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Abstract  1 

Using magnetoencephalographic imaging and extensive clinical and neuropsychological assessments, we 2 
show that patients with Parkinson’s disease (PD; N = 79) exhibit a slowing of neurophysiological activity 3 
relative to healthy adults (N = 65), which relates to motor and cognitive abilities. Importantly, the 4 
association between neurophysiological slowing and PD clinical features varies systematically across the 5 
cortex along a sagittal gradient: cortical slowing is associated with worse impairment in dorsal-posterior 6 
cortices, and this association is reversed in ventral-anterior cortical regions. This pathological-to-7 
compensatory anatomical gradient is sensitive to differences in patients’ individual clinical profiles, and co-8 
localizes with normative atlases of neurotransmitter receptor/transporter density. Long-range functional 9 
connectivity between posterior regions and parietal and frontal cortices is also significantly shifted towards 10 
lower frequencies in PD, demonstrating a novel network-level slowing effect. Taken together, these 11 
findings demonstrate the multifaceted nature of neurophysiological slowing in patients with PD, with 12 
anatomically-dependent clinical relevance to motor and cognitive symptoms. 13 
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Introduction 1 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide1. It is 2 
characterized by hallmark declines in motor functions2, with many patients also experiencing debilitating 3 
declines in cognitive abilities3. Although the etiology of PD is not clear to date, the neuropathological 4 
process includes a progressive degeneration of dopaminergic neurons and glial cells in the substantia nigra 5 
pars compacta, leading to dysfunctional dopamine (DA) signaling along the nigrostriatal pathway2. This 6 
leads to over-inhibition of thalamic projections to the cortex that are essential for the accurate execution 7 
of voluntary movements in the healthy brain2. Changes in cortical signaling are also well-documented in 8 
PD, yet the functional consequences of these cortical aberrations are not entirely clear. Some research has 9 
suggested that they convey compensatory effects (i.e., greater changes relative to healthy controls relating 10 
to better clinical outcomes) while others have instead indicated that they are deleterious4-19. These effects 11 
may not be mutually exclusive. Complex patterns of neurophysiological changes observed in patients with 12 
PD may simultaneously indicate both dysfunction and adaptive compensation, alongside additional effects 13 
of pharmacotherapies and clinical interventions intended to remediate PD symptoms. A more nuanced 14 
understanding of pathological versus compensatory effects of PD-related neurophysiological changes is 15 
needed to inform and advance interventions, such as targeted neuromodulation strategies to ameliorate 16 
symptoms and enhance compensatory capabilities in patients with PD20-28. 17 

Neurophysiological indicators of PD pathophysiology include frequency-specific components of the rich 18 
spectrum of brain electrophysiology. Notably, beta-band (15 – 30 Hz) activity is hypersynchronous across 19 
the cortico-basal ganglia circuit in patients with PD17,29-33, relates to severity of motor dysfunction, and can 20 
be normalized by common therapeutics34-38. In the cortex of patients with PD, decades of 21 
electrophysiological studies have demonstrated a stereotyped pattern of frequency-defined neural 22 
changes relative to healthy adults, including both increased activity in low-frequency bands (e.g., delta [2 – 23 
4 Hz] and theta [5 – 7 Hz]) and concurrent decreased power in high-frequency bands (e.g., alpha [8 – 12 24 
Hz] and beta)12,39-42. This has led to a hypothesized slowing of brain activity in patients with PD, but it 25 
remains unclear whether such a neurophysiological effect relates to clinical features of the disease, and 26 
whether any such relationships are of a deleterious or compensatory nature. These multi-spectral 27 
deviations from healthy levels also comprise rhythmic and/or arrhythmic components43-46, for which clinical 28 
interpretation and significance for frequency-specific neuromodulation therapies remain to be established 29 
in PD19,42,47-51. 30 

We adapted a recent measure of neurophysiological slowing52 (Figure 1A) with magnetoencephalography 31 
(MEG) data from a large sample of patients with PD (N = 79) and a matched group of healthy older adults 32 
(N = 65). We related neurophysiological slowing effects measured in the PD group to detailed clinical and 33 
neuropsychological indicators of motor and cognitive deficits, with the hypothesis that stronger cortical 34 
slowing is associated with greater clinical impairments. What we actually observed was that this association 35 
varied in a structured manner across the cortex, indicating a progressive change from compensation to 36 
impairment along the sagittal cortical plane (Figure 1B). To determine the clinical and neurochemical nature 37 
of this sagittal gradient effect, we investigate its sensitivity to clinical profile features and neurotransmitter 38 
receptor densities that are salient in PD. Finally, we provide evidence that cortical slowing also affects 39 
frequency-specific, inter-regional functional connectivity, which indicates a network-level slowing of 40 
neurophysiology in patients with PD.  41 
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Results 1 

Slowing of Rhythmic and Arrhythmic Neurophysiological Activity Relates Differentially to Clinical 2 
Impairments 3 
 
Patients with Parkinson’s disease exhibited slowing of cortical neurophysiological activity, with the 4 
strongest effects in bilateral parieto-occipital cortices (TFCE; pFWE < .001; peak vertex = x: -50, y: -77, z: 1; 5 
Figure 2A). The magnitude of this slowing effect was related to cognitive abilities (Figure 2B) including 6 
general cognitive function in left superior frontal cortex (TFCE; pFWE = .048; peak vertex = x: -4, y: 63, z: 20), 7 
as well as domain-specific impairments in language in bilateral prefrontal and temporal regions (TFCE; pFWE 8 
= .012; peak vertex = x: 4, y: 38, z: 11), attention in bilateral inferior frontal and somatomotor cortices 9 

Figure 1. Neurophysiological slowing and anatomical gradient analyses. (A) Neural slowing computation. Source-imaged 
magnetoencephalography (MEG) data is first frequency-transformed and the vertex-wise power spectral densities (PSD) 
parameterized using specparam. The resulting PSDs are averaged over typical frequency bands (i.e., delta: 2–4 Hz; theta: 5–7 
Hz; alpha: 8–12 Hz; beta: 15–29 Hz) and each spectrally- and spatially-resolved power estimate of neurophysiological signal per 
patient is normalized to the mean and standard deviation of the comparable estimates in the healthy control group. Within 
each patient and at each spatial location, a linear model is then fit to these spectral deviations across frequencies, and the slope 
of this model is extracted that represents the relative slowing (i.e., negative slope values) of brain activity relative to healthy 
levels. This procedure is performed per cortical vertex, resulting in a spatially-resolved map of neurophysiological slowing per 
patient. (B) Spatial gradient analysis. Cortical surfaces are first smoothed to reduce the impact of gyrification on the estimation 
of spatial gradient effects. Per each vertex location, neurophysiological slowing values are separately correlated with motor (i.e., 
UPDRS-III scores) and cognitive (i.e., sign-reversed neuropsychological scores averaged over cognitive domains) impairments, 
beyond the effects of age. These partial correlation maps are then linearly-scaled (i.e., using the Fisher-transform) and summed 
per vertex, resulting in a single cortical map showing the nature and strength of the relationships between neurophysiological 
slowing and clinical impairments across the brain. A linear multiple regression is then fit to these data and the beta weights 
extracted, with each of the cardinal axes (X: left – right; Y:  posterior – anterior; Z: inferior – superior) represented as a predictor. 
The neurophysiological slowing data are then randomly permuted across patients and the partial correlation and spatial multiple 
regression steps repeated 1,000 times, with the resulting beta weights extracted and used to build null distributions per each 
predictor. To test for the effect of binary clinical factors on these gradients, the same procedure is performed within each 
binarized patient subgroup, with the difference in beta weights between the two subgroups used as the statistic of interest. 
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(TFCE; pFWE = .030; peak vertex = x: 50, y: -13, z: 52), and visuospatial function in bilateral anterior temporal 1 
regions (TFCE; pFWE = .014; peak vertex = x: -49, y: -8, z: -44).  2 

 
Both arrhythmic (TFCE; pFWE < .001; peak vertex = x: 45, y: -81, z: 7; Figure 3A) and rhythmic (TFCE; pFWE < 3 
.001; peak vertex = x: 43, y: -71, z: 31; Figure 4A) neurophysiological generators contributed to the slowing 4 
effect. Arrhythmic slowing was stronger than rhythmic slowing in bilateral inferior frontal regions (TFCE; 5 
pFWE = .018; peak vertex = x: 9, y: 40, z: -5; Figure S1), and no clusters were identified where rhythmic 6 
slowing was significantly stronger than arrhythmic. Arrhythmic cortical slowing was associated with motor 7 
impairments in bilateral prefrontal and temporal cortices (i.e., UPDRS-III scores; TFCE; pFWE = .028; peak 8 
vertex = x: -41, y: 43, z: 19; Figure 3B), as well as domain-specific abilities in language in distributed frontal, 9 
temporal, and occipital areas (TFCE; pFWE = .013; peak vertex = x: 49, y: -4, z: -9; Figure 3B), attention in right 10 
superior parietal cortex (TFCE; pFWE = .043; peak vertex = x: 23, y: -54, z: 68; Figure 3B), and executive 11 
function in right fusiform/lingual cortex (TFCE; pFWE = .047; peak vertex = x: 14, y: -54, z: -7; Figure 3B). 12 
Rhythmic neurophysiological slowing covaried only with attention abilities in right inferior frontal cortex 13 
(TFCE; pFWE = .039; peak vertex = x: 50, y: 32, z: -13; Figure 3B). 14 

Figure 2. Neurophysiological slowing 
associated with cognitive abilities in 
Parkinson’s disease. (A) Cortical maps 
indicate significant clusters of 
neurophysiological slowing in patients with 
Parkinson’s disease (PD) after stringent 
multiple comparisons correction. Power 
spectra to the bottom left indicate the 
underlying data used to compute 
neurophysiological slowing from the 
cortical vertex exhibiting the strongest 
effect, with colored bars underneath 
showing the bandwidths of typical 
frequency-band definitions used for 
averaging. The plot to the bottom right 
shows the individual patient spectral 
deviations at this same cortical vertex for 
each frequency band, with the light grey 
lines-of-best fit indicating individual 
neurophysiological slowing slopes, and the 
overlaid black line and blue shaded area 
representing the overall group effect and 
95% confidence intervals, respectively. 
These individual and mean 
neurophysiological slowing effects are also 
represented as single dots in the scatterplot 
to the top right. (B) Cortical maps indicate 
significant clusters where 
neurophysiological slowing was associated 
with cognitive function in patients with PD. 
Associated scatterplots indicate the nature 
and strength of this relationship at the 
cortical vertex exhibiting the strongest 
effect, with lines-of-best-fit, 95% 
confidence intervals, and R2 values overlaid. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2022. ; https://doi.org/10.1101/2022.08.05.22278436doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.05.22278436
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Mean neurophysiological slowing values per each region of the Yeo 7-networks atlas74 indicated greatest 1 
slowing in visual and dorsal attention networks, and weakest effects in somato-motor, ventral attention, 2 
and fronto-parietal networks (Figure S1). All the reported slowing effects and relationships to clinical 3 
metrics remained significant (all p’s < .005) after inclusion of confounds in the respective linear models, 4 
including head motion, eye movements, heart rate variability, and the number of epochs used per 5 
participant for analysis.  6 
 
Associations Between Neurophysiological Slowing and Clinical Impairments Exhibit a Spatial 7 
Gradient Across the Cortex 8 
 
We observed that the nature of the relationships between cortical slowing and clinical impairments 9 
changed systematically across the sagittal plane of the cortex, with more posterior relationships generally 10 
indicating impairment (i.e., greater slowing associated with worse cognitive outcomes) and more anterior 11 
relationships indicating compensation. To test this effect empirically, we developed and implemented a 12 

Figure 3. Arrhythmic neurophysiological 
slowing associated with clinical impairments 
in Parkinson’s disease. Similar to Figure 2, but 
with neurophysiological slowing computed 
using the arrhythmic (i.e., aperiodic) 
component of the parameterized spectra. (A) 
Cortical maps indicate significant clusters of 
arrhythmic neurophysiological slowing in 
patients with Parkinson’s disease (PD) after 
stringent multiple comparisons correction. 
Power spectra to the bottom left indicate the 
underlying data used to compute 
neurophysiological slowing from the cortical 
vertex exhibiting the strongest effect, with 
colored bars underneath showing the 
bandwidths of typical frequency-band 
definitions used for averaging. The plot to the 
bottom right shows the individual patient 
spectral deviations at this same cortical 
vertex for each frequency, with the light grey 
lines-of-best fit indicating individual 
neurophysiological slowing slopes, and the 
overlaid black line and blue shaded area 
representing the overall group effect and 
95% confidence intervals, respectively. These 
individual and mean neurophysiological 
slowing effects are also represented as single 
dots in the scatterplot to the top right. (B) 
Cortical maps indicate significant clusters 
where neurophysiological slowing was 
associated with cognitive function in patients 
with PD. Associated scatterplots indicate the 
nature and strength of this relationship at the 
cortical vertex exhibiting the strongest effect, 
with lines-of-best-fit, 95% confidence 
intervals, and R2 values overlaid. 
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new non-parametric method and found evidence of significant posterior – anterior (1,000 permutations; b 1 
= 3.57, p = .002) and superior – inferior (1,000 permutations; b = -5.64, p = .004) spatial gradients, such 2 
that stronger slowing in superior parietal cortices related to worse clinical impairments, while greater 3 
slowing in inferior frontal regions was associated with better preserved motor and cognitive functions 4 
(Figure 5A). These spatial gradient effects did not differ between the rhythmic and arrhythmic slowing 5 
models (1,000 permutations; posterior – anterior: p = .848; superior – inferior: p > .999; Figure 5B), and 6 
remained significant after correction for confounds (i.e., head motion, eye movements, and heart rate 7 
variability; 1,000 permutations; posterior – anterior: p < .001; superior – inferior: p = .014; Figure S2).  8 
  
This anatomical-neurophysiological gradient was significantly modulated by meaningful PD clinical factors 9 
(Figure 6). Patients who reported subjective cognitive complaints exhibited a weaker posterior – anterior 10 
gradient effect than those who did not (1,000 permutations; Δb = -7.90, p = .010; Figure 6A). A similar effect 11 
of dopamine agonist use was also observed, with those patients taking dopamine agonists showing a 12 
weaker posterior – anterior gradient effect (1,000 permutations; Δb = -5.56, p = .048; Figure 6B). Further, 13 
we discovered that the left – right gradient differed significantly based on the laterality of symptom onset 14 
(1,000 permutations; Δb = -3.35, p = .006; Figure 6C), such that left-onset patients exhibited a bias toward 15 
compensatory effects of cortical slowing in the left hemisphere, while we observed the mirrored effect in 16 
right-onset patients. Post-hoc testing of significant clinical subgroup differences in these gradient effects 17 
indicated that the dopamine agonist (1,000 permutations; p = .042; Figure S2) and symptom laterality 18 

Figure 4. Rhythmic neurophysiological slowing associated with clinical impairments in Parkinson’s disease. Similar to Figure 2, but 
with neurophysiological slowing computed using the rhythmic (i.e., aperiodic-corrected) component of the parameterized 
spectra. (A) Cortical maps indicate significant clusters of rhythmic neurophysiological slowing in patients with Parkinson’s disease 
(PD) after stringent multiple comparisons correction. Power spectra to the bottom left indicate the underlying data used to 
compute neurophysiological slowing from the cortical vertex exhibiting the strongest effect, with colored bars underneath 
showing the bandwidths of typical frequency-band definitions used for averaging. The plot to the bottom right shows the 
individual patient spectral deviations at this same cortical vertex for each frequency band, with the light grey lines-of-best fit 
indicating individual neurophysiological slowing slopes, and the overlaid black line and blue shaded area representing the overall 
group effect and 95% confidence intervals, respectively. These individual and mean neurophysiological slowing effects are also 
represented as single dots in the scatterplot to the top right. (B) Cortical maps indicate the significant cluster where 
neurophysiological slowing was associated with attention function in patients with PD. Associated scatterplots indicate the 
nature and strength of this relationship at the cortical vertex exhibiting the strongest effect, with the line-of-best-fit, 95% 
confidence interval, and R2 value overlaid. 
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(1,000 permutations; p = .032; Figure S3) effects were specific to the model considering only motor 1 
impairments, while the effect of subjective cognitive complaints was specific to cognitive abilities (1,000 2 
permutations; p = .006; Figure S4). 3 

 
Clinical Effects of Cortical Slowing Selectively Co-Localize with Neurotransmitter Receptor Densities 4 
 
To test for spatial associations between the observed anatomical-neurophysiological gradient and 5 
normative neurochemical systems, we adapted the non-parametric method described above to data from 6 
neuromaps69. The relationship between neurophysiological slowing and clinical impairments co-localized 7 
selectively with normative densities of dopamine, serotonin, GABA, and norepinephrine systems, but not 8 
with densities of acetylcholine and glutamate systems, nor with overall synaptic density (Figure 7). 9 
Specifically, all three measures of dopaminergic density related positively to the anatomical-10 
neurophysiological gradient (1,000 permutations; D1: β = 0.38, pFDR < .001; D2: β = 0.40, pFDR = .024; DAT: 11 
β = 0.24, pFDR = .024), such that regions with higher dopamine receptor/transporter density in health 12 
exhibited a compensatory effect of slowing in patients with PD. Similar positive associations were found for 13 
four of the six tested serotonergic density measures (1,000 permutations; 5-HT1a: β = 0.49, pFDR = .023; 5-14 
HT2a: β = 0.30, pFDR = .017; 5-HT4: β = 0.43, pFDR = .024; 5-HTT: β = 0.35, pFDR = .024). In contrast, both 15 
GABAergic (1,000 permutations; GABAa: β = -0.34, pFDR = .038) and noradrenergic (1,000 permutations; 16 
NET: β = -0.53, pFDR = .038) densities related negatively to the gradient effect, such that regions with higher 17 
healthy receptor/transporter density exhibited a stronger pathological effect of cortical slowing in PD. 18 

Figure 5. Anatomical gradient of clinical effects of neurophysiological slowing in Parkinson’s disease. (A) Cortical maps indicate the 
nature and strength of relationships between neurophysiological slowing and clinical impairments (i.e., partial correlations 
linearly-scaled and summed across motor and cognitive domains) along the cortex of patients with Parkinson’s disease, with 
lower values indicating a more pathological relationship (i.e., greater slowing predicts worse clinical deficits) and higher values 
indicating a possible compensatory effect. Grey vectors plotted along the cardinal anatomical axes are unstandardized beta 
weights from a multiple regression of the neurophysiological slowing – clinical impairment relationships on the relevant 
anatomical coordinates (X: left – right; Y:  posterior – anterior; Z: inferior – superior), and indicate the magnitude and direction 
of the significant anatomical gradient effects. Overlaid p-values were generated using a non-parametric permutation approach 
and indicate statistical significance per each axis of the gradient effect. The blue vector indicates the magnitude and direction 
of the overall significant anatomical gradient effect. (B) Cortical maps again indicate the nature and strength of the 
neurophysiological slowing – clinical impairment relationships across the cortex of patients with Parkinson’s disease, but with 
neurophysiological slowing computed using the rhythmic (left) and arrhythmic (right) components of the parameterized spectra 
separately. The significant anatomical gradient effects observed in the non-parameterized neurophysiological slowing data 
(panel A) did not differ between the rhythmic and arrhythmic models. 
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Inter-regional Functional Connectivity is Slowed in Parkinson’s Disease 1 
 
Using the cortical location with the strongest neurophysiological slowing effect as a seed region (x: -50, y: 2 
-77, z: 1), we examined whether functional connectivity between this region and the rest of the cortex also 3 
exhibited a significant slowing effect in patients with PD. We found that inter-regional connections between 4 
the seed region and a widely distributed network of frontal, somato-motor, and superior parietal regions 5 
were significantly slowed in patients (TFCE; pFWE < .001; peak vertex = x: 14, y: -61, z: 70; Figure S3). No 6 
significant relationships between this connectivity slowing effect and clinical outcomes were observed 7 
when stringent corrections were applied for multiple comparisons across cortical locations, but the 8 
magnitude of connectivity slowing at the peak of this effect did significantly relate to memory abilities (t(62) 9 
= 2.46, p = .017). Both the connectivity slowing main effect and its relationship to memory scores were 10 
robust to confounds (i.e., head motion, eye movements, heart rate variability, and the number of epochs 11 
used per participant for analysis; main effect: p < .001; memory relationship: p = .030).   12 

Figure 6. The anatomical gradients of clinical effects of neurophysiological slowing in Parkinson’s disease are clinically meaningful. Cortical maps 
indicate differences in the nature and strength of relationships between neurophysiological slowing and clinical impairments in patients with 
Parkinson’s disease, as a function of binary clinical features, including (A) the presence of subjective cognitive complaints, (B) the use of dopamine 
agonists, and (C) the laterality of initial symptom onset. Purple vectors plotted along the cardinal spatial axes are unstandardized beta weights 
from a multiple regression of the neurophysiological slowing – clinical impairment relationships on the relevant spatial coordinates (X: left – right; 
Y:  posterior – anterior; Z: inferior – superior), subtracted between the two clinical feature subgroups. Overlaid p-values were generated using a 
non-parametric permutation approach and indicate statistical significance per each axis of the difference in the gradient effect.  The blue and red 
vectors indicate the magnitude and direction of the overall anatomical gradient effects per each clinical feature subgroup. 
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Discussion 1 

After decades of literature suggesting a pathological shift in neurophysiological signal power from high to 2 
low frequencies in patients with neurodegenerative disorders10-12,39-41,75-84, recent advances in capturing 3 
these multi-spectral effects have documented their anatomical distribution and relevance to clinical 4 
features19,42,52. In the current work, we advance this line of research in patients with Parkinson’s disease 5 
using a marker of neurophysiological slowing that recently showed associations with cognitive impairments 6 
and amyloid proteinopathy in patients with Alzheimer’s disease52.  7 
 
We find that patients with PD do exhibit broad neurophysiological slowing effects across posterior parietal, 8 
temporal, occipital, and inferior frontal cortices. This effect concerns both the rhythmic and arrhythmic 9 
components of the neurophysiological spectrum. Further, we show that the magnitude of this slowing 10 
effect is associated with individual cognitive and motor functions. Most notably, slowing across bilateral 11 
fronto-temporal cortical regions is related to better language abilities, while slowing in an ensemble of 12 
right-lateralized inferior frontal, somato-motor, and superior parietal regions is associated with worse 13 
attention scores. Rhythmic and arrhythmic slowing are differentially related to these observations: the 14 
relationship with language abilities was only recapitulated with arrhythmic slowing, while the relationship 15 
with attention was found in both the rhythmic and arrhythmic analyses, but with differing anatomical 16 
definitions. Arrhythmic slowing related to worse attention in right superior parietal regions, while rhythmic 17 
slowing exhibited the same association in right inferior frontal cortex. We also found relationships involving 18 
arrhythmic slowing that were not detected in the cortical slowing measures computed using the non-19 
parameterized spectra, including a robust association between arrhythmic cortical slowing and better 20 
motor function (i.e., lower UPDRS-III scores) in bilateral prefrontal and anterior temporal cortices. 21 
Together, these results highlight not only the potential clinical relevance of cortical slowing in patients with 22 

Figure 7. Clinical effects of neurophysiological 
slowing selectively co-localize with receptor 
densities. (A) Parcellated cortical maps 
indicate the nature and strength of 
relationships between neurophysiological 
slowing and clinical impairments (i.e., partial 
correlations linearly-scaled and summed 
across motor and cognitive domains, z-scored 
across brain regions) in patients with 
Parkinson’s disease. The vector heatmap 
below indicates the strength (standardized β) 
and statistical significance (*pFDR < .05, **pFDR 
< .005) of co-localization between the 
neurophysiological slowing-clinical 
relationship and each neuromap measure, 
including dopamine (D1, D2, and DAT), 
serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-
HT6, 5-HTT), acetylcholine (α4β2, M1, 
VAChT), GABA (GABAa), glutamate (NMDA, 
mGluR5), norepinephrine (NET), and synapse 
density (glycoprotein). (B) Parcellated cortical 
maps indicate the density of each neuromap 
measure, z-scored across brain regions. 
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PD, but also the insight gained by analyzing the respective effects of rhythmic and arrhythmic spectral 1 
features on neurophysiological slowing across patient populations. 2 
 
At the macro-anatomical scale, we also show that the nature of these clinical-neurophysiological 3 
relationships varies across the cardinal sagittal axis of the brain. This anatomical-neurophysiological 4 
gradient indicates that slowing in superior and posterior cortices relates to worse clinical condition (i.e., 5 
higher UPDRS-III and lower neuropsychological scores), while slowing in inferior and anterior regions is 6 
associated with better motor and cognitive abilities, indicating compensation. We also found that this 7 
gradient is affected by key clinical factors: it is reduced by a dopamine agonist regimen, and it is stronger 8 
in patients with no subjective cognitive complaints. Further, although no overall left – right anatomical 9 
gradient was observed across all patients with PD, a marked difference in the gradient effect was observed 10 
along this axis when patients were sorted according to the laterality of their initial symptom onset, such 11 
that cortical slowing related to clinical compensation on the less affected hemisphere. 12 
 
We identify four neurochemical systems as candidate contributors to this clinical-neurophysiological 13 
gradient effect. In essence, we find that brain regions with higher normative dopamine and serotonin and 14 
lower GABA and norepinephrine densities tend to exhibit a compensatory effect of cortical slowing in these 15 
patients. All four of these neurotransmitter systems are impacted by PD85,86. In particular, loss of cortical 16 
dopamine systems is a strong predictor of cognitive dysfunction in PD87. In combination with our finding 17 
that the sagittal gradient of cortical slowing is normalized by the use of dopaminergic agonists, we interpret 18 
the dopaminergic co-localization of this effect as further evidence that neurophysiological compensation 19 
in PD is largely necessitated by frontal dopamine dysfunction. It should be noted, however, that 20 
manipulation of primary dopamine medications (i.e., levodopa) was not possible in this study, warranting 21 
caution when interpreting the causal nature of these effects. 22 
 
Taken together, these results suggest that the clinical impact of expressions of aberrant neurophysiological 23 
activity in PD is dependent on their anatomical locus and neurochemical basis: the same multi-spectral 24 
neurophysiological patterns indicating impairment in one brain region indicate compensation elsewhere 25 
on the cortex. These findings may explain the highly variable clinical outcomes of anatomically-targeted 26 
rhythmic modulation of frequency-specific neurophysiological activity20-26. In fact, many of these studies 27 
have targeted the primary motor cortices, which our results indicate as a point of anatomical inflection 28 
along the compensation-impairment axis. We argue that future studies aiming to ameliorate cognitive and 29 
motor symptoms in patients with PD should be anatomically selective, normalizing cortical slowing in 30 
posterior parietal cortices, and/or enhancing cortical slowing over inferior frontal regions. Spatial targeting 31 
of neuromodulation might also be personalized per patient. For example, distinct protocols may be advised 32 
depending on the laterality of symptom onset, prescription of dopaminergic agonists, and/or presence of 33 
subjective cognitive complaints.   34 
 
To our knowledge, this is also the first report of both rhythmic and arrhythmic contributors to 35 
neurophysiological slowing effects in any patient population. Separating these contributions allowed us to 36 
detect relationships to motor function and cognition that were not significant when using non-37 
parameterized neurophysiological spectra. This provides evidence that rhythmic and arrhythmic slowing 38 
effects are at least partially distinct. We also anticipate these findings will impact ongoing research on 39 
rhythmic neuromodulation for the treatment of patients with neurodegenerative disorders. Although we 40 
report clinically-relevant rhythmic components of cortical slowing, we also find that shifts in the arrhythmic 41 
spectra are associated with clinical features. We foresee that future research will investigate whether the 42 
cortical slowing effects reported previously in other patient groups52,88,89 exhibit similar distinctions 43 
between arrhythmic and rhythmic components of neurophysiological signals.  44 
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We also find that cortical slowing effects in PD are not confined to local changes in spectral power, but also 1 
affect frequency-specific inter-regional connectivity. The slowing effects of cortico-cortical functional 2 
connectivity reported herein may indicate a shift towards slower, more stable channels of 3 
neurophysiological communication in PD. However, this hypothesis needs to be tested directly in future 4 
work. We found that these connectivity slowing effects were widely distributed across the cortex, and 5 
argue that the data provide a proof-of-concept of the applicability of cortical slowing measures to other 6 
types of multi-spectral data (e.g., frequency-specific functional connectivity) and in other patient groups. 7 
 
In sum, we show that patients with Parkinson’s disease exhibit neurophysiological slowing across multiple 8 
cortical regions, contributed by both rhythmic and arrhythmic spectral components. Cortical slowing is 9 
associated with worse motor function and cognition in superior parietal regions, but transitions to a 10 
compensatory effect along a superior – inferior and posterior – anterior anatomical gradient towards 11 
inferior frontal regions. This sagittal gradient effect indicates a need for more evidence-based targeting of 12 
neuromodulation therapies. We also demonstrate proof-of-concept for slowing of frequency-defined 13 
cortico-cortical functional connectivity in PD.  14 
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Methods 1 

Participants 2 

The Research Ethics Board at the Montreal Neurological Institute reviewed and approved this study. 3 
Written informed consent was obtained from every participant following detailed description of the study, 4 
and all research protocols complied with the Declaration of Helsinki. Exclusionary criteria for all participants 5 
included current neurological (other than PD) or psychiatric disorder; MEG contraindications; and unusable 6 
MEG or demographic data. All participants completed the same MEG protocols with the same instrument 7 
at the same site.  8 
 
Patients with mild to moderate (Hoehn and Yahr scale: 1 – 3) idiopathic PD were enrolled in the Quebec 9 
Parkinson Network (QPN; https://rpq-qpn.ca/)53 initiative, which comprises extensive clinical, 10 
neuroimaging, neuropsychological, and biological profiling of each participant. A final sample of 79 11 
participants with PD fulfilled the inclusion criteria. All patients with PD were prescribed a stable dosage of 12 
antiparkinsonian medication with satisfactory clinical response prior to study enrollment. Patients were 13 
instructed to take their medication as prescribed before research visits, and thus all data were collected in 14 
the practically-defined “ON” state.  15 
 
Neuroimaging data from 65 healthy older adults were collated from the PREVENT-AD (N = 50)54 and Open 16 
MEG Archive (OMEGA; N = 15)55 data repositories to serve as a comparison group for the patients with PD. 17 
These participants were selected so that their demographic characteristics, including age (Mann-Whitney 18 
U test; W = 2349.50, p = .382), self-reported sex (chi-squared test; χ2 = 0.65, p = .422), handedness (chi-19 
squared test; χ2 = 0.25, p = .883), and highest level of education (Mann-Whitney U test; W =2502.50, p = 20 
.444), did not significantly differ from those of the patient group. Group demographic summary statistics 21 
and comparisons, as well as clinical summary statistics for the patient group, are provided in Table 1. 22 
 
Clinical & Neuropsychological Testing 23 
 
Standard clinical assessments were available for most of the patients with PD, including data regarding 24 
gross motor impairment (Unified Parkinson’s Disease Rating Scale – part III [UPDRS-III]; N = 61)56, general 25 
cognitive function (Montreal Cognitive Assessment [MoCA]; N = 70)57, disease staging (Hoehn & Yahr scale; 26 
N = 57)58,59, symptom onset asymmetry (N = 66), use of dopamine agonists (N = 66), and subjective cognitive 27 
complaints (N = 55).  28 
 
The patients were also asked to complete a series of detailed neuropsychological tests, with a final sample 29 
of 69 participants with PD providing useable data. These tests concerned five domains of cognitive function 30 
impacted in PD: attention (Digit Span – Forward, Backward, and Sequencing; Trail Making Test Part A), 31 
executive function (Trail Making Test Part B; Stroop Test – Colors, Words, and Interference; Brixton Spatial 32 
Anticipation Test), memory (Hopkins Verbal Learning Test-Revised [HVLT-R] – Learning Trials 1-3, 33 
Immediate and Delayed Recall; Rey Complex Figure Test [RCFT] – Immediate and Delayed Recall), language 34 
(Semantic Verbal Fluency – Animals & Actions; Phonemic Verbal Fluency – F, A & S; Boston Naming Test), 35 
and visuospatial function (Clock Drawing Test – Verbal Command & Copy Command; RCFT – Copy). To 36 
utilize as much available data as possible, missing values were excluded pairwise from analysis per each 37 
test. Negatively-scored test values were sign-inverted, the data for each individual test were standardized 38 
to the mean and standard deviation of the available sample, and these z-scores were then averaged within 39 
each domain listed above to derive domain-specific metrics of cognitive function. To corroborate the 40 
statistical independence of these domain composite scores, we computed a ratio of z-scores in the patient 41 
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group representing the mean of all pairwise relationships (i.e., linearly-scaled Pearson correlation 1 
coefficients) amongst intra-domain tests, divided by the mean of all relationships with inter-domain tests. 2 
All domains had a ratio of zintra/zinter > 1.50, and the mean zintra/zinter ratio over all domains was 2.12 (SD = 3 
0.30). This indicates that these domains were about twice more internally- than externally related on 4 
average. The mean across all five domains was also computed for each patient to represent general 5 
cognitive function. Importantly, as some participants were missing data on one or more tests within each 6 
domain, we verified that none of the domain scores were related to the number of tests used for their 7 
computation across individuals (attention: r = .04, p = .734; memory: r = -.19, p = .124; visuospatial function: 8 
no missing data; executive function: r = -.19, p = .117; language: r = -.08, p = .539; global function: r = -.14, 9 
p = .239; all BF10’s < 0.50). Demographically-corrected neuropsychological data were not available for this 10 
study, therefore, demographic factors significantly covarying with cognitive domain scores were included 11 
as nuisance covariates in all relevant statistical models. No significant impact of self-reported sex, highest 12 
level of education, nor handedness was found on any of the neuropsychological domain scores (all p’s > 13 
.20). In contrast, age was a moderate-to-strong predictor of neuropsychological testing performance 14 
(memory: r = -.34, p = .004; attention: r = -.22, p = .068; visuospatial function: r = -.54, p < .001; executive 15 
function: r = -.43, p < .001; language: r = -.26, p = .030). Accordingly, all statistical analyses utilizing these 16 
neuropsychological data included age as a nuisance covariate. 17 
 
Magnetoencephalography Data Collection and Analyses  18 
 
Eyes-open resting-state MEG data were collected from each participant using a 275-channel whole-head 19 
CTF system (Port Coquitlam, British Columbia, Canada) at a sampling rate of 2400 Hz and with an 20 
antialiasing filter with a 600 Hz cut-off. Noise-cancellation was applied using CTF’s software-based built-in 21 
third-order spatial gradient noise filters. Recordings lasted a minimum of 5 min60 and were conducted with 22 
participants in the seated position as they fixated on a centrally-presented crosshair. The participants were 23 
monitored during data acquisition via real-time audio-video feeds from inside the MEG shielded room, and 24 
continuous head position was recorded during all sessions. 25 
 
MEG preprocessing was performed with Brainstorm61 unless otherwise specified, with default parameters 26 
and following good-practice guidelines62. The data were bandpass filtered between 1–200 Hz to reduce 27 
slow-wave drift and high-frequency noise, and notch filters were applied at the line-in frequency and 28 
harmonics (i.e., 60, 120 & 180 Hz). Signal space projectors (SSPs) were derived around cardiac and eye-29 
blink events detected from ECG and EOG channels using the automated procedure available in 30 
Brainstorm63, reviewed and manually-corrected where necessary, and applied to the data. Additional SSPs 31 
were also used to attenuate stereotyped artifacts on an individual basis. Artifact-reduced MEG data were 32 
then epoched into non-overlapping 6-second blocks and downsampled to 600 Hz. Data segments still 33 
containing major artifacts (e.g., SQUID jumps) were excluded for each session on the basis of the union of 34 
two standardized thresholds of ± 3 median absolute deviations from the median: one for signal amplitude 35 
and one for its numerical gradient. An average of 79.72 (SD = 13.82) epochs were used for further analysis 36 
(patients: 83.78 [SD = 7.24]; controls: 74.77 [SD = 17.82]). Empty-room recordings lasting at least 2 minutes 37 
were collected on or near the same day as the data recordings and were processed using the same pipeline, 38 
with the exception of the artifact SSPs, to model environmental noise statistics for source analysis. 39 
 
MEG data were coregistered to each individual’s segmented T1-weighted MRI (Freesurfer recon-all)64 using 40 
approximately 100 digitized head points. For participants without useable MRI data (N = 14 patients with 41 
PD; N = 3 healthy older adults), a quasi-individualized anatomy was created and coregistered with 42 
Brainstorm to the MEG data, by warping the default Freesurfer anatomy to the participant’s head 43 
digitization points and anatomical landmarks65. Source imaging was performed per epoch using 44 
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individually-fitted overlapping-spheres head models (15,000 cortical vertices, with current flows of 1 
unconstrained orientation) and dynamic statistical parametric mapping (dSPM). Noise covariance 2 
estimated from the previously-mentioned empty-room recordings were used for the computation of the 3 
dSPM maps.  4 
 
Analyses of Cortical & Functional Connectivity Slowing 5 
 
Cortical slowing was assessed per patient with PD using a previously-validated method52, implemented as 6 
a linear model of spectral power deviations from healthy participants as a function of frequency (Figure 7 
1A). This model is continuously-scaled, spatially-resolved, and unbiased by the natural differences in 8 
neurophysiological signal amplitude observed as a function of frequency. We computed vertex-wise 9 
estimates of power spectral density (PSD) from the source-imaged MEG data using Welch’s method (3-s 10 
time windows with 50% overlap) and normalized the resulting PSD estimates to the total power of the 11 
frequency spectrum. These PSD data were next averaged over all artifact-free 6-second epochs for each 12 
participant, and the PSD root-mean-squares (RMS) across the three unconstrained current flow 13 
orientations at each cortical vertex location was projected onto a template cortical surface (FSAverage) for 14 
comparison across participants.  15 
 
To disentangle the slowing effects due to rhythmic versus arrhythmic cortical activity in patients with PD, 16 
we parameterized the PSDs with specparam (Brainstorm Matlab version; frequency range = 2–40 Hz; 17 
Gaussian peak model; peak width limits = 0.5 –12 Hz; maximum n peaks = 3; minimum peak height = 3 dB; 18 
proximity threshold = 2 standard deviations of the largest peak; fixed aperiodic; no guess weight)43 and 19 
extracted the exponent of arrhythmic spectral components. The arrhythmic components of the power 20 
spectra were the aperiodic outputs of specparam and the rhythmic (i.e., aperiodic-corrected) spectra were 21 
derived by subtracting these arrhythmic components from the original PSDs. The PSD components were 22 
then averaged over canonical frequency bands (delta: 2–4 Hz; theta: 5–7 Hz; alpha: 8–12 Hz; beta: 15–29 23 
Hz)63. For each PD participant, the resulting PSD maps of spectrally-resolved estimates of 24 
neurophysiological signal power were normalized per frequency band to the mean and standard deviation 25 
of the comparable maps from the control group, resulting in cortical maps of PD spectral deviations from 26 
healthy variants. We then fit a linear model across the four frequency bands per each participant and 27 
cortical vertex location using the polyfit function in Matlab and extracted the model slope. This procedure 28 
yielded cortical maps of linear trends in spectral neurophysiological deviations per patient with PD. In these 29 
maps, cortical locations with flat slopes indicate locations of no substantial spectral change with respect to 30 
expected healthy variants, while more negative slopes indicate locations of stronger cortical slowing 31 
effects. 32 
 
In addition to deriving maps of cortical slowing, we also used the source-imaged MEG data to investigate 33 
the potential for slowing of inter-regional functional connectivity in patients with PD. We extracted the first 34 
principal component from the three elementary source time series at each vertex location in each 35 
participant’s native space, and derived whole-cortex functional connectivity maps, using the cortical 36 
location with the strongest overall slowing effect (back-transformed into each participant’s native space) 37 
as the seed. We used orthogonalized amplitude envelope correlations (AEC)66,67 as the connectivity 38 
measure, based on the same frequency-band definitions used for the previously-described cortical slowing 39 
derivations. We estimated connectivity over each epoch and averaged the resulting AEC estimates across 40 
epochs, yielding a single AEC map per participant and frequency band. We projected these individual AEC 41 
maps onto the same template cortical surface (FSAverage) for group analyses, and used the previously-42 
described procedure to derive spatially-resolved maps of functional connectivity slowing per patient with 43 
PD.  44 
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Testing of Cortical Clinical-Gradient Effects 1 
 
To ensure that gyrification of the pial surface did not bias our estimation of absolute distance between 2 
neighboring cortical locations, we applied a smoothing kernel to the template surface coordinate matrix 3 
using the tess_smooth function in Brainstorm (100% smoothing; i.e., smoothing factor of 1 with 46 4 
iterations). We then used a two-step procedure to test for spatial gradients in the relationships between 5 
clinical impairments and neurophysiological slowing along the cortical surface (Figure 1B). We first modeled 6 
linear relationships at each cortical location between neurophysiological slowing and both motor (i.e., 7 
UPDRS-III) and cognitive (i.e., mean cognitive domain scores) impairments, beyond the effects of age, using 8 
the partialcorr function in Matlab. The resulting Pearson correlation coefficient values were then 9 
normalized using the Fisher transform (i.e., the inverse hyperbolic tangent; using the atanh function in 10 
Matlab), the neuropsychology correlations were sign-reversed for comparability with those computed from 11 
the UPDRS-III scores, and the two were summed at each location to generate cortical maps of the 12 
association between neurophysiological slowing and clinical impairments. In the second step, we fit a 13 
multiple regression model to these data using the regress function in Matlab, with the summed Fisher-14 
transformed correlation coefficients as the dependent variable and the three cardinal axes of the template 15 
brain space (i.e., X: left – right, Y: posterior – anterior, and Z: inferior – superior) as the independent 16 
predictors. The unstandardized beta weights for each predictor were extracted from this model, 17 
representing the absolute change in the slowing–clinical impairment relationship (i.e., sum(atanh[r])) per 18 
unit distance (i.e., meters) across the cortex. Where relevant, we also performed post-hoc testing 19 
separately for the motor (i.e., UPDRS-III) and cognitive (i.e., mean cognitive domain scores) impairment 20 
data using the same procedure. 21 
 
Co-localization with Normative Atlases of Neurotransmitter Receptor Density 22 
 
To determine the neurochemical systems that contribute to the observed cortical clinical-gradient effects, 23 
we adapted the two-step procedure described above, substituting as predictors region-wise estimates of 24 
normative neurotransmitter receptor/transporter density68,69 for the cardinal spatial axis data. Mean 25 
cortical receptor distribution maps of 16 different receptors and transporters from 6 neurotransmitter 26 
systems were computed as in previous work68 and parcellated using the Desikan-Killiany atlas70. These 27 
included dopamine (D1: 13 adults, [11C]SCH23390 PET; D2: 92, [11C]FLB-457, DAT: 174, [123I]-FP-CIT), 28 
serotonin (5-HT1a: 36, [11C]WAY-100635; 5-HT1b: 88, [11C]P943; 5-HT2a: 29, [11C]Cimbi-36; 5-HT4: 59, 29 
[11C]SB207145; 5-HT6: 30, [11C]GSK215083; 5-HTT: 100, [11C]DASB), acetylcholine (α4β2: 30, 30 
[18F]flubatine; M1: 24, [11C]LSN3172176; VAChT: 30, [18F]FEOBV), GABA (GABAa: 16, [11C]flumazenil), 31 
glutamate (NMDA: 29, [18F]GE-179; mGluR5: 123, [11C]ABP688), and norepinephrine (NET: 77, [11C]MRB).  32 
In addition, to test the importance of total synapse density, we also extracted a similar map of synaptic 33 
vesicle glycoprotein 2A (76, [11C]UCB-J)71. To facilitate comparison of the clinical-gradient effects to these 34 
normative maps, we parcellated the source-imaged MEG PSDs using the mean within each region of the 35 
same atlas70, and recomputed the neurophysiological slowing metric per atlas region. These slowing values 36 
were then related to cognitive and motor function (controlling for effects of age), normalized (and, for the 37 
cognitive relationships, sign-reversed), and summed using the same procedure described for the clinical-38 
gradient analysis (step 1). To enable comparisons across neurotransmitter systems, the density and 39 
neurophysiological slowing data were each standardized (i.e., z-scored) across cortical regions. Linear 40 
regressions were then used to derive standardized beta-weights representing the co-localization of the 41 
cortical clinical-gradient effect with each normative neurotransmitter map (step 2). 42 
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Testing for Potential Confounds 1 
 
We investigated possible confound effects due to participant head motion, eye movements, and heart-rate 2 
variability. We extracted the head-position indicator, EOG, and ECG channel time series RMS, respectively. 3 
Alongside age and the number of trials used for analysis per participant, these derivations were included in 4 
post hoc statistical models to examine the robustness of the initial effect(s) of interest against potential 5 
confounds. 6 
 
Statistical Analyses  7 
 
Participants with missing data were excluded pairwise per model. A threshold of p < .05 was used to indicate 8 
statistical significance, and all tests were performed two-tailed unless otherwise specified. 9 
 
We derived statistical comparisons across the cortical maps produced, covarying out the effect of age, using 10 
SPM12. Initial tests used parametric general linear models, with secondary corrections of the resulting F-11 
contrasts for multiple comparisons across cortical locations using Threshold-Free Cluster Enhancement 12 
(TFCE; E = 1.0, H = 2.0; 5,000 permutations)72. We applied a final cluster-wise threshold of pFWE < .05 to 13 
determine statistical significance, and used the TFCE clusters at this threshold to mask the original statistical 14 
values (i.e., vertex-wise F values) for visualization. We extracted data from the cortical location exhibiting 15 
the strongest statistical relationship in each cluster (i.e., the “peak vertex”) for subsequent analysis and 16 
visualization. Where appropriate, linear models were fit to these extracted data using the lm function in 17 
R73. 18 
 
A non-parametric permutation approach was used to determine the statistical significance of the spatial 19 
gradient and neurotransmitter co-localization effects, wherein at each vertex the patient cortical slowing 20 
data were randomly permuted (using the randperm function in Matlab) and used to compute the partial 21 
correlations (step 1) and regressions (step 2). This process was repeated 1,000 times, and the resulting 22 
beta-weights were extracted to generate null distributions for each predictor. The original beta coefficients 23 
were then compared with their respective null distributions to generate non-parametric p-values. To test 24 
for significant subgroup effects on the spatial gradients based on binary clinical factors (i.e., subjective 25 
cognitive complaints, symptom onset laterality, and dopamine agonist use), we implemented the same 26 
two-step approach, using instead the difference in beta-weights (from step 2) between clinical groups as 27 
the statistic of interest. 28 
 
Data & Code Availability 29 
 
Data used in the preparation of this work are available through the Clinical Biospecimen Imaging and 30 
Genetic (C-BIG) repository (https://www.mcgill.ca/neuro/open-science/c-big-repository)53, the PREVENT-31 
AD open resource (https://openpreventad.loris.ca/)54, and the OMEGA repository 32 
(https://www.mcgill.ca/bic/resources/omega)55. Normative neurotransmitter density data are available 33 
from neuromaps (https://github.com/netneurolab/neuromaps)69. Code for MEG preprocessing and the 34 
neurophysiological slowing and spatial gradient analyses is available at 35 
https://github.com/aiwiesman/QPN_Slowing. Rejection of epochs containing artifacts was performed with 36 
the ArtifactScanTool (https://github.com/nichrishayes/ArtifactScanTool).   37 
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Figure Legends 1 

Figure 1. Neurophysiological slowing and anatomical gradient analyses. (A) Neural slowing computation. 2 
Source-imaged magnetoencephalography (MEG) data is first frequency-transformed and the vertex-wise 3 
power spectral densities (PSD) parameterized using specparam. The resulting PSDs are averaged over 4 
typical frequency bands (i.e., delta: 2–4 Hz; theta: 5–7 Hz; alpha: 8–12 Hz; beta: 15–29 Hz) and each 5 
spectrally- and spatially-resolved power estimate of neurophysiological signal per patient is normalized to 6 
the mean and standard deviation of the comparable estimates in the healthy control group. Within each 7 
patient and at each spatial location, a linear model is then fit to these spectral deviations across 8 
frequencies, and the slope of this model is extracted that represents the relative slowing (i.e., negative 9 
slope values) of brain activity relative to healthy levels. This procedure is performed per cortical vertex, 10 
resulting in a spatially-resolved map of neurophysiological slowing per patient. (B) Spatial gradient analysis. 11 
Cortical surfaces are first smoothed to reduce the impact of gyrification on the estimation of spatial 12 
gradient effects. Per each vertex location, neurophysiological slowing values are separately correlated with 13 
motor (i.e., UPDRS-III scores) and cognitive (i.e., sign-reversed neuropsychological scores averaged over 14 
cognitive domains) impairments, beyond the effects of age. These partial correlation maps are then 15 
linearly-scaled (i.e., using the Fisher-transform) and summed per vertex, resulting in a single cortical map 16 
showing the nature and strength of the relationships between neurophysiological slowing and clinical 17 
impairments across the brain. A linear multiple regression is then fit to these data and the beta weights 18 
extracted, with each of the cardinal axes (X: left – right; Y:  posterior – anterior; Z: inferior – superior) 19 
represented as a predictor. The neurophysiological slowing data are then randomly permuted across 20 
patients and the partial correlation and spatial multiple regression steps repeated 1,000 times, with the 21 
resulting beta weights extracted and used to build null distributions per each predictor. To test for the 22 
effect of binary clinical factors on these gradients, the same procedure is performed within each binarized 23 
patient subgroup, with the difference in beta weights between the two subgroups used as the statistic of 24 
interest. 25 

Figure 2. Neurophysiological slowing associated with cognitive abilities in Parkinson’s disease. (A) Cortical 26 
maps indicate significant clusters of neurophysiological slowing in patients with Parkinson’s disease (PD) 27 
after stringent multiple comparisons correction. Power spectra to the bottom left indicate the underlying 28 
data used to compute neurophysiological slowing from the cortical vertex exhibiting the strongest effect, 29 
with colored bars underneath showing the bandwidths of typical frequency-band definitions used for 30 
averaging. The plot to the bottom right shows the individual patient spectral deviations at this same cortical 31 
vertex for each frequency band, with the light grey lines-of-best fit indicating individual neurophysiological 32 
slowing slopes, and the overlaid black line and blue shaded area representing the overall group effect and 33 
95% confidence intervals, respectively. These individual and mean neurophysiological slowing effects are 34 
also represented as single dots in the scatterplot to the top right. (B) Cortical maps indicate significant 35 
clusters where neurophysiological slowing was associated with cognitive function in patients with PD. 36 
Associated scatterplots indicate the nature and strength of this relationship at the cortical vertex exhibiting 37 
the strongest effect, with lines-of-best-fit, 95% confidence intervals, and R2 values overlaid. 38 

Figure 3. Arrhythmic neurophysiological slowing associated with clinical impairments in Parkinson’s disease. 39 
Similar to Figure 2, but with neurophysiological slowing computed using the arrhythmic (i.e., aperiodic) 40 
component of the parameterized spectra. (A) Cortical maps indicate significant clusters of arrhythmic 41 
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neurophysiological slowing in patients with Parkinson’s disease (PD) after stringent multiple comparisons 1 
correction. Power spectra to the bottom left indicate the underlying data used to compute 2 
neurophysiological slowing from the cortical vertex exhibiting the strongest effect, with colored bars 3 
underneath showing the bandwidths of typical frequency-band definitions used for averaging. The plot to 4 
the bottom right shows the individual patient spectral deviations at this same cortical vertex for each 5 
frequency, with the light grey lines-of-best fit indicating individual neurophysiological slowing slopes, and 6 
the overlaid black line and blue shaded area representing the overall group effect and 95% confidence 7 
intervals, respectively. These individual and mean neurophysiological slowing effects are also represented 8 
as single dots in the scatterplot to the top right. (B) Cortical maps indicate significant clusters where 9 
neurophysiological slowing was associated with cognitive function in patients with PD. Associated 10 
scatterplots indicate the nature and strength of this relationship at the cortical vertex exhibiting the 11 
strongest effect, with lines-of-best-fit, 95% confidence intervals, and R2 values overlaid. 12 

Figure 4. Rhythmic neurophysiological slowing associated with clinical impairments in Parkinson’s disease. 13 
Similar to Figure 2, but with neurophysiological slowing computed using the rhythmic (i.e., aperiodic-14 
corrected) component of the parameterized spectra. (A) Cortical maps indicate significant clusters of 15 
rhythmic neurophysiological slowing in patients with Parkinson’s disease (PD) after stringent multiple 16 
comparisons correction. Power spectra to the bottom left indicate the underlying data used to compute 17 
neurophysiological slowing from the cortical vertex exhibiting the strongest effect, with colored bars 18 
underneath showing the bandwidths of typical frequency-band definitions used for averaging. The plot to 19 
the bottom right shows the individual patient spectral deviations at this same cortical vertex for each 20 
frequency band, with the light grey lines-of-best fit indicating individual neurophysiological slowing slopes, 21 
and the overlaid black line and blue shaded area representing the overall group effect and 95% confidence 22 
intervals, respectively. These individual and mean neurophysiological slowing effects are also represented 23 
as single dots in the scatterplot to the top right. (B) Cortical maps indicate the significant cluster where 24 
neurophysiological slowing was associated with attention function in patients with PD. Associated 25 
scatterplots indicate the nature and strength of this relationship at the cortical vertex exhibiting the 26 
strongest effect, with the line-of-best-fit, 95% confidence interval, and R2 value overlaid. 27 

Figure 5. Anatomical gradient of clinical effects of neurophysiological slowing in Parkinson’s disease. (A) 28 
Cortical maps indicate the nature and strength of relationships between neurophysiological slowing and 29 
clinical impairments (i.e., partial correlations linearly-scaled and summed across motor and cognitive 30 
domains) along the cortex of patients with Parkinson’s disease, with lower values indicating a more 31 
pathological relationship (i.e., greater slowing predicts worse clinical deficits) and higher values indicating 32 
a possible compensatory effect. Grey vectors plotted along the cardinal anatomical axes are 33 
unstandardized beta weights from a multiple regression of the neurophysiological slowing – clinical 34 
impairment relationships on the relevant anatomical coordinates (X: left – right; Y:  posterior – anterior; Z: 35 
inferior – superior), and indicate the magnitude and direction of the significant anatomical gradient effects. 36 
Overlaid p-values were generated using a non-parametric permutation approach and indicate statistical 37 
significance per each axis of the gradient effect. The blue vector indicates the magnitude and direction of 38 
the overall significant anatomical gradient effect. (B) Cortical maps again indicate the nature and strength 39 
of the neurophysiological slowing – clinical impairment relationships across the cortex of patients with 40 
Parkinson’s disease, but with neurophysiological slowing computed using the rhythmic (left) and 41 
arrhythmic (right) components of the parameterized spectra separately. The significant anatomical 42 
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gradient effects observed in the non-parameterized neurophysiological slowing data (panel A) did not differ 1 
between the rhythmic and arrhythmic models.  2 

Figure 6. The anatomical gradients of clinical effects of neurophysiological slowing in Parkinson’s disease are 3 
clinically meaningful. Cortical maps indicate differences in the nature and strength of relationships between 4 
neurophysiological slowing and clinical impairments in patients with Parkinson’s disease, as a function of 5 
binary clinical features, including (A) the presence of subjective cognitive complaints, (B) the use of 6 
dopamine agonists, and (C) the laterality of initial symptom onset. Purple vectors plotted along the cardinal 7 
spatial axes are unstandardized beta weights from a multiple regression of the neurophysiological slowing 8 
– clinical impairment relationships on the relevant spatial coordinates (X: left – right; Y:  posterior – anterior; 9 
Z: inferior – superior), subtracted between the two clinical feature subgroups. Overlaid p-values were 10 
generated using a non-parametric permutation approach and indicate statistical significance per each axis 11 
of the difference in the gradient effect.  The blue and red vectors indicate the magnitude and direction of 12 
the overall anatomical gradient effects per each clinical feature subgroup. 13 

Figure 7. Clinical effects of neurophysiological slowing selectively co-localize with receptor densities. (A) 14 
Parcellated cortical maps indicate the nature and strength of relationships between neurophysiological 15 
slowing and clinical impairments (i.e., partial correlations linearly-scaled and summed across motor and 16 
cognitive domains, z-scored across brain regions) in patients with Parkinson’s disease. The vector 17 
heatmap below indicates the strength (standardized β) and statistical significance (*pFDR < .05, **pFDR < 18 
.005) of co-localization between the neurophysiological slowing-clinical relationship and each neuromap 19 
measure, including dopamine (D1, D2, and DAT), serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-20 
HTT), acetylcholine (α4β2, M1, VAChT), GABA (GABAa), glutamate (NMDA, mGluR5), norepinephrine 21 
(NET), and synapse density (glycoprotein). (B) Parcellated cortical maps indicate the density of each 22 
neuromap measure, z-scored across brain regions.  23 
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Table 1. Group demographic comparisons and patient group clinical profile. 

HC: healthy control group; PD: Parkinson’s disease group; MoCA: Montreal Cognitive Assessment; UPDRS-III: Unified Parkinson’s 
Disease Rating Scale part III; DA: Dopamine. Unless otherwise indicated, values indicate means and associated parentheticals 
indicate standard deviations. P-values indicate significance of between-groups Mann-Whitney U tests and chi-square tests for 
continuous and categorical variables, respectively. *N = 59; highest level of education was not reported by six HC participants. 

 

 

 

 

 

 
Age 

(years) 
Sex 

(% male) 
Handedness 
(# left/ambi) 

Education 
(years) 

    

HC (N = 65) 63.02 (8.13) 64.62 3/3 15.85 (3.72)*     
PD (N = 79) 64.60 (8.21) 70.89 5/3 15.05 (3.04)     

p .382 .422 .883 .444     

 
MoCA 

(N = 70) 
UPDRS-III 
(N = 61) 

Hoehn & 
Yahr 

(N = 57) 

% Reporting 
Cognitive 

Complaints 
(N = 55) 

% Left 
Symptom 

Onset 
(N = 66) 

% Taking 
DA Agonists 

(N = 66) 

PD       
Range 12 – 30 7 – 71  1 – 3  - - -  

Mean (SD) 24.39 (3.98) 32.44 (14.64) 1.90 (0.70) 58.18 51.52 31.82 
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