
Multiomics profiling of human plasma and CSF reveals ATN derived 1 

networks and highlights causal links in Alzheimer’s disease 2 
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 61 

Abstract (150 words limit) 62 

INTRODUCTION: This study employed an integrative system and causal inference approach to 63 

explore molecular signatures in blood and CSF, the Amyloid/Tau/Neurodegeneration [AT(N)] 64 

framework, MCI conversion to AD, and genetic risk for AD.  65 

METHODS: Using the EMIF-AD MBD cohort, we measured 696 proteins in cerebrospinal fluid 66 

(n=371), 4001 proteins in plasma (n=972), 611 metabolites in plasma (n=696) and genotyped data in 67 

whole-blood (7,778,465 autosomal SNPs, n=936). We investigated associations: molecular modules 68 

to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI 69 

conversion and probed for causality with AD using Mendelian Randomization (MR).  70 

RESULTS: AT(N) framework associated key hubs were mostly proteins and few lipids.  In MR analyses, 71 

Proprotein Convertase Subtilisin/Kexin Type 7 showed weak causal associations with AD, and AD was 72 

causally associated with Reticulocalbin 2 and sphingomyelins.  73 

DISCUSSION: This study reveals multi-omics networks associated with AT(N) and MCI conversion and 74 

highlights AD causal candidates. 75 

Key words: Alzheimer's disease; multi-omics; AT(N) framework; polygenic risk score; Mendelian 76 

randomization; multimodal biomarker  77 

 78 
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1. Introduction  79 

Alzheimer’s disease (AD) is characterised by the presence of β-amyloid (Aβ) containing plaques, and 80 

neurofibrillary tangles composed of modified tau protein together with the progressive loss of 81 

synapses and neurons [1]. The National Institute on Aging and Alzheimer's Association (NIA-AA) have 82 

proposed to classify AD based on biomarkers of amyloid pathology (A), tau pathology (T), and 83 

neurodegeneration (N) (the ATN framework) [2]. Yet, despite their diagnostic utility, these three 84 

markers reflect only a portion of the complex pathophysiology of AD. In prodromal stages, the 85 

interplay between AT(N) changes, genetic factors and peripheral molecular changes may affect the 86 

rate of disease progression.  87 

Conducting unbiased and high-throughput omics-based research in biological fluids and human brain 88 

tissues provides a data-driven approach to identify the many processes involved in AD pathogenesis 89 

and to prioritize links to relevant clinical and neuropathological traits. For example, an increasing 90 

number of proteomics studies [3-5], including ours [6-8], have identified AD pathophysiological 91 

pathways related to immune response and inflammation, oxidative stress, energy metabolism and 92 

mitochondrial function. Metabolomics studies have also identified such pathways related to AD [9-93 

11]. A combination of omics, also called multi-omics or deep phenotyping studies, provides an 94 

opportunity to explore the molecular interplay with both genotypic and phenotypic variability in AD, 95 

bringing in new findings and uncovering novel pathways.  Finally, causal inferences approaches allow 96 

to scrutinize the causal relationship between molecular markers and AD, highlighting potential 97 

interventional targets. Therefore, in this study, we conducted multi-omics analyses with four 98 

modalities (cerebrospinal fluid [CSF] proteomics, plasma proteomics, plasma metabolomics and 99 

whole blood genetics) from the EMIF-AD MBD study, followed by Mendelian Randomization (MR) 100 

analyses (Figure 1).  101 

We have four objectives: Firstly, we wanted to test if proteomic and metabolomic molecular 102 

signatures were associated with AD endophenotypes including amyloid, CSF total tau (T-tau), CSF 103 
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phosphorylated tau (P-tau), white matter hyperintensity volume, CSF YKL-40, mini mental state 104 

examination (MMSE) score, and mild cognitive impairment (MCI) conversion. Secondly, we wanted 105 

to investigate the associations between molecular signatures and molecular hubs (main molecules 106 

driving associations) with APOE4 genotypes and AD polygenic risk scores (PRS). Thirdly, we wanted 107 

to query our findings in prodromal AD by extracting and integrating hub molecules in MCI individuals 108 

that converted to AD by computing a network for MCI converters versus non-converters.  Finally, MR 109 

analyses interrogated the causal relationship between hub molecules and AD.  110 

 111 

2. Methods  112 

2.1. Participants: EMIF-AD Multimodal Biomarker Discovery (MBD) study  113 

The EMIF-AD MBD study is part of the European Medical Information Framework for Alzheimer’s 114 

disease (EMIF; http://www.emif.eu/emif-ad-2/); a public-private partnership funded through the 115 

Innovative Medicines Initiative (IMI). The design of the EMIF-AD MBD study has been described 116 

previously [12]. Briefly, 1221 samples from three groups of people (cognitively normal controls [CTL], 117 

MCI and AD) were chosen from pre-existing cohorts with the goal of including samples from people 118 

with pathology as well as those without. All participating centres have agreed to share data as part 119 

of the EMIF-AD MBD study.    120 

General clinical and demographic information were available for all subjects (including APOE ε4 121 

genotype data). Furthermore, each participant had a measure of brain amyloid load, using either CSF 122 

Aβ or amyloid positron emission tomography (PET) imaging. CSF T-tau and P-tau analysis data were 123 

available for over 90% of the subjects. We used CSF (or where not available, PET) amyloid as “A”, CSF 124 

P-tau 181 as “T” and CSF T-tau as “N” to define the AT(N) framework. The classification of the status 125 

(abnormal/normal) of amyloid, P-tau and T-tau has been described previously [12]. We 126 

dichotomized these biomarkers as normal or abnormal and categorized them into four groups: no 127 
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pathology (A-T-N-, referring as “A-TN-”), amyloid positive but both T and N negative (A+T-N-, 128 

referring as “A+TN-”), amyloid positive and T/N positive (including A+T-N+, A+T+N- and A+T+N+, 129 

referring as “A+TN+”) and Suspected Non-Alzheimer Pathology (SNAP, including A-T-N+, A-T+N- and 130 

A-T+N+). In addition, the following AD-related endophenotypes were also measured for the majority 131 

of the subjects: (i) CSF YKL-40; (ii) MRI measures of white matter hyperintensities; (iii) clinical 132 

assessments including baseline diagnosis, baseline MMSE score and MCI conversion [12].  133 

2.2. Omics analyses 134 

We performed multi-omics analyses for these subjects including CSF proteomics, plasma proteomics 135 

and metabolomics as well as genome-wide SNP genotyping analyses (Figure 1).  136 

CSF proteomics 137 

We used tandem mass tag (TMT) technique to measure proteins in CSF. More details can be found in 138 

[13]. We imputed proteins using K-nearest neighbour (K=10) and removed any missing > 70%, 139 

leading to a total of 696 proteins in 371 samples for further analysis.  140 

Plasma proteomics 141 

We used the SOMAscan assay platform (SomaLogic Inc.) to measure proteins in plasma. SOMAscan 142 

is an aptamer-based assay allowing for the simultaneous measurement and quantification of large 143 

number of proteins. Here we measured 4001 proteins in 972 individuals. The details have been 144 

described previously [14]. 145 

Plasma metabolomics  146 

We measured plasma metabolites using Metabolon platform (Metabolon Inc.). Metabolites with 147 

more than 70% missing were excluded and we imputed the missing metabolites using K-nearest 148 

neighbour (K=10), resulting in 611 metabolites in 696 subjects for further analysis. More details can 149 

be found in [11].  150 
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Single nucleotide polymorphism (SNP) genotyping  151 

A detailed account of the genotyping procedures and subsequent bioinformatic workflows can be 152 

found in [15]. Briefly, a total of 936 DNA samples were sent for genome-wide SNP genotyping using 153 

the Infinium Global Screening Array (GSA) with Shared Custom Content (Illumina Inc.). After quality 154 

control (QC) and imputation, a total of 7,778,465 autosomal SNPs with minor allele frequency (MAF) 155 

≥0.01 were retained in 898 individuals of European ancestry for downstream analyses and genetic 156 

principal components (PCs) were computed [15].  157 

2.3. Statistical analysis  158 

All statistical analyses were completed using R (version 4.1.2). To compare baseline cohort 159 

characteristics across three different diagnostic groups (CTL, MCI and AD), we used one-way analysis 160 

of variance (ANOVA) and chi-square tests to compare continuous and binary variables, respectively.   161 

Weighted Gene Correlation Network Analysis (WGCNA)  162 

We used the R package WGCNA [16] to construct a weighted and unsigned co-expression network 163 

for each individual omics layer. This clustering method is based on calculating correlations between 164 

paired variables. The resulting modules or groups of co-expressed analytes were used to calculate 165 

module eigenprotein/eigenmetabolite metrics. The eigenprotein/eigenmetabolite-based 166 

connectivity (kME) value was used to represent the strength of an analyte’s correlation with the 167 

module. Analytes with high intramodular kME in the top 90th percentile within a module were 168 

considered as hub proteins/metabolites. 169 

The correlations between eigenprotein/eigenmetabolite and AD endophenotypes were calculated 170 

using Spearman’s correlation, the p values were corrected with false discovery rate (FDR) and 171 

corrected p values are presented in a heat map. Furthermore, we used one way ANOVA test to 172 

assess pairwise difference of eigenprotein/eigenmetabolite among different AT(N) framework.  173 

Pathway enrichment analysis  174 
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Protein pathway enrichment analysis was performed using WebGestalt software 175 

(http://www.webgestalt.org/). Briefly, proteins within a module were assembled into a “protein list” 176 

and all proteins measured were used as “background”. This enrichment analysis was performed on 177 

the KEGG database. Metabolite enrichment analysis was performed using the hypergeometric test. 178 

The original 60 sub-pathways pre-defined by Metabolon based on the KEGG database were 179 

employed as reference [17]. We further performed cell type enrichment analysis for CSF proteins 180 

using BEST tool (http://best.psych.ac.cn/#).  181 

AD polygenic risk score (PRS) calculation 182 

The genome-wide association study summary statistics from Kunkle et al. [18] (N=63,926; 21,982 AD 183 

clinically ascertained cases, 41,944 controls) were used as the reference data. PRS were constructed 184 

using PRSice-2 [19], with and without SNPs in the APOE region (chr 19, GRCh37 coordinates 185 

44912079 to 45912079) [20]. AD PRS were computed using two p-value thresholds (PT), previously 186 

recommended for PRS including and excluding the APOE region: 5x10
-8

 (APOE region included) and 187 

0.1 (APOE region excluded) [21]. SNPs in linkage disequilibrium (r2>0.001 within a 250kb window) 188 

were clumped, retaining the SNP with the lowest p-value.  189 

Association of AD PRS and AT(N) with modules and hubs  190 

We used linear regression analyses to investigate the association of AD PRS (as predictor) with 191 

eigenprotein/eigenmetabolite of AT(N) framework-related modules and hub proteins/metabolites 192 

(with kME varying from top 90th percentile to top 98th percentile) in these modules, adjusting for 193 

sex, age, and genetic PC1 to PC5 [22] (to control for population stratification). We used logistic 194 

regression analyses to explore the association of AT(N) markers (as binary outcome) with hubs, 195 

adjusting for sex, age and APOE ε4 genotype. 196 

Partial correlation network 197 
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We used age, sex, APOE genotype, AD PRS (PT = 0.1, APOE region excluded) and all hub 198 

proteins/metabolites (with kME in the top 90th percentile) as input features for the graphical LASSO 199 

algorithm and extended Bayesian information criterion to determine the model complexity for MCI 200 

conversion using the R package `huge´ [23]. Data were auto-scaled prior to model-fitting. Partial 201 

correlation network of selected metabolites, proteins and genetic variables was computed and 202 

visualized with R package ‘qgraph’.  203 

Mendelian randomization  204 

We finally investigated whether any of the A/T/N hubs correlating with MCI conversion status were 205 

causally linked to AD, by performing bi-directional two-sample Mendelian Randomization (MR) 206 

analyses implemented in the “TwoSampleMR” R package [24] and the MendelianRandomization 207 

package [25]. A number of sensitivity analyses for both single cis instrument MR and multiple (cis) 208 

instruments MR (Supplementary methods) were applied to determine the robustness of the MR 209 

findings.  210 

 211 

3. Results  212 

3.1. Subject demographics   213 

Table 1 shows the demographic information of subjects for each individual omics analysis. Despite 214 

the difference in sample size for each omics layer analysis, no significant difference was observed in 215 

the distribution of sex across different diagnostic groups. However, the CTL group was younger and 216 

had a lower proportion of APOE ε4 carriers compared with the MCI and AD groups. Furthermore, the 217 

CTL participants had longer education and higher MMSE score. In terms of AD pathology markers, 218 

the ratio of abnormality of amyloid, P-tau and T-tau in AD and MCI individuals was, as expected, 219 

significantly higher than in controls.   220 

 221 
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3.2 Co-expression network analysis of individual omics modalities reveals modules linked to AD 222 

endophenotypes  223 

We first performed a clustering analysis of the CSF proteome using WGCNA. We found four modules 224 

(M) of co-expressed proteins. We ranked modules based on size from largest (M1 turquoise; n= 526 225 

proteins) to smallest (M4 yellow; n=51 proteins) (Figure 2A, Table S1). We further investigated the 226 

biological significance of proteins in each module and found that three modules (M1 turquoise, M2 227 

blue and M4 yellow modules) were enriched with various pathways after FDR correction (Figure 2B). 228 

When checking cell type enrichment, we found that all four modules were enriched with endothelial 229 

cells. Furthermore, M1 turquoise module was enriched with oligodendrocytes, neurons and 230 

astrocytes. M2 blue and M4 yellow modules were enriched with microglia (Figure 2A). 231 

We then assessed the module correlations to AD endophenotypes. We used amyloid-β as “A”, CSF P-232 

tau levels as a biomarker of tau (“T”), CSF T-tau as biomarkers of neurodegeneration (“N”), white 233 

matter hyperintensity (WMH) volume as a biomarker for vascular disease burden (“V”), CSF YKL-40 234 

as a biomarker of inflammation (“I”) and MMSE score as “C” (Figure 2A). Overall, two (M1 and M4) 235 

and three (M1, M2 and M3) modules were significantly associated with “T” and “N”, respectively 236 

after FDR correction. Furthermore, three (M1, M2 and M4) modules were associated with “I”. None 237 

of the modules were correlated with “A”, “V”, “C” or MCI conversion.   238 

We used the same approach to analyse plasma proteomics and metabolomics data. We obtained 239 

nine modules from plasma proteins (Figure 2C, previously published [26]). Four modules (M2, M3, 240 

M4 and M8) had positive correlations with “A”, “T” and “N”. One (M3) and four (M1, M3, M8 and 241 

M9) modules were associated with “V” and “I”, respectively. In comparison, most plasma modules 242 

were associated with “C” and MCI conversion. Furthermore, such associations were in concordance 243 

with AT(N) markers correlations. For example, M2, M3, M4 and M8 modules were positively 244 

associated with “A”, “T” and “N” but were negatively correlated with MMSE score. Furthermore, 245 

they were increased in MCI converters (n=103) compared with MCI non-converters (n=223) (Figure 246 
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2C). We further investigated the biological significance of proteins in four AT(N) markers-related 247 

modules (M2, M3, M4 and M8) and found that three of them were enriched with various pathways, 248 

such as cytokine-cytokine receptor interaction and metabolic pathways (Figure 2D). 249 

For plasma metabolomics, we obtained seven modules (Figure 2E), among which M4 module was 250 

negatively associated with “A”, “T” and “N” and M3 module was positively associated with “N”. 251 

Furthermore, one (M1) and two (M1 and M4) modules were associated with “V” and “I”, 252 

respectively. Two (M3 and M4) and four (M1, M5, M6 and M7) modules were associated with “C” 253 

and MCI conversion respectively. Furthermore, such associations were in concordance with AT(N) 254 

markers correlations. We further investigated the biological significance of metabolites in AT(N) 255 

markers-related modules (M3 and M4) and found that they were enriched in lipid pathways (Figure 256 

2F). 257 

 258 

3.3 Correlation of individual omics modules with the AT(N) framework    259 

We dichotomized AT(N) biomarkers as normal or abnormal and categorized individuals into one of 260 

four groups: A-T-N- (no pathology), A+TN- (amyloid pathology), A+TN+ (Alzheimer pathology) and A-261 

TN+ (SNAP). We then assessed the expression of each module eigenprotein/eigenmetabolite across 262 

different ATN groups. For CSF protein modules, we found that three modules (M1 turquoise, M2 263 

blue and M4 yellow) showed a significant difference across ATN profiles from one-way ANOVA test 264 

(Figure 3A-C). Four plasma protein modules (M2 blue, M3 brown, M4 yellow and M8 pink, Figure 265 

3D-G, adapted from [26]) and three plasma metabolites modules (M4 yellow, M5 green and M3 266 

brown, Figure 3H-J) showed a significant difference across ATN profiles.  267 

 268 

3.4 Association between AT(N) framework-related modules and AD PRS 269 
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We firstly selected AT(N) framework-related modules from each individual omics for further analysis. 270 

As a result, we selected three CSF protein modules (M1 turquoise, M2 blue and M4 yellow), four 271 

plasma protein modules (M2 blue, M3 brown, M4 yellow and M8 pink) and three plasma metabolite 272 

modules (M3 brown, M4 yellow and M5 green). We then analysed the correlations between these 273 

ten modules as well as between these modules and AD PRS. When analysing associations between 274 

modules, we found that the metabolite M5 green module was negatively correlated with three 275 

plasma protein modules (M2 blue, M3 brown and M8 pink). Additionally, a negative correlation was 276 

observed between metabolite M3 brown module and plasma protein M8 pink module. In contrast, a 277 

positive correlation was observed between metabolite M4 yellow module and plasma protein M4 278 

yellow module as well as between metabolite M3 brown module and CSF protein M4 yellow module. 279 

In addition, CSF protein M4 yellow module was positively associated with plasma protein M3 brown 280 

module (Figure 3K, Table S1-S3).  281 

When analysing the associations between these modules and AD PRS, we found that only plasma 282 

protein modules were significantly associated with AD PRS. In detail, two plasma protein modules 283 

(M2 blue and M4 yellow) were positively associated with PRS (APOE region included and excluded) 284 

at PT=0.1. Additionally, M2 blue module was significantly associated with PRS at 5x10
-8

 threshold 285 

with APOE gene region included (Figure 3K, Table S4).    286 

 287 

3.5 Association of hub proteins/metabolites with AT(N) markers and AD PRS     288 

We selected hub proteins/metabolites within AT(N) framework-related modules and analysed the 289 

association between these hub proteins/metabolites (with kME varying from top 90th percentile to 290 

top 98th percentile, Table S5), as well as the association of these hub proteins/metabolite with AT(N) 291 

markers and AD PRS. When checking the associations between hub metabolites and proteins, we 292 

found that there was a strong correlation between metabolites and plasma proteins. In detail, five 293 

metabolites (four phosphatidylethanolamines (PEs) and one LysoPE) correlated with most hub 294 
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proteins after controlling for multiple testing. Two metabolites (sphingomyelins [SM] d40:2 and 295 

d41:2) in M3 brown module were correlated with proteins in plasma M8 pink module and CSF M4 296 

yellow module. In contrast, relatively week correlations were observed between CSF and plasma 297 

proteins. (Figure 4A, Table S6).   298 

We also investigated the association of these proteins/metabolites with AD PRS (APOE region 299 

included and excluded (Table S7)). For plasma hub proteins, all 23 proteins in M2 blue module were 300 

positively associated with AD PRS both at PT=5x10-8 (APOE region included) and PT=0.1 (APOE region 301 

included and excluded). Similar trend was also observed for most proteins in M4 yellow module, 302 

with only six proteins being positively associated with AD PRS at PT=5x10-8 (APOE region included), 303 

whereas most proteins, except for three, were associated with the PT=0.1 AD PRS (with APOE and 304 

without APOE) (Figure 4A). For hub metabolites, three SMs in M3 brown module and three PEs in 305 

M5 green module were associated with AD PRS (PT=5x10-8) with and without APOE region 306 

respectively. However, such associations did not pass FDR correction (Figure 4A in light red). No 307 

associations were observed between CSF hub proteins and AD PRS.    308 

When investigating the association of hub proteins and metabolites with AT(N) markers, we found 309 

that most CSF and plasma hub proteins were positively associated with amyloid, P-tau and T-tau 310 

after FDR correction. In contrast, hub metabolites were negatively associated with amyloid, P-tau 311 

and T-tau only at nominal level except for sphinganine (Figure 4A) (Table S8).   312 

3.6 Hub molecules integration in MCI conversion 313 

Having demonstrated the association of hub proteins/metabolites with AT(N) markers and AD PRS, 314 

we then sought to find a multimodal signal that might shed insights on MCI conversion. To do this 315 

we first used LASSO algorithm and extended Bayesian information criterion to select features from 316 

age, sex, AD PRS (PT = 0.1, APOE region excluded), APOE ε4 genotype and all plasma hub 317 

metabolites/proteins (with kME in the top 90th percentile, Table S9) to predict MCI conversion. As a 318 

result, AD PRS, APOE ε4 genotype and several metabolites/proteins were selected from LASSO. Of 319 
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the metabolites/proteins, two SMs, two PEs and one protein (proprotein convertase subtilisin/kexin 320 

type 7 [PCSK7]) from the blue module were negatively correlated with MCI conversion while the rest 321 

four selected proteins were positively associated with MCI conversion including reticulocalbin 2 322 

(RCN2) from the blue module, and three proteins from the brown module: ephrin receptor tyrosine 323 

kinase A2 (EFNA2), Collagen alpha-1(XV) chain (COL15A1) and AP-1 complex subunit gamma-like 2 324 

(AP-1) (Figure 4B). In addition, correlations were also observed between metabolites/proteins and 325 

AD PRS and APOE ε4 genotype (Figure 4B). 326 

3.7 Causal links of hub proteins/metabolites with AD   327 

We finally used a bidirectional two-sample Mendelian randomization to determine whether there 328 

was evidence for a causal relationship of MCI conversion related hub proteins/metabolites with 329 

Alzheimer’s disease. Using Wald ratio estimate, we observed weak associations between PCSK7 and 330 

AD as well as between COL15A1 and AD using data from Sun et al. [27]. In sensitivity analyses, the 331 

causal relationship between PCSK7 and AD was replicated using summary data from an independent 332 

protein GWA study by Suhre et al. [28] (Table 2). Further support for causal effects for the 333 

association of PCSK7 with AD came from multiple-cis instrument MR (p<0.001 for IVW, 95% CI = 0.8 334 

to 0.9, N SNPs = 4, Figure S4), although this was not the case for COL15A1 (Table S10). Multiple-cis 335 

instrument MR robust methods (MR-Egger and Weighted-median MR) and sensitivity analyses 336 

estimates for PCSK7 were consistent with Wald ratio estimates in direction and magnitude, and 337 

showed no horizontal pleiotropy or evidence of heterogeneity, further supporting the validity of the 338 

MR assumptions (Table S10). In reverse MR analysis, we identified a causal association between 339 

Alzheimer’s disease, RCN2 and SM (Table 2, Figure S1-3). Robust methods and sensitivity analyses 340 

provided additional support for such causal effects (Table S10).   341 

 342 

4. Discussion (words:1161) 343 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.08.05.22278457doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.05.22278457


Alzheimer’s disease is characterized by non-linear and heterogeneous biological alterations. Multi-344 

level biological networks underlie AD pathophysiology, including but not limited to proteostasis 345 

(amyloid-β and tau), synaptic homeostasis, inflammatory and immune responses, lipid and energy 346 

metabolism, and oxidative stress [30]. Therefore, a systems-level approach is needed to fully capture 347 

AD multifaceted pathophysiology. Here we used unbiased and high throughput multi-omics profiling 348 

of AD. We applied correlation network analysis to identify modules linked to a variety of AD 349 

endophenotypes including “A”, “T”, “N”, “V”, “I” and “C”. We found that four modules obtained 350 

from CSF proteins were associated with at least one pathology marker of “T” (P-tau), “N” (T-tau) and 351 

“I” (YKL-40). Furthermore, the three “I” related modules (M1 turquoise, M2 blue and M4 yellow) 352 

were enriched with either microglia or astrocytes, which are key cellular drivers and regulators of 353 

neuroinflammation [31], further indicating the consistency between correlation network analysis 354 

and cell type enrichment analysis. In addition, of the four modules, three were enriched with various 355 

pathways which have been reported being associated with Alzheimer’s such as Ras signalling 356 

pathway [32], axon guidance [33], cell adhesion molecules (CAMs) [34], and lysosome pathway [35], 357 

further demonstrating the relatedness of these proteins with AD.   358 

From plasma metabolomics, we found that the M3 brown module was associated with “N” (T-tau) 359 

and “C” (cognition) and enriched with sphingolipid and ceramide metabolism. These findings align 360 

with literature report as the lipids within this module have been reported being associated with 361 

cognitive progression [36] and hippocampal atrophy [37]. In addition, M4 yellow module was 362 

associated with five AD pathology markers (“A”, “T”, “N”, “I” and “C”) and enriched with three 363 

pathways including gamma-glutamyl amino acid, plasmalogen, and polyamine metabolism. The 364 

findings are also consistent with previous reports showing that these pathways were associated with 365 

AD pathogenesis [38] and inflammatory cascade [39].  366 

Two modules (M2 blue and M4 yellow) from plasma proteomics were associated with AD PRS (both 367 

with and without APOE gene) at 0.1 level. Of the two modules, M2 blue module was associated with 368 
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PRS at 5x10-8 thresholds only when PRS included SNPs in the APOE region, indicating that such 369 

association may be driven by APOE. Hub proteins in M2 blue module were correlated with PRS at 370 

5x10
-8

 thresholds only with SNPs in the APOE region included, further indicating that associations 371 

may be driven by APOE. For plasma metabolomics, three sphingomyelins (SMs) from M3 brown 372 

module were associated PRS (PT = 5x10
-8

) nominally only when the APOE region was included, also 373 

indicating APOE gene dependence. This is in line with literature findings that nominal association 374 

between SMs and PRS was reported [40].    375 

We identified several closely correlated networks for metabolites, proteins, genetic factors, and MCI 376 

conversion. Interestingly APOE and MCI conversion status were correlated to PCSK7 and 377 

sphingomyelins SMs have been previously associated with cognitive progression in AD [41-43]. 378 

Furthermore, the integration of AD PRS showed that phosphatidylethanolamines [44, 45] and EFNA2 379 

[46] were associated to both (MCI converter and AD PRS), with potential as early targets.  380 

We finally investigated the causal relationship between A/T/N hubs associated with MCI conversion 381 

status and AD. Our MR analyses highlighted a potential weak causal relationship between PCSK7 and 382 

AD which was robust in both single and multiple cis instruments MR analyses and was replicated 383 

using an independent pQTL dataset. We also found a causal relationship in the opposite direction, 384 

whereby AD status is potentially causally linked to RCN2 that has been proposed as a therapeutic 385 

target for atherosclerosis [47]. Finally, although we didn’t have GWA summary data for the SM and 386 

PE hubs examined in this study, our MR analyses showed that AD was causally linked to SM levels, as 387 

previously shown when NMR data were used [48].  388 

These findings are of great translational potential, particularly PCSK7 for which studies in Alzheimer’s 389 

disease are lacking. This convertase protein is very interesting as it is found in the BACE1 locus region 390 

which encompasses several genes (PCSK7, RNF214, BACE1, CEP164) making it a plausible protein 391 

activator of downstream amyloid deposition [49]. 392 
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The causal associations from AD to RCN2 and sphingomyelins are also intriguing as both highlight a 393 

possible vascular component caused by AD genetic liability, bringing new directionality between 394 

vascular disease and dementia. These molecules and their potential causal links to AD suggest novel 395 

avenues of research and intervention.  396 

There are limitations for our study. First, the population in this study is of European ancestry and 397 

mainly included participants who had high ratio of amyloid pathology and APOE ε4 carriers. 398 

Therefore, they are not necessarily representative of the broader community. Validation in 399 

independent cohorts and particularly in other ethnic groups and community-based populations are 400 

needed to see if the results are generalizable.   401 

Despite this, our study is the largest study we are aware of to report multi-omics relating to AD 402 

endophenotypes, particularly to the AT(N) framework. Our findings offer new insights into changes 403 

in individual proteins/metabolites linked to AD endophenotypes, the AT(N) framework and AD PRS. 404 

The nominated causal proteins/metabolites may be tractable targets for mechanistic studies of AD 405 

pathology. Furthermore, they may represent promising drug targets in the early stages of AD.  406 
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Table 1. Demographics of participants included in multi-omics analysis by diagnosis. One-way 575 

analysis of variance (ANOVA) and chi-square tests were used to compare continuous and binary 576 

variables, respectively. Percentage of cases is shown in brackets for male sex, APOE ε4 carriers and 577 

the abnormality of amyloid, P-tau and T-tau.  578 

Characteristics Sample size CTL MCI AD P value 

CSF proteomics      

n 371 123 154 94 NA 

Age mean (SD), y 371 64.4 (7.8) 69.0 (7.4) 68.1 (8.1) <0.001 

Male sex N (%) 371 66 (54) 77 (50) 49 (52) 0.83 

APOE ε4+ N (%) 371 45 (37) 78 (51) 59 (63) <0.001 

MMSE (SD) 370 28.7 (1.3) 26.5 (2.7) 22.1 (3.8) <0.001 

Education mean (SD), y 371 12.4 (3.5) 10.8 (3.6) 10.1 (3.8) <0.001 

Amyloid + N (%) 371 41 (33) 77 (50) 81 (86) <0.001 

P-tau + N (%) 367 29 (24) 87 (58) 69 (73) <0.001 

T-tau + N (%)  365 28 (23) 82 (55) 74 (80) <0.001 

Plasma proteomics      

n 972 372 409 191 NA 

Age mean (SD), y 972 64.6 (8.0) 69.9 (8.0) 70.5 (8.8) <0.001 

Male sex N (%) 972 209 (56) 216 (53) 103 (54) 0.64 

APOE ε4+ N (%) 972 139 (37) 195 (48) 116 (61) <0.001 

MMSE (SD) 967 28.8 (1.2) 26.2 (2.6) 21.4 (4.7) <0.001 

Education mean (SD), y 972 12.8 (3.7) 11.0 (3.7) 10.3 (3.9) <0.001 

Amyloid + N (%) 972 112 (30) 254 (62) 168 (88) <0.001 

P-tau + N (%) 876 53 (19) 215 (53) 128 (67) <0.001 

T-tau + N (%)  880 54 (19) 235 (58) 152 (80) <0.001 

Plasma metabolomics      

n 696 284 275 137 NA 

Age mean (SD), y 696 65.0 (7.9) 70.0 (8.1) 70.1 (8.5) <0.001 

Male sex N (%) 696 155 (55) 141 (51) 81 (59) 0.60 

APOE ε4+ N (%) 696 111 (39) 153 (56) 84 (61) <0.001 

MMSE (SD) 691 28.8 (1.1) 25.7 (2.8) 21.5 (4.8) <0.001 

Education mean (SD), y 696 12.8 (3.8) 11.1 (3.4) 10.4 (3.7) <0.001 

Amyloid + N (%) 696 114 (40) 197 (72) 122 (89) <0.001 

P-tau + N (%) 641 44 (19) 161 (59) 93 (68) <0.001 

T-tau + N (%)  641 45 (19) 177 (65) 107 (79) <0.001 

CTL, cognitively normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; CSF, 579 

cerebrospinal fluid; SD, standard deviation; MMSE, mini mental state examination; +, abnormality; 580 

P-tau, phosphorylated tau; T-tau, total tau. 581 
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Table 2. Examination of the causal relationship between hub proteins/metabolites and 582 

Alzheimer’s using bidirectional Mendelian randomization 583 

Protein Estimate* 

Forward (hub proteins/metabolites 

→Alzheimer’s disease) 

Backward (Alzheimer’s disease→ hub 

proteins/metabolites) 

No. of SNPs Slope (95% CI) P value No. of SNPs Slope (95% CI) P value 

PCSK7  1 [27] 0.88 (0.79 - 0.99) 0.029 20 0.06 (-0.14 - 0.02) 0.135 

PCSK7  1 [28] 0.96 (0.93 - 0.99) 0.027 NA NA NA 

RCN2  1 [27] 1.04 (0.87 - 1.24) 0.648 20 0.10 (0.03 - 0.17) 0.004 

EFNA2  1 [27] 1.04 (0.81 - 1.34) 0.741 20 -0.02 (-0.09 - 0.06) 0.679 

AP-1 1 [27] 0.84 (0.67 - 1.04) 0.114 20 -0.01 (-0.09 - 0.07) 0.804 

COL15A1 1 [27] 1.15 (1.01 - 1.30) 0.032 20 0.02 (-0.05 - 0.09)  0.544 

SM  58 [29] 1.28 (0.87 - 1.89) 0.212** 21  0.14 (0.03 - 0.24) *** 0.012 

*The Wald ratio estimate and inverse variance weighting (IVW) estimate were used for MR analyses with a 584 
single and multiple SNPs, respectively.  585 
** Cochran's Q p<0.001 586 
***there was significant heterogeneity even after removing APOE (Cochran's Q p<0.05). 587 

  588 
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Figure Legends 589 

Figure 1. Flowchart of study design. CTL, cognitively normal controls; MCI, mild cognitive 590 

impairment; AD, Alzheimer’s disease; Aβ, β-amyloid; CSF, cerebrospinal fluid; A, amyloid pathology; 591 

T, tau pathology; N, neurodegeneration; PRS, polygenic risk score; MR, mendelian randomization. 592 

Figure 2. Individual omics modules correlating to AD endophenotypes. (A) Weighted gene 593 

correlation network analysis (WGCNA) of the CSF proteomics and cell type enrichment analysis of 594 

modules; (B) Enriched KEGG pathways of three modules in CSF proteins; (C) WGCNA of plasma 595 

proteomics; (D) Enriched KEGG pathways of three modules in plasma proteins; (E) WGCNA of plasma 596 

metabolomics; (F) Enriched KEGG pathways of two modules in plasma metabolites. * and ** denote 597 

significant correlations p < 0.05 and p < 0.001 after false discovery rate (FDR) correction respectively; 598 

CSF, cerebrospinal fluid; “A”, amyloid; “T”, tau; “N”, neurodegeneration; “V”, vascular; “I”, 599 

inflammation; “C”, cognition; +, abnormality; P-tau, phosphorylated tau; T-tau, total tau; WMH, 600 

white matter hyperintensity; MMSE, mini mental state examination; MCI, mild cognitive impairment.  601 

Figure 3. Protein and metabolite modules correlate to AT(N) profile and AD PRS. The relationship 602 

of the AT(N) framework with (A-C) three CSF protein modules, (D-G) four plasma protein modules, 603 

(H-J) three plasma metabolite modules, (K) Relation of AT(N) framework-related modules with AD 604 

PRS (with and without APOE region) at two thresholds (PT=5x10-8 & 0.1); red and blue links denoted 605 

positive and negative correlations, respectively. CSF, cerebrospinal fluid; SNAP, Suspected Non-606 

Alzheimer Pathology.  607 

Figure 4. (A) Relation of hub proteins/metabolites with AT(N) markers and PRS; hub 608 

proteins/metabolites from three CSF protein modules (M1 turquoise, M2 blue and M4 yellow), four 609 

plasma protein modules (M2 blue, M3 brown, M4 yellow and M8 pink), and three plasma metabolite 610 

modules (M4 yellow, M5 green and M3 brown); red, blue, light red and light blue squares denoted 611 

positive association at FDR level (pFDR<0.05), negative association at FDR level (pFDR<0.05), positive 612 

association at nominal level (p<0.05, pFDR>0.05), and negative association at nominal level (p<0.05, 613 

pFDR>0.05), respectively. (B) Partial correlation network selected for hub metabolites/proteins, 614 

genetic factors, and MCI conversion. PRS, polygenic risk score; MCI, mild cognitive impairment. 615 
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