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Abstract 

Background: Body mass index (BMI) and obesity rates have increased sharply since the 1980s. While 

multiple epidemiologic studies have found higher adolescent cognitive ability is associated with lower 

adult BMI, residual and unobserved confounding due to family background may explain these 

associations. We used a sibling design to test this association accounting for confounding factors shared 

within households. 

Methods: We used data from four cohort studies: the National Longitudinal Study of Youth 1979 

(NLSY-79), the NLSY-79 Children and Young Adult, the NLSY 1997 (NLSY-97) and the Wisconsin 

Longitudinal Study (WLS); a total of 12,250 siblings from 5,602 households. We used random effects 

within-between (REWB) and residualized quantile regression (RQR) models to compare between- and 

within-family estimates of the association between adolescent cognitive ability and adult BMI (20-64 

years).  

Results: In REWB models, moving from 0th to 100th percentile of adolescent cognitive ability was 

associated with -1.89 kg/m2 (95% CI = -2.41, -1.37) lower BMI between families. Adjusting for family 

socioeconomic position reduced the association to -1.23 (-1.79, -0.66) points. However, within families 

the association was just -0.13 (-0.70, 0.45) points. This pattern of results was found across multiple 

specifications, including analyses conducted in separate cohorts, models examining age-differences in 

association, and in RQR models examining the association across the distribution of BMI. 

Conclusion: The association between high adolescent cognitive ability and low adult BMI was 

substantially smaller in within-family compared with between-family analysis. The well-replicated 

associations between cognitive ability and subsequent BMI may largely reflect confounding by family 

background factors.  

Keywords: intelligence; cognitive ability; IQ; body mass index; obesity; sibling design 
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Introduction 

Obesity rates have increased dramatically across developed countries since the 1980s [1], with 

significant consequences for public health and national economies [2]. Explanations for rising obesity 

rates have highlighted the ‘Big-Two’, changes to diets – resulting from wider availability of high energy 

density foods – and reductions in physical activity, though several other factors have also been proposed 

[3,4]. Despite numerous policy efforts to tackle rising obesity rates [5,6], and increasing public 

knowledge of its deleterious consequences, obesity remains a leading cause of disability and mortality 

[6]. 

While the prevalence of obesity (body mass index [BMI] ≥ 30 kg/m2) has increased, changes across the 

full distribution of BMI have not been as pronounced, with relatively little change in the prevalence of 

underweight and small increases in median BMI [7–11]. This suggests that individuals differ in their 

exposure to the causes of obesity or their susceptibility to these causes [12]; estimates of the heritability 

of BMI from twin studies range 47%-90% [13]. Thus, while obesity has increased in response to societal 

change, individual factors still have a role. Identifying these factors is paramount if the causes of the 

obesity epidemic to be understood and potential means to address it are to be to be found. 

One characteristic that has been proposed to influence BMI – and health more generally – is cognitive 

ability. The field of cognitive epidemiology [14] has gathered substantial evidence that higher cognitive 

ability is associated with better health outcomes, including lower rates of mortality and major chronic 

diseases [15]. Cognitive ability is thought to affect health for two main reasons [15–17]. First, cognitive 

ability is related to higher socioeconomic position (SEP) – for instance, greater earnings and higher 

educational attainment [18] – and cognition may operate indirectly through this factor. In the present 

setting, by earning larger incomes, individuals with higher cognitive ability are likely to have greater 

access to healthier and more varied diets and to live in safer, more walkable neighbourhoods. Second, 

cognitive ability is argued to operate more directly by increasing individuals’ ability to understand and 

use nutritional, and other health-relevant, information. Correctly using nutritional labelling, for 

example, requires integrating existing nutritional knowledge with literacy and numeracy skills to 

decode information and make inferences about the healthiness of food items [19]. Health literacy was 

described in a 2022 WHO report as an “unrecognized obesity determinant” [6] and many people 

struggle to understand food labels and other health information [20–22]. Importantly, there is 

considerable overlap between the concepts of literacy and general cognitive ability [16]. Measures of 

health literacy may have little incremental validity over measures of intelligence [23]. 

Many studies have examined the association between cognitive ability and BMI [24]. Some have 

adopted a longitudinal design and investigated the link between childhood or adolescent cognitive 

ability and adult BMI, given the possibility of reverse causality in cross-sectional data [25]. Existing 

longitudinal studies span multiple countries, including several Scandinavian countries marked by low 
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social inequality. Most [26–39] but not all [39] find that individuals with higher cognitive ability have 

lower BMI and obesity rates in adulthood. Effect sizes are typically stronger for obesity than (mean) 

BMI [31,34,38,39] and there is evidence that associations are stronger at older ages [29,31,35]. The 

results from longitudinal studies are consistent with Mendelian Randomization (MR) evidence from 

samples of unrelated individuals showing an association between genetic predisposition to high (adult) 

cognitive ability and lower BMI [40]. 

Though associations between cognitive ability and BMI are widely found, results in observational 

studies could be explained by unobserved or residual confounding. Specifically, associations may be 

driven by differences in early family environments, such as early SEP and parenting practices, that are 

either unmeasured or difficult to measure with available data (see Figure S1 for a directed acyclic 

graph): childhood and adolescent BMI (which are correlated with adult BMI [41]) are related to 

maternal cognitive ability [42] and there are strong socioeconomic gradients in BMI and obesity 

[43,44]. Dynastic effects operating via parental genetics to offspring BMI could partly explain genetic 

associations, too [40]. Existing studies on the link between cognitive ability and BMI have attempted 

to capture early SEP by controlling for one or a few high-level variables (e.g., parent’s years of 

education, occupational prestige, and self-reported income), but these have had limited granularity and 

spanned a narrow age range of childhood or adolescence [26,30,31,45].  

Sibling comparison designs offer one approach to mitigate such confounding. On the assumption that 

early family environments are shared between siblings, comparing outcomes within sibships removes 

bias arising from family background (including shared dynastic effects). To our knowledge, no studies 

have used a sibling design to examine associations between early life cognition and BMI during 

adulthood. In this study, we combined sibling data from four cohort studies to examine the within-

family association between adolescent cognition and adult BMI; large samples are required to achieve 

adequate statistical power in sibling designs [46]. Given existing evidence that associations are stronger 

for obesity than BMI, we used a novel statistical approach – Residualized Quantile Regression [47] – 

to examine (within-family) associations with cognitive ability across the BMI distribution, rather than 

just the (conditional) mean. 

Methods 

Participants 

We used data from four cohort studies, each following participants from adolescence across adulthood 

and containing measures of adolescent cognitive ability and adult BMI: the National Longitudinal 

Surveys of Youth, 1979 and 1997 (NLSY-79 and NLSY-97, respectively), the NLSY-79 Child and 

Young Adults (NLSY-79 C/YA), and the Wisconsin Longitudinal Study (WLS). These cohorts are 

described in detail in the Supplementary Information. Briefly, the NLSY-79 [48] and NLSY-97 [49] 
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are ongoing studies of young people in the United States that began in 1979 and 1997, respectively. 

Recruitment to the studies took place at the household level meaning multiple sibling sets are included. 

Beside a nationally representative sample, the NLSY-79 and NLSY-97 also include an oversample of 

ethnic minority (and, for the NLSY-79, economically disadvantaged) individuals, which we treated as 

separate cohorts. The NLSY-79 C/YA is a study of the children of all females who participated in the 

NLSY-79. The WLS is a study of graduates from high school in Wisconsin in 1957 (born 1937-1938) 

with a randomly selected sibling joining in 1977 or 1993. In each cohort, we selected sets of full siblings, 

restricting to +/- 5 year difference in birth years to improve the plausibility of the assumption of shared 

family background (in sensitivity analyses, we vary this restriction). 

Measures 

Adult Body Mass Index 

We calculated BMI by dividing weight by squared height (kg/m2). We focused on BMI measured at 

age 20-64 to reduce the risk of bias due to differential mortality rates. To remove the influence of 

outliers and biologically implausible values, we set height values less than 4.5 feet (1.37 meters) and 

more than 7 feet (2.13 metres) and BMI values outside the range of 13-70 to missing (approximately 

0.1% of observations). 

Adult height and weight were measured by self-report in each cohort. Adult height and weight were 

measured on multiple occasions in the NLSY-79, NLSY-97, and NLSY-79 C/YA and only once (1992-

1994) in the WLS (see Supplementary Information for more detail). In cases where weight but not 

height was available at a given data collection, we used the last observed value for height, provided it 

was collected at age 20 or later, given the broad stability of height during adulthood [50]. 

Adolescent Cognitive ability 

Cognitive ability was measured in each cohort using validated tests capturing multiple domains of 

cognition. In the NLSY-79 and NLSY-97 this was tested using the Armed Services Vocational Aptitude 

Battery (ASVAB), which participants sat in 1980 (age 15-23) and 1998-1999 (age 13-20), respectively. 

For both studies, and to ensure comparability with other cohorts, we used age-normed centile scores 

(range 0-100) provided with the data. These combine weighted scores for the mathematical knowledge, 

arithmetic reasoning, word knowledge, and paragraph comprehension subsections of the ASVAB (for 

the NLSY-79, this is the 2006 norming exercise). In sensitivity analyses, we converted cognitive ability 

centiles to z-scores instead. 

In the NLSY-79 C/YA, cognitive ability was measured using three subscales from the Peabody 

Individual Achievement Test (PIAT), administered at ages 5–14 years (reading comprehension, reading 

recognition, and mathematical ability). Age-normed centile scores are available for each test, which we 

averaged. Given the PIAT was administered on multiple occasions, for age comparability with the 
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NLSY-79 and NLSY-97, we used the last available measurement. Note, children were not eligible to 

complete the reading comprehension test if they obtained a low score on the reading recognition test, 

so we averaged the reading recognition and mathematical ability if only these were available [42]. Two- 

and three-test averaged PIAT scores were highly correlated (ρ = 0.97). 

Cognitive ability was measured in the WLS using the Henmon–Nelson test, a group-administered, 

multiple-choice assessment containing verbal and quantitative items. The Henmon–Nelson test was sat 

by students in all Wisconsin high schools at varying school grades from the 1930s through the 1960s. 

We again used centile scores, with norming based on national test takers (range 0-100). 

Socio-Economic Position 

We included a measure of early socioeconomic position (SEP) to examine whether adjusting for this 

factor generates similar associations between cognitive ability and BMI between families as within 

families. For the NLSY-79, we used a composite measure of SEP [51] that has been used in multiple 

studies in the cognitive epidemiology literature [42,45], including a study examining the association 

between cognitive ability and BMI [26]. The measure averages z-scores for family income, parental 

occupational prestige, and mother’s and father’s years of education, each measured in 1978 or 1979. 

For the NLSY-79 CYA, we followed a similar approach and averaged z-scores for family income and 

mother’s education [42] (information on father’s education and on occupation is not available), using 

observations closest to a participant's 18th birthday. For the NLSY-97, we averaged z-scores for 

mother’s and father’s years of education and family income (occupational data not available), each of 

which were measured in 1997. For the WLS, we used a variable extracted from a factor analysis of 

family income (averaged between 1957-1960), parental occupational prestige, and mother’s and 

father’s years of education (recorded in 1957) that is supplied with the dataset. Note, in each cohort 

except the NLSY-79 CYA, the measure of SEP is fixed within a sibling set. More information on the 

SEP variables can be found in the Supplementary Information. 

Covariates 

Sibling designs do not control for confounding factors that vary among siblings. We included variables 

for cohort, sex, ethnic group (White, Black, Hispanic), age, birth order, and maternal age at birth. Other 

potential confounding variables were not measured consistently across cohorts, though data on 

childhood health were available in the NLSY-79 and NLSY-97, which we use in a robustness check 

(see below). Note, cohort and ethnic group are fixed within sibships and were included to reduce bias 

in between family associations. See Supplementary Information for more detail on the definitions of 

the covariates. 

Statistical Analysis 

Our main analytical approach was to estimate linear random effects “within-between” (REWB) [52] 

models of the following form, pooling data from the individual cohorts: 
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𝐵𝑀𝐼𝑖ℎ𝑡 = 𝛽0𝑖ℎ + 𝛽1 ∙ 𝐶𝑜𝑔̅̅ ̅̅ ̅
ℎ + 𝛽2 ∙ ∆𝐶𝑜𝑔𝑖ℎ + 𝛽𝐾 ∙ 𝑋𝑖𝑡 + 𝜀𝑖     (1) 

𝛽0𝑖ℎ𝑡  =  𝛽0 + 𝜇0𝑖 + 𝜇0ℎ 

𝜇0𝑖 ~ 𝑁(0, 𝜎0𝑖
2 ); 𝜇0ℎ  ~ 𝑁(0, 𝜎0ℎ

2 ) 

where 𝐵𝑀𝐼𝑖ℎ𝑡 is BMI for individual i from household h at time t;  𝛽0𝑖ℎ is the intercept, comprising a 

fixed-effect (𝛽0) and random intercepts at the individual (𝜇0𝑖) and household (𝜇0ℎ) level; 𝐶𝑜𝑔̅̅ ̅̅ ̅
ℎ is the 

mean level of cognitive ability in a given household h (the between-family effect); and ∆𝐶𝑜𝑔𝑖ℎ is the 

sibling-specific deviation from the mean household cognitive ability (the within-family effect). 𝑋𝑖𝑡 is a 

vector of control variables, specified above, with age, birth order and maternal age modelled with 

natural cubic splines (2 degrees of freedom each) [53] to account for potential non-linearities in their 

relationship with BMI [8]. To account for potential cross-cohort differences, we also included 

interaction terms between cohort and sex, ethnic group, age, and (depending on the model) 

socioeconomic position. We estimated models including and not including adjustment for SEP. Our 

interest was in the change in the coefficient 𝛽1 (between family association between cognitive ability 

and BMI) following adjustment for SEP and the relative size of the coefficient 𝛽2 (within family 

association). 

The association between cognitive ability and BMI may differ markedly across the cohorts, so we 

repeated Model 1 for each cohort separately and excluding a single cohort, in turn (excluding individual 

random intercepts when analyzing the WLS on its own). We also repeated Model 1 including 

interactions between mean cognitive ability and cognitive ability deviations (∆𝐶𝑜𝑔𝑖ℎ) and (linear) age 

as the previous results suggest a strengthening association across the life course [26,31]. As a robustness 

check, we ran Model 1 including further control for childhood self-rated health (categories: excellent, 

very good, good, fair, poor) in the subset of cohorts with this data (NLSY-79 and NLSY-97). 

Sibling designs can introduce bias through “carryover effects”, where one sibling influences another. 

Estimates may be attenuated if a sibling’s cognitive ability is important not just for their own BMI but 

their siblings’ BMI, too (for instance, through modelling a particular health behaviour such as smoking). 

To explore this possibility, we repeated Model 1 splitting the set of two sibling households according 

to whether the older or younger sibling had the higher cognitive ability score. On the assumption that 

older siblings will be more influential, within-family associations between cognitive ability and BMI 

should be smaller where the older sibling has the higher cognitive ability. 

Next, we examined the association between cognitive ability and BMI across the distribution of BMI 

using residualized quantile regression (RQR) [47]. Unlike standard conditional quantile regression [54], 

RQR allows for the inclusion of (family) fixed effects in quantile regression models while retaining 

clear interpretability [55], a necessity here given we have more than one observation per family. RQR 

involves two steps: in the first step, the exposure variable (here, cognitive ability) is regressed upon 
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control variables using linear regression (sex, age, ethnic group, birth order, family fixed effects) from 

which residuals are calculated. Where control variables have been chosen satisfactorily, these residuals 

represent exogenous variation in the exposure which can be used to estimate causal effects. In the 

second step, the outcome variable (here, BMI) is then regressed upon the residuals using quantile 

regression to obtain estimates of the effect of the exposure upon the unconditional outcome distribution. 

Bootstrapping is used to calculate standard errors and confidence intervals. Here, we used 500 (cluster-

robust) bootstraps, and produced quantile regression estimates for each decile (10th, 20th, …, 90th 

centiles) of the BMI distribution. As our measure of cognitive ability was time-invariant, we only used 

one observation per individual in the RQR procedure. In the main analysis, we used the first observation 

per individual, but also repeated the analysis using participants’ last observations. To obtain a 

comparable RQR estimate of the between-family association, we estimated RQR models using data 

from a single (randomly selected) individual in each household, dropping the household fixed effects 

from the first stage regression. 

All analyses were performed in R version 4.12 [56]. Complete-case data were used in each analysis, 

given the difficulty accounting for the complex, multilevel structure of the data in multiple imputation 

models. Robust regression was used to absorb the household fixed effects in the RQR first stage 

regression. 

Results 

Descriptive Statistics 

We identified 20,889 individuals (9,726 households) who were part of sibling sets. Of these, 14,560 

individuals (6,665 households) had valid data for adult BMI for two or more siblings. Approximately 

16% of individuals were excluded due to missing cognitive ability or covariate data, or lack of 

discordance in cognitive ability by siblings (N = 28). The analytical sample size was therefore 12,250 

siblings from 5,602 households (118,355 observations), 59% of the adult sibling sample. Tables S1 and 

S2 detail sample sizes and attrition rates for each cohort. 

Descriptive statistics for time-invariant characteristics are displayed in Table 1. Figure S2 shows the 

distribution of cognitive ability in each cohort. Cognitive ability levels were close to the population 

mean in the NLSY-79 and NLSY-97 Main samples and the NLSY-79 YCA. The NLSY-79 and NLSY-

97 Oversamples were below population means, while cognitive ability levels in the WLS were above 

population means. While there was less variation in cognitive ability scores within than between 

families, variability was still substantial; the within family SD for cognitive ability was between 50-

70% of the between family SD in each cohort. Overall, values for sex, age, ethnic group, and birth order 

were similar among those who had above (family-specific) average cognitive ability and below (family-

specific) average cognitive ability (see Table 1, Table S3, and Figure S3). However, there was some 
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evidence that siblings with above (family-specific) average cognitive ability had better childhood health 

(Figure S4). 

Associations Between Adolescent Cognitive Ability and Adult BMI 

In between-family analysis, higher adolescent cognition was associated with lower adult BMI; the 

difference in BMI moving from the lowest to highest percentile of cognition was -1.89 kg/m2 (95% CI 

= -2.41, -1.37; Figure 1). Adjusting for SEP attenuated the association to -1.23 kg/m2 (-1.79, -0.66). 

However, in within-family analysis the association was substantially weaker and confidence intervals 

crossed the null: a -0.13 kg/m2 (-0.70, 0.45) difference, approximately 90% smaller than the adjusted 

between-family association. A weak within family association between cognitive ability and BMI was 

found when conducted in each cohort separately, with confidence intervals overlapping the null in all 

cohorts (Figure 1). Expressed alternatively, for a person of average adult height (1.68m), a -0.13 kg/m2 

difference in BMI is equivalent to a 0.36 kg lower weight.  

Results examining age differences in the association between cognitive ability and BMI also showed a 

similar difference in between and within-family results (Figure 2). In between family analysis, the 

association was substantially stronger at older ages, rising from -0.81 kg/m2 (-1.38, -0.23) at age 20 to 

-1.91 kg/m2 (-2.50, -1.32) at age 60. The within family association, however, showed little change with 

age and was again small with confidence intervals crossing the null (Figure 2).  

Finally, analysis of the association between cognitive ability and BMI, across the distribution of BMI, 

showed a similar pattern of results. In between-family analysis, cognitive ability was associated with 

lower BMI across the BMI distribution, with effect sizes largest at higher quantiles: the effect size at 

the was -0.15 kg/m2 (-0.49, 0.21) at the 10th percentile -2.24 kg/m2 (-3.66, -0.81) at the 90th percentile; 

Figure 3. In within-family analysis, effect sizes were smaller and confidence intervals crossed the null 

(90th centile = -0.29 kg/m2; 95% CI = -1.88, 1.05). 

Sensitivity Analyses 

Qualitatively similar results were observed when varying the maximum age range to select sibling sets 

between 1-10 years (Figure S5), when excluding a single cohort from REWB models (Figure S6), and 

when using cognitive ability z-scores rather than ranks (Figure S7). Within-family estimates in the 

NLSY-79 and NLSY-97 combined were attenuated still further when including adolescent self-rated as 

a control variable. Consistent with a carryover effect, the within family association was weaker among 

two sibling families where the older sibling had the higher cognitive ability score, though confidence 

intervals had considerable overlap (Figure S8). Within-family associations between cognitive ability 

and the distribution of BMI generally remained weak when the last observation was used in RQR 

models (Figure S9). 
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Discussion 

Main Findings 

Using sibling data from four cohort studies, we found a sizeable difference in the between- and within-

family estimates between adolescent cognitive ability and adult BMI. While higher cognitive ability 

was associated with lower BMI in between-family analysis, effect sizes in within-family analysis were 

small and confidence intervals overlapped the null. This difference was found across multiple 

specifications, including analyses conducted in separate cohorts, examining age-differences in 

association, and examining differences in association across the distribution of BMI. 

Explanation of Findings 

Our results are consistent with the hypothesis that the association between adolescent cognitive ability 

and adult BMI observed in this and other studies [26–39] is substantially biased by factors which are 

shared by siblings. This finding is also consistent with recent work showing a marked attenuation in the 

genetic correlation between cognitive ability and BMI when using sibling data [57]. One plausible 

confounder that is shared by siblings is childhood socioeconomic position, which is in turn is associated 

with both adolescent cognition [58] and adult BMI [59,60]. Consistent with this, adjustment for 

childhood SEP attenuated associations in between-family analysis. However, SEP is a multidimensional 

construct typically captured with measurement error, leading to possible residual confounding. For 

instance, years of education does not capture quality of schooling and household income does not 

capture wealth. Besides SEP, other possible confounders shared between siblings include parental 

cognitive ability [42] and early neighbourhood food environments. 

While our within-family estimates were still consistent with cognitive ability having a causal effect on 

BMI, the small effect sizes we identified are surprising given theory and previous results that health 

literacy and SEP (which cognitive ability should operate through) are important predictors of obesity, 

as well as other results in the wider cognitive epidemiology literature showing little attenuation when 

using sibling designs for other outcomes [61–63]. We note, however, that at a macro level, policies 

focusing on teaching the public about food choices appear to have little evidence of impact [5]. Further, 

quasi-experimental studies of compulsory schooling reforms – which are associated with small 

increases in cognitive ability [64] – and natural experiment studies of income windfalls find 

inconclusive (and sometimes conflicting) effects on obesity overall [65,66]. One reason for the small 

effect sizes found here may be that non-volitional factors, such as appetite and dietary norms, are of 

greater importance than conscious, reflective decision making for eating and exercise behaviour. 

Another possibility is that our within-family estimates are biased and overly conservative. Sibling 

designs can introduce bias through three channels: measurement error of the exposure, confounding via 

non-shared factors, and carryover effects [46,67,68]. Measurement error is an unlikely explanation here 
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as the cognitive tests used have high reliability [69,70]. Regarding non-shared factors, it is unclear 

which would bias the association downwards to such an extent – many candidates would be anticipated 

to upwardly bias the association or are otherwise relatively rare at a population level. In our data, 

adjusting for childhood self-reported health attenuated estimates still further. Childhood illnesses 

causing lifelong wasting are unlikely to be sufficiently common. We did, however, find suggestive and 

indirect evidence of carryover effects – associations were weaker when the older sibling had higher 

cognition. However, the analysis was low powered and point estimates continued to show relatively 

small effect sizes. One potentially source of carryover effects that was not explored in our analyses was 

differences in parental investments: there is evidence that parents compensate behaviourally for 

differences in siblings’ polygenic predisposition to high cognitive ability, at least in some families [71].  

Strengths and Limitations 

Strengths of this study included the use of multiple samples and the longitudinal design: measures of 

cognitive ability were measured years before BMI, and we were able to increase statistical precision by 

including repeat measurement of BMI for each individual. Limitations of this study included a reliance 

on self-reported height and weight measurements, which likely contain measurement error [72]. 

Further, the degree of this error could be feasibly related to cognitive ability level. As noted, while 

sibling designs account for shared characteristics, non-shared factors may still bias associations (e.g. 

childhood infections or disease). There was also substantial attrition in the cohorts and, by using 

complete case data, there is thus a potential for selection bias. However, the number of successful 

follow-ups were similar among above and below (family) average cognitive ability groups. 

Conclusions 

Associations between high adolescent cognitive ability and low adult BMI were partly attenuated by 

family SEP in between-family analysis, and substantially attenuated toward the null in within-family 

analysis. Our results are consistent with the hypothesis that the well-replicated association between high 

adolescent cognitive ability and low adult BMI is biased by factors such as SEP which are shared by 

siblings. Since such factors may confound associations between cognitive ability and other health 

outcomes, further research is required to test whether other results in the cognitive epidemiology 

literature are biased by family level SEP. 
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Figures 

 

Figure 1: Between and within family associations between cognitive ability (centile rank) and BMI (+ 95% CIs). Estimates show predicted difference in BMI (kg/m2) comparing individual at the 

lowest to highest cognition (0th to 100th percentile). Derived from linear mixed effects models with random intercepts at household and individual level and age (two natural cubic splines), sex, 

cohort, birth order, and maternal age included as control variables.
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Figure 2: Between and within family associations between cognitive ability (percentile) and BMI by age. Derived from linear 

mixed effects models with random intercepts at household and individual level and age (two natural cubic splines), sex, cohort, 

birth order, maternal age, and SEP included as control variables The lines show, at a given age, the predicted difference in 

BMI moving from bottom to highest cognitive ability centiles. 
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Figure 3: Associations between cognitive ability (percentile) and BMI by quantile of BMI. Derived from residualized quantile 

regressions using the first observation per individual (within family effect) and one (first) observation per household (between 

family effect). Age, maternal age, birth order,, sex, SEP, and cohort included as control variables in the first stage regressions 

with household fixed effects also included for within family models. Confidence intervals calculated using cluster-robust 

bootstrapping (percentile method, 500 replications). The estimates show, the predicted difference in BMI moving from bottom 

to highest cognitive ability centiles at a given centile of BMI – i.e., the results for the 50th centile show the predicted difference 

in the median BMI among persons with highest cognitive ability compared with the median centile among individuals with 

lowest cognitive ability). 
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Tables 

Table 1: Descriptive statistics for time-invariant variables by cognitive ability (relative to family average) in four cohort studies. Mean (SD) and N (%). 

Variable 
Group, cognitive 

ability 
NLSY-79 Main NLSY-79 Oversample NLSY-79 CYA NLSY-97 Main NLSY-97 Oversample WLS 

N 

Total Sample 2,556 1,755 2,809 1,873 628 2,629 

Below Average 1,276 (49.9%) 897 (51.1%) 1,396 (49.7%) 936 (50%) 319 (50.8%) 1,314 (50%) 

Above Average 1,280 (50.1%) 858 (48.9%) 1,413 (50.3%) 937 (50%) 309 (49.2%) 1,315 (50%) 

Observations 

Total Sample 45,842 27,332 13,954 21,332 7,266 2,629 

Below Average 22,886 (49.9%) 14,041 (51.4%) 6,894 (49.4%) 10,507 (49.3%) 3,668 (50.5%) 1,314 (50%) 

Above Average 22,956 (50.1%) 13,291 (48.6%) 7,060 (50.6%) 10,825 (50.7%) 3,598 (49.5%) 1,315 (50%) 

Households 

Total Sample 1,113 750 1,246 889 291 1,313 

Below Average 1,113 (100%) 750 (100%) 1,246 (100%) 889 (100%) 291 (100%) 1,313 (100%) 

Above Average 1,113 (100%) 750 (100%) 1,246 (100%) 889 (100%) 291 (100%) 1,313 (100%) 

Cognitive Ability 

Total Sample 50.03 (29.69) 27.93 (22.85) 51.27 (24.84) 50.6 (28.97) 26.56 (22.23) 62.67 (25.15) 

Below Average 38.91 (27.48) 18.59 (17.68) 41.68 (23.63) 39.67 (26.45) 17.4 (17.1) 51.39 (24.42) 

Above Average 61.11 (27.6) 37.69 (23.56) 60.74 (22.24) 61.52 (27.22) 36.01 (22.96) 73.95 (20.35) 

Female 

Total Sample 1,255 (49.1%) 833 (47.46%) 1,410 (50.2%) 916 (48.91%) 302 (48.09%) 1,378 (52.42%) 

Below Average 620 (48.59%) 426 (47.49%) 725 (51.93%) 435 (46.47%) 146 (45.77%) 678 (51.6%) 

Above Average 635 (49.61%) 407 (47.44%) 685 (48.48%) 481 (51.33%) 156 (50.49%) 700 (53.23%) 
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Variable 
Group, cognitive 

ability 
NLSY-79 Main NLSY-79 Oversample NLSY-79 CYA NLSY-97 Main NLSY-97 Oversample WLS 

Male 

Total Sample 1,301 (50.9%) 922 (52.54%) 1,399 (49.8%) 957 (51.09%) 326 (51.91%) 1,251 (47.58%) 

Below Average 656 (51.41%) 471 (52.51%) 671 (48.07%) 501 (53.53%) 173 (54.23%) 636 (48.4%) 

Above Average 645 (50.39%) 451 (52.56%) 728 (51.52%) 456 (48.67%) 153 (49.51%) 615 (46.77%) 

Birth Order 

Total Sample 2.98 (1.8) 3.74 (2.33) 1.94 (0.96) 1.97 (1) 2.26 (1.12) 2.19 (1.31) 

Below Average 3 (1.83) 3.69 (2.28) 1.97 (0.94) 2.07 (0.98) 2.27 (1.09) 2.21 (1.29) 

Above Average 2.95 (1.77) 3.78 (2.37) 1.9 (0.97) 1.88 (1) 2.25 (1.15) 2.18 (1.32) 

Maternal Age 

Total Sample 25.82 (5.71) 25.88 (6.34) 24.58 (4.9) 25.45 (4.71) 24.41 (5.12) 27.32 (5.16) 

Below Average 25.81 (5.79) 25.69 (6.34) 24.68 (4.92) 25.67 (4.75) 24.42 (5.07) 27.28 (5.17) 

Above Average 25.83 (5.63) 26.08 (6.33) 24.49 (4.88) 25.23 (4.67) 24.39 (5.17) 27.37 (5.15) 
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