the generation time distribution, enabling proper assessment of transmission dynamics. 43 

  44 
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Introduction 45 

The coronavirus disease 2019 (COVID-19) pandemic has caused over 557 million cases and 6 46 

million deaths by July 15, 20221. The generation time (GT) distribution is one of the key 47 

transmission parameters and defined as the time between successive infections in a transmission 48 

chain. The generation time distribution shapes the relationship between epidemic growth rate and 49 

reproduction number2, while the reproduction number has been widely used to indicate the 50 

measure of transmissibility, and is defined as the average number of secondary cases infected by 51 

one typical infector in the population.  52 

 53 

Exact infection times are hard to observe, hence the generation time distribution is usually 54 

unobserved. It is easier to record symptom onset times. Thus, in practice, the time between the 55 

illness onsets of infector and infectee, which is called the serial interval (SI), is commonly used as 56 

a proxy for the GT. Under the assumption that the infector and infectee have the same incubation 57 

period (IP) distribution, the mean SI would equal the mean GT3,4. Therefore, the entire serial 58 

interval distribution is often used to estimate the reproduction number5,6. However, this parametric 59 

approximation does not always hold, as GT and SI have different distributional properties. 60 

Importantly, the SI can be negative when the infectee has onset earlier than infector as shown in 61 

the pre-symptomatic transmission for COVID-197,8, while GT must be positive since the infectee’s 62 

infection time must be later than infector’s infection time. In addition, the SI always has a larger 63 

variance than GT due to their different biological and clinical characteristics9. Thus when mean SI 64 

equals mean GT, using SI distribution as a proxy of GT distribution may underestimate the 65 

reproduction number10–12.  66 
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 67 

Sampling biases can also affect the estimation of transmission parameters10,11. While following up 68 

the cases since their infection time (i.e. forward sampling) would result in correct estimation of IP, 69 

case sampling with reference to onset times (i.e. backward sampling) would favour 70 

underestimation and overestimation of IP during the exponential and fading phase of the epidemic 71 

respectively10. Sampling with reference to infectee onset times, regarded as backward sampling of 72 

SI, will have the same issue. Moreover, sampling with reference to infector onset times, regarded 73 

as forward sampling of SI, also results in time-varying estimates of SI, as Park et al11 showed that 74 

the forward SI can be decomposed as the forward GT plus the forward IP of infectee minus the 75 

backward IP of infector, and posited that the decreasing trend of forward SI over time was due to 76 

the overestimation of infector’s IP under the backward sampling approach. Therefore, it is not 77 

appropriate to directly use temporal forward SI as a proxy of temporal GT. Following Park’s 78 

hypotheses, in this study, we developed an inferential framework to estimate the time-varying 79 

forward GT, hence to have more accurate estimation of the reproduction number. We apply this 80 

framework to observations on IP and SI in China during the first months of the COVID-19 81 

pandemic, and quantify the actual magnitude of temporal variations in the estimates and their 82 

impact on the estimated generation times and reproduction numbers. 83 

 84 
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Results 85 

Construction of transmission pairs 86 

We investigated a total of 2989 confirmed cases for COVID-19 during January 1 to February 29, 87 

2020 in Mainland China. Of these 2989 cases, the median age was 46 years-old (interquartile range 88 

(IQR): 33 – 58), and the proportion of male and female was 51% and 49% respectively. We 89 

reconstructed 629 transmission pairs having symptom onset times for both infectors and infectees, 90 

which consisted of 428 infectors and 629 infectees. Among the 428 infectors, the median age was 91 

47 years-old (IQR: 37 – 57), and 59% were male; while among the 629 infectees, the median age 92 

was 49 years-old (IQR: 34 – 61), and 47% were male. The mean number of infectees infected by 93 

an infector in our data was 1.47, 386 (90%) infectors had no more than 2 infectees, while 4 (1%) 94 

infectors had more than 5 infectees, with the maximum of 16 infectees being suspected to have 95 

been infected by one single infector.  96 

 97 

Despite the unknown infection times, the incubation period could be inferred by onset time and 98 

the exposure window as from the first to the last day of the case’s suspected exposure history, 99 

according to the available case contact tracing report (see Methods and Supplementary Methods 100 

section 1.1 for details in data processing). There were 126 infectors and 344 infectees with 101 

available information on complete exposure window as well as symptom onset times. Fig. 1 102 

presented the epi-curves for the number of infectors and infectees identified over time based on 103 

their onset dates. We found 7-day moving window could ensure sufficient sample size for the 104 

temporal analysis on the estimation of these epidemiological parameters under forward and 105 

backward schemes, while the first and last moving windows were widened to capture the sporadic 106 
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cases in the early and declining phases of the epidemic (Supplementary Tables 1-2). The details of 107 

the number of infectors and infectees that have complete exposure information, and number of 108 

transmission pairs in each time window of the study period can be found in Supplementary 109 

Methods section 1.2. 110 

 111 

Temporal estimates of serial intervals, incubation periods and 112 

generation times 113 

During the study period, the empirical forward SI decreased from a mean of 8.90 (interquartile 114 

range (IQR): 5.00 – 11.25) days to 2.68 (IQR: 0.00 – 6.00) days (Fig. 2a). The estimated mean 115 

backward IP of infectors increased from 3.77 (95%CI: 3.09, 4.53) days to 9.61 (8.14, 11.13) days 116 

(Fig. 2b), and the mean forward IP of infectees also increased from 5.39 (4.50, 6.30) days to 7.21 117 

(6.36, 8.10) days (Fig. 2b). The mean empirical backward SI showed an increasing trend over time 118 

(Supplementary Fig. 1a), as well as the backward IP of infectee, while IP of infector referenced by 119 

infectee onset was increasing during the early phase and later became stable till the end of the 120 

study period (Supplementary Fig. 1b). 121 

 122 

The mean forward GT decreased from 7.27 (95%CI: 6.42, 8.07) to 4.21 (3.70, 4.74) days until 123 

January 29 and then increased slightly up to 5.20 (4.39, 6.02) days (Fig. 3a). While the estimated 124 

SD of forward GT decreased from 3.81 (2.84, 4.80) days on January 10 to 1.84 (1.38, 2.49) days 125 

on January 25 and then it increased to 3.65 (2.72, 4.51) days on February 14 (Fig. 3b). On the other 126 
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hand, applying our estimation framework for backward GT, it was estimated that the mean 127 

backward GT ranged from 4.32 (3.87, 4.77) to 5.80 (5.25, 6.39) days (Supplementary Fig. 2). 128 

 129 

Sensitivity analysis and bias evaluation for generation time 130 

estimates 131 

We compared the fittings by different choices of distributions for incubation periods and 132 

generation times respectively (Supplementary Table 3, Supplementary Fig. 3). The Weibull-133 

distributed IPs of infectors and infectees and Log-normal distributed GT gave the lowest AIC 134 

values on the data for entire epidemics, while different choices of distributions for the forward GT 135 

showed similar AIC (difference < 5) in most of the moving windows. When the sampling biases 136 

in incubation period between infector and infectee at the temporal scale were not accounted, the 137 

estimated mean GT would be overestimated up to 17.83% in the early phase of the epidemic and 138 

underestimated up to 29.48% in the later phase with a decreasing pattern over the study period 139 

(Supplementary Fig. 4a). While estimated SD for GT would be overestimated up to 25.64% and 140 

underestimated up to 21.28% during the early and later phases respectively (Supplementary Fig. 141 

4b).  142 

 143 

We also compared the estimates under a model that considered the potential correlation between 144 

infector’s backward IP and forward GT (𝜌"), which suggested the correlations of 0.31(0.13 – 0.47) 145 

– 0.61(0.41 – 0.76) during the study period, as well as higher means (ranging from 5.12 (4.69 – 146 

5.56) to 8.04 (7.25 – 8.89)) and higher standard deviations (ranging from 2.37 (1.89 – 2.87) to 4.41 147 
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(3.33 – 5.53)) of forward GT compared to the main result where independence between IP and GT 148 

was assumed (Supplementary Table 4). The changing patterns were consistent with main results 149 

(Supplementary Fig. 5). Similar estimates of GT were obtained when the correlation was assumed 150 

to be fixed at 0.25, 0.5 or 0.75 instead of being estimated by the model (Supplementary Table 4; 151 

Supplementary Fig. 5). However, our simulation study revealed that these estimates might suffer 152 

from bias (Supplementary Tables 9-11). 153 

 154 

Estimation of the basic and effective reproduction number 155 

The basic reproduction number, 𝑅! , was estimated to be 1.95 (95% CI: 1.70, 2.26) given the 156 

exponential growth rate of 0.10 (0.08, 0.12), and forward GT distribution in the early part of the 157 

epidemic with a mean of 7.27 (6.42, 8.07) days and SD of 3.81 (2.84, 4.80) days. In contrast, when 158 

the backward GT distribution based on data from January 1 to 26, 2020 (the first moving window) 159 

was used instead, which had a mean of 4.93 (4.35, 5.53) days and SD of 2.99 (2.34, 3.57) days, 𝑅! 160 

was estimated to be 1.58 (1.43, 1.74) which was underestimated by 18.97%. 161 

 162 

The observed epi-curve of all cases onset showed the peak incidence was on January 29, 2020 163 

(Fig. 4a). Based on this epi-curve, we estimated 𝑅" by temporal GT distribution with reference to 164 

infector onset (red line in Fig. 4b) and effective SI distribution (Supplementary Fig. 6) with 165 

reference to infector onset (blue line in Fig. 4b) respectively. As shown in Fig. 4b, these two 166 

estimates and their corresponding confidence interval mostly overlap in the growing phase, and 167 
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both declined to 1 at the end of January. But during the fading phase since February, the estimated 168 

𝑅" by temporal SI distribution was a little bit higher than the estimates by temporal GT distribution. 169 

 170 

Simulation results for inference of generation time  171 

Park et al11 showed that the realized GT distribution over the simulated epidemics could be 172 

different from its intrinsic distribution, subject to sampling bias and susceptible dynamics in 173 

population. Based on our simulation study, our proposed inferential framework was able to recover 174 

the simulated values of realized GT, when the mean width of exposure window did not exceed the 175 

mean of intrinsic GT, and also below or approximately equal to the mean of intrinsic IP. Under 176 

such criteria, the proportions of 95% CI of estimated mean of realized GT covering simulated 177 

mean of realized GT ranged from 78% to 98% over all intrinsic GT setting (Supplementary Table 178 

5), while the proportions of 95% CI of estimated SD of realized GT covering simulated SD of 179 

realized GT ranged from 80% to 100% based on 50 simulations (Supplementary Table 6), 180 

suggesting satisfactory recovery performance of our model. However, longer width of exposure 181 

window was associated with lower proportions of 95% CI of estimated value covering the 182 

simulated value, as well as larger bias especially overestimation in SD. When there were 1/3 of 183 

infector and infectees with completely missing exposure information, the proportions of 95% CI 184 

of estimated value of realized GT covering simulated value of realized GT would be generally 185 

lower, and bias in estimates were larger, compared to the situation when all infectors and infectees 186 

had complete exposure information (Supplementary Tables 7 – 8). Note the simulation of 187 

transmission data and estimation of GT were both under the assumption that IP and GT were 188 

independent. Besides, we further tested the reliability of using forward GT/SI to estimate effective 189 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.22278461doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.05.22278461
http://creativecommons.org/licenses/by-nc-nd/4.0/


reproduction number in the initial time window (𝑅#) as a proxy of 𝑅! (Supplementary Note section 190 

2.2, Supplementary Table 9). We found that 𝑅# would suffer from bias of 6% - 25% and -1% - 7% 191 

when forward SI distribution and forward GT distribution were used respectively, depending on 192 

the underlying intrinsic GT settings. 193 

 194 

In another simulation study involving the intrinsic distribution of correlated forward IP and GT 195 

with a correlation coefficient of 𝜌, we tested the performance of our adjusted model that considered 196 

correlation between infector’s backward IP and forward GT (𝜌" ) by estimating the realized 197 

correlation coefficient, the mean and SD of GT simultaneously (Supplementary Methods section 198 

1.6). Simulation results suggested that the estimates were very sensitive to the width of exposure 199 

windows. The recovery performance was satisfactory when the mean width of exposure windows 200 

was 1 day (Supplementary Note section 2.3, Supplementary Tables 10-12), with the bias of <5% 201 

and proportion of 95% CI of estimate covering the realized value of >80% in almost all time 202 

windows especially when 𝜌 ≤ 0.5. However, the exposure window with mean width of ³ 4 days 203 

was associated with biased estimates (over-/under-estimation dependent on the parameters) 204 

(Supplementary Note section 2.3, Supplementary Tables 10 – 12). We thus reported the estimates 205 

under the assumed independence between IP and GT as the main result given the promising 206 

recovery performance in simulation studies.  207 

 208 

 209 
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Discussion 210 

We have obtained the time-varying estimates of generation times by incorporating the temporal 211 

changes in the estimates of serial intervals and incubation periods. Based on transmission pairs 212 

data, the mean generation time of COVID-19 was estimated to be around 7 days in the beginning 213 

of the epidemic in mainland China and the corresponding basic reproduction number was 1.95. In 214 

one month, the mean of generation time decreased to 4 – 5 days accounting for the effectiveness 215 

of public health and social measures (PHSMs) that were implemented to control transmission. 216 

Previous studies have estimated the mean generation time of COVID-19 in early 2020 to be 5.20 217 

(95% CrI: 3.78, 6.78) days in Singapore12 and 5.70 days (95%CI: 4.80, 6.50) in mainland China13, 218 

which were both within the range of our temporal estimates in the growing-to-peak phase of the 219 

onset-based epi-curve. On the other hand, the mean of temporal GT was reduced to 4.21 (95% CI: 220 

3.70, 4.74) days on January 29, which was consistent with the result reported by Li et al14 that the 221 

estimated mean GT decreased from 5.47 (95% CI: 4.57, 6.45) days in first generation to 4.25 (95% 222 

CI: 2.82, 6.23) days in successive generations with majority of the infectors exposed before and 223 

after January 23, 2020 respectively.  224 

 225 

Depletion of susceptibles in the population due to high hazard of infection during the epidemic 226 

could temporally lead to reduction in mean of forward GT, which has been illustrated 227 

mathematically by Nishiura15 and further visualized by Champredon & Dushoff16 and Park et al11. 228 

However, an antibody seroprevalence study by Li et al17 estimated the weighted seroprevalence 229 

for Wuhan and provinces outside Hubei after the first wave in mainland China was only 4.43% 230 

(95% CI: 3.48%, 5.62%) and <0.1% respectively, indicating there should only be a limited degree 231 
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of susceptible depletion that could lead to a reduction in the mean of the forward GT. It is more 232 

likely that the GT was shortened due to the implementation of nation-wide control measures on 233 

January 23, 202018. Apart from lockdown in Wuhan, the nation-wide control measures included 234 

early detection and isolation of suspected cases, quarantine of close contacts, restricting opening 235 

time of public facilities and requiring mask wearing in public places19. Such control measures 236 

would reduce the forward infections from the infectors, hence shorten the mean GT, similar to the 237 

mean SI as illustrated in recent studies11,18. Besides, while the backward GT should have a 238 

consistently increasing pattern due to the nature of backward sampling11,15,16, the reduction in our 239 

backward estimated GT also suggested the impact of PHSMs on shortening GT (Supplementary 240 

Fig. 2).  241 

We noted Sender et al20 investigated the unmitigated infectious profile during the early epidemic 242 

stage in mainland China based on 77 transmission pairs for which the infector developed 243 

symptoms before January 17, 2020. They estimated the mean GT of 9.7 (95%CI: 8.3, 11.2) days 244 

and SD of 6.9 (95%CI: 4.3, 10.1) days, with the estimated correlation coefficient between IP and 245 

GT of 0.75 (95%CI: 0.5, 0.9), and thus estimated 𝑅!  of 2.2 (95%CI: 1.9, 2.7). Our result 246 

considering correlated IP and GT meanwhile suggested a mean GT of 8.04 (95% CI: 7.25, 8.89) 247 

days, SD of GT of 4.41 (95% CI: 3.33, 5.53) days, and the estimated correlation coefficient of 0.41 248 

(95%CI: -0.03, 0.64) considering the data before January 20, 2020. Despite different timeframe, 249 

while Sender et al adjusted for sampling bias with an assumed IP distribution and an assumed 250 

exponential growth rate of epidemic, we used the estimated forward/backward IP from our 251 

transmission pairs data, which might contribute to the difference in GT estimates and correlation 252 

estimates. Nevertheless, our result was generally comparable with that from Sender et al. 253 
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We have compared the effective reproduction number (𝑅") estimates by temporal GT distribution 254 

and SI distribution respectively, and showed that the estimates mostly overlap before the fading 255 

phase of the epidemic (Fig. 4b). During the fading phase, however, forward temporal SI would 256 

suffer from systematic bias of smaller mean and larger variance by overweighing the transmission 257 

pairs with shorter serial intervals 11, hence resulted in a higher 𝑅" than that estimated by temporal 258 

forward GT. In particular, 𝑅" here was limited to the epi-curve constructed from transmission pairs 259 

data instead that of all observed infections/ case-onsets in the first wave in mainland China. In fact, 260 

𝑅" in Fig. 4b was evaluated based on our observed data to compare the impact of time varying GT 261 

and SI under comparative settings, therefore initial 𝑅" could not be directly compared with our 262 

estimated 𝑅!, which was calculated here based on the population-level growth rate using all case-263 

onset data21. While in our simulation study (supplementary table 9) we tried using forward SI or 264 

GT distribution in the initial time window to obtain effective reproduction number as a proxy of 265 

𝑅!, and found that using SI would suffer from substantially overestimation bias than using GT. 266 

 267 
We conducted simulation studies to assess the performance of the proposed inferential framework 268 

by testing how efficiently the generation time could be recovered under known setting. For given 269 

mean generation time of 5-7 days12–14 and the 95% quantile of incubation period of 14 days for 270 

COVID-19, our model suggested promising estimates with >80% of 95% CIs (dependent on the 271 

parameters) covering the simulated values of realized GT when the intrinsic GT has a mean of 7 272 

days and a SD of 4 days under the mean width of exposure windows of 7 days (14 days as 273 

maximum) (Supplementary Tables 5 – 6). However, our model might be sensitive to long exposure 274 

windows which resulted in poor recovery performance of forward generation time, especially 275 

when the exposure windows had a mean width larger than mean intrinsic IP (i.e., mean exposure 276 
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width > 7 days while intrinsic mean IP of 6.5 days), or when the intrinsic generation time had a 277 

mean comparatively shorter than the mean width of exposure windows (Supplementary Tables 5 278 

– 6). Infector/infectee with missing exposure windows would also have similar impact on GT 279 

estimates (Supplementary Tables 7 – 8). It is possible that the long width and the absence of 280 

information of exposure window led to more uncertainties in the estimates of incubation periods 281 

of infectors and infectees, and hence may lead to potential bias in the estimates of generation time.  282 

 283 

One advantage of our method is that we allow time-varying estimations on epidemiological 284 

parameters, providing more information on transmission dynamics. The traditional approach 285 

usually estimates the generation time as a constant distribution over the whole epidemic, while our 286 

method can reflect the potential impact of PHSMs in reshaping the interval measures18. An 287 

additional advantage is that we have accounted for the sampling bias in each related interval 288 

parameter in the inferential framework. It is usually considered that the SI and GT share the same 289 

mean assuming the mean IP does not differ between infector and infectee. However, for the 290 

estimates at the temporal scale these assumptions were not often true, due to different sampling 291 

approach of infector and infectee along with the case characteristics. When the sampling bias in 292 

IP is not adjusted for, the mean GT will be overestimated and underestimated in the early and later 293 

phase of an epidemic respectively (Supplementary Fig. 4).  294 

 295 

However, our study has some limitations. First, our analysis was limited to symptomatic cases, 296 

therefore the framework might not be directly adopted to the transmission pairs including 297 

asymptomatic infectors or infectees, and our results may be affected by selection bias as we only 298 
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analysed a small proportion of all confirmed cases. Second, our method might be limited by the 299 

long width of exposure windows, which would lead to biased estimates of generation time 300 

especially when the intrinsic generation time is relatively short (Supplementary Tables 5 – 6). 301 

Based on our data, the average exposure widths for infector and infectee were 3.42 days and 5.87 302 

days respectively, suggesting the possibility of biased estimates of forward GT as the estimated 303 

mean of GT was reduced to <5 days due to COVID-19 PHSMs. Third, we assumed incubation 304 

period and generation time were independent in our inferential procedure, which may not hold for 305 

example if there is an association between inoculum and incubation speed22,23, but pre-306 

symptomatic transmission was observed7,8 and the literature does not have such clear evidence on 307 

the correlation between incubation period and generation time for COVID-19. Our method could 308 

be further extended to consider the correlation between incubation period and generation time 309 

(Supplementary Table 4), yet our simulation result suggested that those estimates might not be 310 

reliable since they were very sensitive to the width of exposure windows (Supplementary Tables 311 

10-12). Fourth, the case definition might have changed during the study period. The diagnosis 312 

criteria and case definition in mainland China broadened over time21, therefore milder cases were 313 

more likely to be identified later in the epidemic. While previous studies indicated shorter time 314 

delay from infection to clinical outcome for severe COVID-19 cases24, and even for MERS and 315 

SARS25,26, this might lead to the increase in mean of the estimated forward incubation period. 316 

Moreover, our result was subject to recall bias which might affect the accuracy of the exposure 317 

information and onset timings in our data, hence the precision of our estimates.  318 

 319 

In conclusion, we have developed a method to estimate forward temporal generation times of 320 

COVID-19 that accounts for the sampling bias and temporal variations in serial interval and 321 
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incubation periods of infector and infectee, and provides improved and time-varying estimates. 322 

We identified potential biases in the estimates of generation times including sampling bias at 323 

temporal scale, emphasizing the importance of using more accurate GT estimation for 324 

understanding the time-varying transmissibility of COVID-19. The time-varying estimates of 325 

generation time could be crucial for better assessment of the disease dynamics and transmissibility, 326 

and could help to improve public health policies and mitigation strategies in real-time. 327 

 328 

 329 

Methods 330 

Data collection and characterizing epidemiological parameters 331 

We used line list data reported by China’s municipal health commissions outside Hubei province 332 

from January 1 to February 29, 2020. The original data was extracted from the publicly available 333 

case reports provided by more than 200 municipal health commissions in Mainland China and 334 

reported in earlier studies6,18,27, and further integrated and compiled by Liu and colleagues28. The 335 

line-list data contains the information on the case demography (age, sex, occupation, residence 336 

place), exposure and contact history, onset and hospitalization dates, and potential transmission 337 

links in addition.  338 

 339 

In this study, we reconstructed each possible transmission pairs by checking and compiling the 340 

information on epidemiology history, contact tracing reports and inter-relationship for these 341 
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confirmed cases. We defined infectors as cases that had exposure history to risk areas or contagious 342 

person, and infected other cases within the same transmission chain/network, and the 343 

corresponding infectees as the cases who had contact history with the infector from his /her earliest 344 

exposure time until the isolation time. If infectees had more than one suspected infector, we 345 

considered the corresponding infector who contacted the infectee earlier during his/her infectious 346 

period; if more than one suspected infector contacted the infectee at the same day, we considered 347 

the corresponding infector, having closer and more frequent contacts with the infectee. For the 348 

cases in further complicated infection events with uncertain transmission paths, they were 349 

excluded from this study. We also investigated and constructed exposure windows for the cases 350 

with available exposure history and checked the symptom onset times as the time when the case 351 

developed symptoms or reported self-recognized discomfort for the first time during his/her illness 352 

history. See Supplementary Methods section 1.1 for details. Our study received ethical approval 353 

from the Institutional Review Board of the University of Hong Kong. 354 

 355 

Inferential framework of temporal generation times 356 

The serial interval was found to be shortened over time by implementation of public health and 357 

social measures (PHSMs)18,29; further, forward and backward incubation period found to have 358 

different temporal patterns11. Therefore, the distribution of generation time based on the estimates 359 

of incubation periods and serial interval can vary over time. We considered the estimations under 360 

a 7-day moving window to ensure the sufficient sample size and to capture the temporal changes 361 

of these epidemiological parameters. 362 

 363 
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We first assessed different sampling approaches and identified the respective biases in these 364 

interval estimates. The backward sampling in estimating SI (i.e., referenced by infectee onset) 365 

would underestimate SI during the growth phase of the epidemic, because the transmission pairs 366 

with longer SI might be missed out as the corresponding infectees had not shown their illness onset 367 

yet. On the contrary, forward sampling in estimating SI (i.e., referenced by infector onset) would 368 

provide relatively reliable estimates, because the follow-up ended until every infectee onset was 369 

observed in that cohort of infectors. But the pairs with infector onset before the start of follow-up 370 

would be excluded by forward sampling scheme, which could lead to larger variance in the 371 

estimates accounting for very few observed pairs, especially during the growth phase. Therefore, 372 

the underlying problems brought by forward and backward sampling are in line with problems 373 

brought by left and right censoring (Figs. 5a – 5b). These issues also apply when estimating IP, 374 

where forward and backward sampling of IP is referenced by exposure time and onset time 375 

respectively. When a complete epidemic curve is observed, the retrospective backward and 376 

forward sampling of SI eventually result in same estimates as all cases are sampled. But at temporal 377 

scale (i.e., estimation with reference to a certain time period) the forward temporal SI would keep 378 

decreasing, whereas the backward temporal SI would keep increasing. Such change was attributed 379 

to the backward sampling bias in IP11, which suggested that the temporal SI may not be a good 380 

proxy of temporal GT. 381 

 382 

In theory, GT should be referenced by infection times, which are rarely observed in practice. 383 

Consequently, we considered decomposing GT by respective forward and backward SIs as 384 

presented in Park et al11, and proposed the inferential frameworks for the estimates of forward and 385 

backward GTs based on the observations of these SIs and estimates of infector-infectee specific 386 
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IPs as shown in Figs. 5c – 5d. For a given transmission pair 𝑖 , the forward GT (𝐺$ ) can be 387 

decomposed as the forward SI (𝑆$) minus forward IP of infectee (𝑌$) plus backward IP of infector 388 

(𝑍$), i.e. 𝐺$ = 𝑆$ − 𝑌$ + 𝑍$. We assumed the IP of infectee is independent of the IP and GT of 389 

infector given the infection time of infectee, and the symptom onset time of infector is independent 390 

of infectiousness, thus the IP of infector is also independent of GT. Therefore, by assuming S, Y 391 

and Z are independently distributed, the probability density function of the GT for transmission 392 

pair 𝑖 can be expressed as  393 

𝑓%(𝐺$) = 𝑓%(𝑆$ − 𝑌$ + 𝑍$) 394 

=	4 𝑓%(𝑆$ − 𝑦	 +	𝑍$|𝑦)𝑓&(𝑦)𝑑𝑦
'!"

(!"

 395 

= 4 84 𝑓%(𝑆$ − 𝑦	 + 	𝑧|𝑦, 𝑧)𝑓)(𝑧)𝑑𝑧
'#"

(#"

;
'!"

(!"

𝑓&(𝑦)𝑑𝑦 396 

= 4 4 {𝑓%(𝑆$ − 𝑦	 + 	𝑧|𝑦, 𝑧)}𝑓)(𝑧)
'#"

(#"

'!"

(!"

𝑓&(𝑦)𝑑𝑦𝑑𝑧 (1) 397 

Where 𝑈&" and 𝐿&" are the upper and lower bounds of IP for infectee, 𝑈)" and 𝐿)" are the upper 398 

and lower bounds of IP for infector, 𝑓)(𝑧) and 𝑓&(𝑦) are the probability density functions of 399 

infector’s backward IP distribution and infectee’s forward IP distribution respectively. Using 400 

Monte Carlo method, we can approximate this probability density function as  401 

𝑓%(𝐺$) ≈
1
𝑀C 𝑓%(𝑆$ − 𝑦$* + 𝑧$*)

+

*,-
(2) 402 
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Where 𝑀 is the number of Monte Carlo samples, 𝑧$* and 𝑦$* are the 𝑚-th Monte Carlo samples 403 

from 𝑓)(𝑧) and 𝑓&(𝑦) for the 𝑖-th transmission pair respectively. Thus, given 𝑁 transmission pairs, 404 

the likelihood function is given as 405 

𝐿(𝛩|𝑆) =H
1
𝑀C 𝑓%(𝑆$ − 𝑦$* + 𝑧$*|𝛩)

+

*,-

.

$,-
(3) 406 

Where 𝛩  is the parameter set of the GT and IP distributions. As the exact infection time is 407 

unobservable, we could infer the IPs from the exposure windows of the cases by fitting 408 

distributions on interval censored data, which could be used to generate Monte Carlo samples of 409 

IP and further evaluate the likelihood (Supplementary Methods section 1.3). On the other hand, 410 

when the dependence between IP and GT of infector was considered, we assumed the backward 411 

IP and forward GT of infector followed a bivariate normal distribution with a correlation 412 

coefficient 𝜌" under logarithm scale. Similar approach considering the correlation between IP and 413 

GT was also used by Park et al30. The likelihood could be evaluated similarly by using the 414 

conditional distribution of forward GT given the Monte Carlo samples of backward IP of infector 415 

(Supplementary Methods section 1.6).  416 

The 95% confidence interval (CI) was constructed by the percentile bootstrap method with 1000 417 

bootstrapped samples. Statistical analyses were conducted using R version 4.0.4 (R Foundation 418 

for Statistical Computing). Visualization of estimations in inconsecutive time windows was 419 

implemented by R ggbreak package31.  420 

 421 
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Sensitivity analysis on underlying distribution fitting 422 

We first fitted three different distributions (Gamma, Log-Normal, Weibull) to infector’s and 423 

infectee’s incubation periods, and thus generated samples for GT which were further fitted by these 424 

three different distributions again. The results from the fitted distribution on GT samples with the 425 

lowest total Akaike Information Criterion (AIC) values over the moving windows were presented. 426 

We also evaluated the bias in GT estimates when the infectors and infectees were assumed to share 427 

the same IP distribution, where the sampling bias in infector and infectee’s IP were not adjusted 428 

for. We compared these estimates with main results that accounted for such sampling bias, and 429 

estimated the corresponding degree of overestimation/underestimation in each time windows. 430 

 431 

Estimating the basic and effective reproduction number 432 

We referred to the previous estimate of epidemic growth rate, reported by Tsang et al21 as 0.10 433 

(95% CI: 0.08, 0.12) for mainland China excluding Hubei province before Jan 23, 2020, and 434 

estimated the basic reproduction number (𝑅!) using the forward GT estimates in the first time-435 

window in the study period, where such forward GT distribution was an approximation of intrinsic 436 

GT distribution16, hence the calculated 𝑅! has a better reflection of the infection spread at the early 437 

phase of the epidemic. We estimated 𝑅! using the Lotka-Euler equation2: 438 

1
𝑅!

= 4 𝑒/01𝑓%(𝑎)𝑑𝑎
2

!
(4) 439 

Where 𝑟 is the growth rate, 𝑓%(𝑎) is the generation time distribution. We simulated 1000 Monte 440 

Carlo samples of 𝑟 and used our 1000 bootstrapped GT estimates to calculate 𝑅!. We use the term 441 
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basic reproduction number to stress that over this period there were no population-wide 442 

interventions in place, and that all individuals were susceptible to infection. 443 

 444 

Using the time-varying estimates of GT, we estimated the effective reproduction number 𝑅", which 445 

shows the average number of secondary cases caused by one primary case at time 𝑡, accounting 446 

the population when some individuals may no longer be susceptible32. We used Wallinga & Teunis 447 

method33, a cohort based approach to estimate 𝑅" via EpiEstim package in R (version 2.2-3)34. To 448 

compare the difference when using SI as a proxy of GT in evaluating transmissibility, we 449 

calculated 𝑅" based on onset epi-curve and the time-varying estimates of GT and SI distributions 450 

respectively (Supplementary Methods section 1.4).  451 

 452 

Model validation by simulation studies 453 

We have conducted several simulation studies to validate our proposed method. We first built an 454 

individual-based stochastic susceptible-infected-recovered (SIR) model with population size of 455 

1000, 10 initial infected people, 𝑅! equals to 2.511. Given a Gamma-distributed intrinsic IP with a 456 

mean of 6.50 days and standard deviation (SD) of 3.50 days, we assessed the model performance 457 

under different distributions of intrinsic GT, where the intrinsic distribution indicates the original 458 

distribution at the initial phase of the epidemic16. During the progress of the epidemic, the 459 

distribution of realized GT may change due to high hazard rate of infection, particularly during the 460 

peak activity15,35. We assessed how our proposed framework could recapture the changes in mean 461 

and variance of the temporal realized GT during the epidemic progress. We tested three intrinsic 462 
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GT settings of short (mean of 4 days, SD of 2 days), medium (mean of 7 days, SD of 4 days), and 463 

long (mean of 10 days, SD of 6 days) GT.  464 

 465 

Besides, we also assessed how the width of exposure windows would influence the estimation 466 

accuracy. We assumed the width of exposure windows was uniformly distributed, and tested the 467 

recovery performance of parameters when the mean width of exposure windows was shorter than, 468 

equal to, and longer than the expected intrinsic GT (Supplementary Methods section 1.5). 469 

Furthermore, we assessed the recovery performance when 1/3 of infector and infectees did not 470 

have exposure information available (i.e. both earliest and latest exposure time were unknown) 471 

and further allowing no more than 1/3 of them partly missed exposure information (i.e. earliest 472 

exposure time unknown), as observed in our data, therefore in each simulation around 1/3 to 2/3 473 

infector and infectees had complete exposure information in the medium GT setting. 474 

 475 

On the other hand, we adopted the similar setting for the simulation studies for assessing the model 476 

performance which considered correlation between infector’s backward IP and forward GT. 477 

Focusing on the medium GT setting, we used the Log-Normal-distributed intrinsic IP with a mean 478 

of 6.50 days and standard deviation (SD) of 3.50 days, and Log-Normal-distributed intrinsic GT 479 

with a mean of 7 days and SD of 4 days during simulation, where they were correlated with a 480 

correlation coefficient 𝜌 under the logarithm scale (Supplementary Note section 2.2). We tested 481 

the model performance under different 𝜌 ∈ {0, 0.25, 0.50, 0.75}  and mean width of exposure 482 

windows of 1, 4, 7 days. 483 
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 484 

Data availability 485 

All the data used in the analysis will be available at Github (on acceptance): 486 

https://github.com/DxChen0126/ 487 

 488 

Code availability 489 

Statistical analyses were conducted using R version 4.0.5 (R Foundation for Statistical Computing, 490 

Vienna, Austria). Code will be available at Github (on acceptance): 491 

https://github.com/DxChen0126/ 492 
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 597 

Fig. 1 Infector-infectee specific symptom onset epi-curves from January 1 to February 29, 598 

2020 in Mainland China. a, Epidemic curve based on symptom onset timing for the daily number 599 

of infectors. b, Epidemic curve based on symptom onset timing for the daily number of infectees. 600 
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 602 

Fig. 2 Temporal estimates of forward serial intervals (SIs) (a), forward incubation periods 603 

(IPs) of infectees, and backward IPs of infectors (b). a, Empirical mean and inter-quartile range 604 

(IQR) of forward SI in each moving window. The black dots and segments represent the empirical 605 

mean and IQR respectively. The red arrow indicates the timing of public health social measures 606 

(PHSMs) implemented since January 23, 2020. b, The estimated mean IP stratified by infector and 607 

infectee in each moving window. The dots and segments indicate the mean estimates and the 608 

corresponding 95% confidence intervals. The estimates for the forward IP of infectees and 609 

backward IP of infectors are presented in red and teal respectively.  610 
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 612 

Fig. 3 Temporal estimates of forward generation time (GT) distributions. a, The time-varying 613 

estimates of mean GT presented by the black dots with 95% confidence intervals (CIs) in vertical 614 

line-segments for each time window. b, The temporal estimates of standard deviation of GT 615 

presented by the black dots with 95% CIs in vertical line-segments for each time window. Red 616 

arrow indicates the implementation of public health social measures (PHSMs) since January 23, 617 

2020.  618 
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 620 

Fig. 4 Epi-curve of observed onset times (a), and effective reproduction numbers estimated 621 

by temporal generation time (GT) and serial interval (SI) respectively (b). a, Epidemic curve 622 

of all cases symptom onset. b, Case-based effective reproduction numbers estimated based on epi-623 

curve and temporal generation times (GT) with reference to infector onset, versus estimates based 624 

on epidemic curve and temporal serial intervals (SI) with reference to infector onset, shown as 625 

lines colored in red and teal respectively. Shaded areas correspond to 95% credible intervals of the 626 

estimates. 627 
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 629 

Fig. 5 Censoring issues in sampling serial interval (SI) (a – b) and corresponding inferential 630 

frameworks for generation time (GT) (c – d). a, Forward sampling with reference point as the 631 

start of the event leads to left censoring issue. b, Backward sampling with reference point as the 632 

end of the event leads to right censoring issue. The biases are due to failure in observing the sample 633 

under these forward and backward schemes (as presented in the salmon colour shades). c, 634 

Inferential framework presented for forward GT. d, Inferential framework presented for backward 635 

GT. The inferential frameworks of GT have considered the inter-relationship among SIs and 636 

infector-infectee specific incubation periods (IPs).  637 
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