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ABSTRACT 
Genome-wide association studies (GWAS) of Alzheimer’s disease are predominantly carried out 
in European ancestry individuals despite the known variation in genetic architecture and disease 
prevalence across global populations. We leveraged published and de novo GWAS from 
European, East Asian, African American, and Caribbean Hispanic populations to perform the 
largest multi-ancestry GWAS meta-analysis of Alzheimer’s disease to date. This method allowed 
us to identify two independent novel disease-associated loci on chromosome 3. We also 
leveraged diverse haplotype structures to fine-map nine loci and globally assessed the 
heterogeneity of known risk factors across populations. Additionally, we compared the 
generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-
way admixed Colombian population. Our findings highlight the importance of multi-ancestry 
representation in uncovering and understanding putative factors that contribute to Alzheimer’s 
disease risk.  
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INTRODUCTION 
 
Alzheimer’s disease (AD) is a complex genetic disorder with a range of deleterious variants across 
multiple genes attributed to both early and late-onset forms of sporadic AD 1. The strongest 
genetic risk factor for late-onset AD is APOE-e4, yet it has been estimated that there may be 
anywhere from 100 to 11,000 variants that also contribute to risk of late-onset AD 2,3. Large-scale 
genome-wide association studies (GWAS) in European ancestry populations have identified over 
75 loci that are associated with AD and related dementias (ADD) 4. However, genetic research in 
AD that focuses solely on European populations limits additional discoveries afforded by studying 
diverse cohorts. Including non-European populations in genetic research provides new 
opportunities to uncover ancestry-specific risk variants and loci, increase statistical discovery 
power, improve fine-mapping resolution to identify putative causal variants, and identify loci with 
heterogeneous effects across ancestry groups 5–7. 
 
Implementing existing ancestry-aware or heterogeneity penalizing meta-regression approaches 
have proven powerful at deconvoluting the genetic architecture of other phenotypes across 
populations 8–18. Here we report the results of a multi-ancestry genome-wide meta-analysis of the 
largest publicly available AD GWAS from individuals of European, East Asian, and African 
American ancestry, and a de novo GWAS of Caribbean Hispanic individuals. Using a meta-
regression approach implemented in MR-MEGA, we demonstrate improved fine-mapping at 
several known AD loci and estimate the extent to which heterogeneity at these loci is attributable 
to genetic ancestry. This study highlights the utility of multi-ancestry analyses to further our 
understanding of disease biology and reduce health disparities in research by nominating novel 
loci and characterizing genetic differences across populations. 
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RESULTS 
Data included in this study 
Our multi-ancestry meta-analysis included a total of 54,233 AD cases, 46,828 proxy AD and 
related dementia (proxy-ADD) cases, and 543,127 controls (Figure 1; Table S1). Detailed 
information about the existing GWAS summary statistics used in this report are described 
elsewhere 4,6,19. In brief, the most recent publicly available AD GWAS includes 39,106 clinically 
diagnosed AD cases, 46,828 proxy-ADD cases (defined as having a parent with AD/dementia) 
and 401,577 controls of European ancestry 4. FinnGen data from Release 6 includes 7,329 AD 
cases and 131,102 controls free of any neurological disorder. We also included the largest 
publicly available AD GWAS of African American (2,748 cases and 5,222 controls) 6 and East 
Asian (3,962 cases and 4,074 controls) 19 populations and an additional de novo GWAS including 
1,095 cases and 1,179 controls of Caribbean Hispanic ancestry. Select SNPs from the Gwangju 
Alzheimer’s & Related Dementias (GARD) East Asian cohort (1,119 cases and 1,172 controls) 
were used to assess East Asian risk at our novel loci post-hoc since these SNPs were not tested 
in the East Asian dataset used in our meta-GWAS 20 . In this study, we considered significant 
variants as passing the standard p-value threshold of 5 x 10-8, consistent with most GWAS meta-
analyses and used previously in other multi-ancestry studies 21–23. Our analysis included only 
variants that passed quality control and with a minor allele frequency > 1% in a minimum of three 
datasets to accurately quantify heterogeneity, effectively reducing the number of potential 
haplotypes and tests. 

Meta-GWAS 
Association summary statistics from all five datasets, representing four super populations, were 
aggregated via fixed and random effects models implemented in PLINK v1.9 24 and a multi-
ancestry meta-regression implemented in MR-MEGA 25 (Table S1). We did not observe any 
genomic inflation after excluding rare variants (MAF < 1% per study) and correcting for case-
control imbalance (Table S1; Figure S1). Chromosome 19 was also excluded from genomic 
inflation estimates to avoid bias from the APOE region. Association results from the random 
effects and MR-MEGA meta-analyses were moderately concordant for SNPs without 
heterogeneity (I2=0, R2=0.6). Our study also demonstrated that MR-MEGA is advantageous for 
SNPs with heterogeneous allelic effects (Figure S2). 
 
We replicated 51 known AD loci in the random effects and MR-MEGA meta-analyses, five of 
which only reached genome-wide significance (P < 5 x 10-8) using MR-MEGA and six of which 
were only significant using the random effects model (Table S5). We additionally identified two 
independent AD risk loci on chromosome 3 near TRANK1 (rs9867455; PRE=3.49E-08, βRE=-
0.0424, I2=0) and VWA5B2 (rs9837978; PRE=3.75E-08, βRE=-0.0526, I2=0) that are outside of the 
maximal linkage disequilibrium (LD) boundary for any known AD risk loci (Figure 2). Both loci 
were identified using the random effects model and we did not identify any additional novel loci 
using MR-MEGA (Figure 3a). TRANK1 is also a risk gene for bipolar disorder I (BD I) 26 and 
schizophrenia 27, although LocusCompare plots show a weak correlation with BD I (R2=0.46) and 
schizophrenia (R2=0.23) GWAS at this locus (Figure S3-4). We observed moderate LD (R2=0.44, 
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1000 Genomes EUR) between the lead SNP identified in our study (rs9867455) and the lead SNP 
identified in the BD I GWAS (rs9834970), indicating potential cross-disease overlap for this locus.  
 
Since the lead SNPs for these potential novel loci were absent in the East Asian dataset used for 
initial discovery 19, we attempted to test these SNPs in an independent East Asian ancestry 
dataset 20. We observed a nominally significant association at VWA5B2-rs9837978 (P=0.048, 
β=0.204) in the GARD cohort (n=2,291), although the direction of effect was not consistent with 
the datasets included in the discovery GWAS. We were unable to test the association at TRANK1-
rs9867455 since this SNP was not included in that GWAS and an LD proxy SNP was not 
available.  

Gene prioritization for novel loci 
Using public expression quantitative trait locus (eQTL) evidence from Open Targets 28 and multi-
ancestry brain eQTL summary data 29, we assessed whether TRANK1-rs9867455 and VWA5B2-
rs9837978 are associated with the expression of nearby genes. Open Targets reported 
rs9867455 as a significant eQTL (P < 1 x 10-6) for LRRFIP2, ITGA9, GOLGA4, MLH1, and 
TRANK1 across blood or other tissues. LRRFIP2, GOLGA4 and TRANK1 were also nominated 
in the multi-ancestry brain eQTL data. Open Targets reported rs9837978 as a significant eQTL 
for AP2M1, ABCF3, VWA5B2, ALG3, ABCC5, DVL3, and CLCN2. AP2M1, as well as two 
additional genes (EIF2B5 and ECE2) were nominated in the multi-ancestry brain eQTL data.  
 
To prioritize susceptibility genes with expression effects on AD risk, we performed summary-
based Mendelian Randomization (SMR) to infer whether expression of the eQTL-nominated 
genes is causal for AD. More details regarding the purpose and methods used to perform SMR 
can be found in the Functional Inferences section of the Online Methods. At the TRANK1-
rs9867455 locus, TRANK1, LRRFIP2, GOLGA4, and ITGA9 were significant in our SMR results 
for affecting AD risk via expression across multiple tissue types. The strongest associations in 
cortex tissue were seen with TRANK1 and LRRFIP2. The GWAS signal at the TRANK1-
rs9867455 locus colocalized most strongly with TRANK1 expression in cortex tissue (R2=0.52; 
Figure S5). At the VWA5B2-rs9837978 locus, VWA5B2, AP2M1, ABCF3, ALG3, EIF2B5, DVL3, 
CLCN2, ABCC5 were significant in our SMR results. The strongest associations in brain tissues 
were seen in ABCF3, ALG3 and EIF2B5, although colocalization between the GWAS signal and 
these eQTLS were not very strong (R2 < 0.5; Figure S6). For more details on directionality of 
these associations, see Table S2. 

Fine-mapping 
A total of nine loci outside of the APOE, MAPT, and major histocompatibility complex (MHC) 
regions were fine-mapped to a credible set of ≤ 2 SNPs with a combined posterior probability (PP) 
of 99% (Table 2; Figures S7-8). The MHC and MAPT regions were excluded from fine-mapping 
due to a complex haplotype structure across populations 30,31 and known haplotype inversions 32, 
respectively. Five of these loci were previously fine-mapped with PP > 0.8 in large GWAS of 
European populations (Figure S7; BIN1-rs6733839; INPP5D-rs10933431; ECHDC3-rs7912495; 
APH1B-rs117618017; ABCA7-rs12151021) 33,34. Four additional AD loci with 1-2 variants in their 
99% credible sets have not been previously fine-mapped (Figure S8a-b,d-e; RHOH-rs2245466; 
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CTSB-rs1065712; FAM157C/PRDM7-rs56407236; GRN-rs5848). Interestingly, GRN and CTSB 
are also known risk loci for Parkinson’s disease 35, but LocusCompare plots show low genetic 
correlation at these loci (GRN, R2=0.36; CTSB, R2=0.0048) which may indicate that distinct causal 
variants drive the associations (Figure S9). One additional locus with a credible set size > 2 was 
fine-mapped to a single SNP with PP > 0.8 (Figure S8c; SLC24A4-rs12590654, PP=0.91, n=32 
in 99% credible set). In addition, two SNPs with a PP ≥ 0.3 were annotated as missense variants 
(Figure S10; MS4A6A-rs7232, PP=0.54, n=4 in 99% credible set; SHARPIN-rs34674752, 
PP=0.30, n=5 in 99% credible set). Notably, our fine-mapping analysis did not replicate SORL1-
rs11218343, which has been previously fine-mapped with a PP > 0.999 in two large European 
studies 33,34, likely due to a different regional architecture in the East Asian population as has been 
previously reported (Figure S11) 36. All 99% credible sets are provided in Table S3. 

Heterogeneity analysis 
We observed significant heterogeneity (I2 > 30%) at 19 of the 48 loci that reached genome-wide 
significance (P < 5 x 10-8) in MR-MEGA (Figure 3). At least 50% of the observed heterogeneity 
was attributable to genetic ancestry at 10 of these loci, of which four showed the strongest effect 
in East Asians (SORL1, MAPT, JAZF1, and CLU), four in Caribbean Hispanics (FERMT2, 
SLC24A4, ADAM10, and HS3ST5), one in non-Finnish Europeans (CASS4), and one in African 
Americans (TREM2) (Figure 3, Figure S12). Interestingly, four of these loci (SLC24A4, FERMT2, 
CLU, and ADAM10) showed an opposite direction of effect among African Americans compared 
to all other ancestry groups tested. We also assessed heterogeneity at lead SNPs from the most 
recent European GWAS 4 and found that 37% of the lead SNPs tested presented significant 
heterogeneity (I2 > 30%), of which 48% were primarily attributable to ancestry (Table S4). Five of 
the fine-mapped SNPs also showed significant heterogeneity (I2 > 30%), of which only SLC24A4 
showed heterogeneity that was primarily attributable to genetic ancestry (Table 2).  
 
The genetic polymorphisms rs7412 and rs429358 that form the APOE e2/e3/e4 alleles presented 
very different allelic heterogeneity. Consistent with previous studies 7,37, we observed an 
attenuated signal at APOE-rs429358, which determines the APOE-e4 allele, among the cohorts 
of African Americans and Caribbean Hispanics (Figure S13a). APOE-rs429358 had the highest 
heterogeneity (I2=96.54) of the SNPs tested with ~42% attributable to genetic ancestry, although 
these polymorphisms were not available to test in the most recent European-ancestry AD GWAS 
4. In contrast, APOE-rs7412, which determines the APOE-e2 allele, did not present any 
heterogeneity (Figure S13b; I2=0). Complementary to standard GWAS association tests, we also 
generated P-values representing heterogeneity of effect estimates attributable to genetic ancestry 
in the multi-ancestry meta-regression and observed the strongest signal near APOE (Figure 
S14). Additionally, we observed strong evidence of ancestry-related heterogeneity (PHET < 1e-6) 
near SORL1, as well as PAPOLG, AC026202.5, and snoU13 which did not meet genome-wide 
significance in the association results. LocusZoom and beta-beta plots of these loci suggest that 
non-European populations primarily drive these association signals, and there are likely 
discordant effects across populations (Figure S15).  
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Polygenic risk scoring 
We tested the performance of the multi-ancestry random effects model and each of the GWAS 
from single ancestral populations in a Colombian cohort of AD cases (n=281) and neurologically 
normal controls (n=87). This cohort is an admixture of three ancestral populations, with European 
substructure making up the highest proportion of global ancestry (mean of 64%, SD=15%), 
followed by Indigenous American (mean of 27%, SD=11%), and African (mean of 9%, SD=11%). 
Latino ancestry samples were used to test PRS applicability as they were a population not 
represented in the meta-analyses. Single-ancestry PRS performed worse than multi-ancestry 
random-effects-derived PRS in terms of area under a receiver operating characteristic curve 
(AUC), with maximal AUCs of 79% and 68% including and then excluding APOE variants in this 
population. Non-European AUCs tended to improve with increasing sample size (Figure 4), 
suggesting that the composite score, combining ancestry-specific PRS by population weights, 
may have performed as well or better than the random-effects-derived PRS if the component 
GWASs from under-represented populations were better powered. 
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DISCUSSION 
We performed a large, genome-wide meta-analysis of AD across five datasets, representing four 
super-populations. By leveraging data from multiple ancestry groups, we replicated 51 known AD 
loci and identified two novel risk loci on chromosome 3. The first is a signal near TRANK1, which 
encodes tetratricopeptide repeat and ankyrin repeat containing 1. TRANK1 is associated with 
DNA- and ATP-binding and DNA repair and is highly expressed in brain tissue and female 
reproductive tissues 38,39. Previously, TRANK1 has been cited as a robust risk locus for BD in 
European 40,41, East Asian 42, and multi-ancestry 43 studies, although subtype analyses suggest 
that this signal is primarily driven by the most heritable subtype, BD I. Previous SMR analysis of 
the TRANK1 region in BD suggested that both TRANK1 and GOLGA4 may be susceptibility 
genes 42. TRANK1 is also a risk locus for schizophrenia, which is genetically correlated with BD I 
26. BD has also been shown to increase risk for AD, with the two sharing significant genetic overlap 
44. Previous studies have suggested that TRANK1 may be involved in neural differentiation, blood 
brain barrier permeability changes, and neuroinflammation, all of which may be relevant to 
neurodegeneration 42,45. Interestingly, Kunkle et al. nominated TRANK1 through a gene-based 
analysis conducted in an African American population, but not through the single SNP association 
testing included in this study 6. A combination of eQTL and SMR nominated TRANK1, LRRFIP2, 
GOLGA4, and ITGA9 as potential genes underlying this SNP association, with the strongest 
associations in cortex tissue seen with TRANK1 and LRRFIP2 (Table S2). LRRFIP2 encodes 
LRR binding FLII interacting protein 2, which regulates Toll-like receptor 4 (TLR4) and can 
downregulate the NLRP3 inflammasome. TLR4 can induce microglial amyloid-β clearance in the 
brain in early stages of AD but can later induce an inflammatory response, suggesting that 
disruptions to LRRFIP2 may affect AD pathology in patients 46. 
 
The second locus is nearest to VWA5B2, which encodes von Willebrand factor A domain-
containing protein 5B1. Von Willebrand factor (VWF) is a glycoprotein that facilitates blood clotting 
at areas of injury. High VWF is associated with short-term risk of dementia, possibly due to the 
increased risk of blood clots restricting blood flow in the brain 47. VWF can be elevated in response 
to inflammation, but VWA5B2 was found to be downregulated in AD patients. Whether VWA5B2 
has biological implications on risk for AD needs to be further investigated 48. The lead variant 
rs9837978 does not lie within any of the nearby genes at this locus, but eQTL and SMR evidence 
for this variant nominated eight nearby genes including VWA5B2 (Table S2). The strongest SMR 
association in brain tissue is seen with ABCF3. The ABCF3 protein is a member of the ATP-
binding cassette (ABC) superfamily, which transport a variety of substrates across intra and 
extracellular barriers 49. Members of the ABC A subfamily, such as ABCA7 and ABCA1, have 
previously been nominated as AD risk genes 4. ABCF3 is a unique family member in that it lacks 
a transmembrane domain but has been nominated as a candidate of TLR signaling, similar to 
LRRFIP2 50. In addition to inducing inflammatory responses, TLRs can affect microglial activity, 
synaptic plasticity, and tau phosphorylation, providing additional evidence to their importance in 
AD pathology 51. 
  
Future studies will be required to further disentangle the potential roles of the nominated genes 
in the context of AD risk. The disparity seen at points between the results on Open Targets, which 
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consists of largely European data, and the multi-ancestry eQTL results for nominated genes also 
highlights the need for more multi-modal reference data including diverse ancestries. However, it 
is also possible that there could be different mechanisms underlying disease risk conferred by the 
implicated loci across different populations. 
 
Our study highlights the utility of multi-ancestry datasets at uncovering putative mechanisms that 
contribute to AD. Fine-mapping at several known AD loci was better resolved using the multi-
ancestry meta-regression compared to previous efforts in European populations. For example, 
fine-mapping near RHOH, CTSB and FAM157C/PRDM7 nominated variants that are located in 
untranslated regions that were not well-resolved in European studies. Variants in the 3’UTR 
region can impact translation or protein stability, and transcription binding can be impacted by 
variants in the 5’UTR region. Additionally, GRN-rs5848 is associated with circulating progranulin 
levels and decreased GRN expression has been implicated in several neurodegenerative 
diseases, including AD and frontotemporal dementia 52–54. In contrast to previous studies in 
European populations, the SORL1 locus was not resolved to a single putative causal SNP. Lead 
SNPs in both the European (SORL1-rs11218343) and East Asian (SORL1-rs117807585) GWAS 
are more common among East Asians compared to all other populations in the Genome 
Aggregation Database v2.1.1 (rs11218343: AFEAS=0.30, AFEUR=0.039; rs117807585: 
AFEAS=0.22, AFEUR=0.020). It is possible that alternative fine-mapping approaches that allow for 
multiple causal variants per locus will provide greater insight into the SORL1 locus. 
 
At the MS4A gene cluster, multi-ancestry fine-mapping resolved the signal to a credible set of five 
variants, with a common missense variant (rs7232, PP=0.54) and an intergenic variant nearest 
MS4A4A (rs1582763, PP=0.45) that are in moderate LD (R2=0.55, 1000 Genomes all 
populations) having the highest probability of causality (Figure S10). MS4A4A and/or MS4A6A 
modulate soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF), which is correlated with AD 
progression. Previous studies have shown that rs7232 is associated with MS4A6A gene 
expression and CSF sTREM2 55,56, while rs1582763 is a cis-eQTL for MS4A4A and MS4A6A 57. 
Conditional analysis of CSF sTREM2 levels in this region have pointed to two independent signals 
represented by rs1582763 and rs6591561 (MS4A4A p.M159V) 57. Therefore, a fine-mapping 
approach that allows for multiple causal variants may be more appropriate for this region. 
 
In addition to highlighting genetic risk factors that are shared across populations, our results also 
highlight AD loci with significant heterogeneity that may reflect variation in effect sizes, allele 
frequencies or interaction(s) with environmental risk factors that vary by ancestral group. For 
example, we observed the strongest evidence of heterogeneity at APOE-rs429358. Around 42% 
of the heterogeneity at this allele was attributable to genetic ancestry, while the remaining 
heterogeneity may reflect other sources of variation such as imputation accuracy since this allele 
is rarely assayed successfully on genotyping arrays. At JAZF1-rs67250450 and CLU-rs1532276, 
we observed the strongest evidence of ancestry-related heterogeneity, both of which are most 
common among individuals of East Asian ancestry and showed the strongest effects in this 
population (Figure 3). We also observed significant ancestry-related heterogeneity at SORL1 and 
TREM2, which have been previously shown to harbor population-specific risk variants 58,59. Given 
that our analyses focused on common variation, the effects of rare heterogeneous variants (e.g. 
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ABCA7-rs115550680, which has comparable effects to APOE-rs429358 among African 
Americans 60) may not have been fully captured.   
 
While this study marks progress towards assessing genetic risk of AD across multiple populations, 
we acknowledge several limitations. MR-MEGA is a useful tool for fine-mapping and ancestral 
heterogeneity estimation, but the software requirements of population overlap (K > 3) often result 
in reduced variant sets after study level quality control. This can bias fine-mapping results as we 
reduce the potential resolution on local haplotypes, and usually necessitates the inclusion of at 
least one of the larger European-focused studies. In our case, previous European and Finnish 
studies served as the backbone of our meta-GWAS. We did not replicate previous fine-mapping 
at NCK2, TREM2 and RNF223 from European-focused studies since study level quality control 
included filtering for common (MAF > 1%), biallelic SNVs due to potentially poor imputation and 
general low power for rare variants across ancestral groups. We acknowledge that variants with 
a minor allele frequency < 1% in one or more populations, as well as indels and structural variants, 
may contribute to the observed associations. Future work should include imputation using diverse 
reference panels from long read sequence data specific to AD to improve genomic coverage and 
provide insights into structural variation that may be population specific. 
 
In addition, the number of axes of genetic variation (T) in MR-MEGA is restricted to T ≤ K-2, where 
K is the number of input GWAS. The East Asian GWAS used in our meta-GWAS tested less than 
half as many SNPs as the others (Table S1), limiting the meta-regression to a single axis of 
genetic variation (PC0) at SNPs that overlap the remaining GWAS (K=4). Including a larger 
number of input GWAS from underrepresented populations will likely improve the heterogeneity 
estimates outlined in this study.  
 
While our study is inclusive, due to data availability and the European-dominated nature of genetic 
research, European-ancestry individuals make up approximately 85% of cases and the discovery 
efforts here maintain a baseline level of Eurocentric bias. Additionally, while our novel method of 
creating a composite PRS model that leverages admixture percentages is a potentially promising 
approach for assessing AD risk across ancestrally heterogeneous and/or admixed cohorts, its 
performance relies on sufficient sample sizes and global genetic representation. As larger scale 
GWAS for multiple continental “super populations” continue to become available, we believe this 
method of tuning PRS to an individual’s genetic admixture could have utility in a precision 
medicine context. Reducing the Eurocentric bias in AD genetics research will require the 
harmonization and refining of diagnosis in non-European research sites that serve communities 
with unique cultural and logistic concerns for participation in research. It is our hope to improve 
representation in AD genetic studies in the future, increasing the balance between European and 
well-powered non-European cohorts.  
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ONLINE METHODS 
Existing GWAS studies 
Summary statistics from Bellenguez et al. 2022 were accessed through the National Human 
Genome Research Institute-European Bioinformatics Institute GWAS catalog under accession 
number GCST90027158 in May 2022. Summary statistics from FinnGen Release 6 were 
accessed at https://www.finngen.fi/en/access_results in April of 2022. Summary statistics from 
Kunkle et al. 2021 were accessed through NIAGADS (https://www.niagads.org/) under accession 
number NG00100 in April of 2022. Summary statistics from Shigemizu et al. 2021 were accessed 
through the National Bioscience Database Center (NBDC) at the Japan Science and Technology 
Agency (JST) at https://humandbs.biosciencedbc.jp/en/ through accession number 
hum0237.v1.gwas.v1 in April of 2022. All summary statistics were aligned to GRCh37 and 
cleaned to remove indels, multi-allelics and rare variants (MAF < 1%) prior to multi-ancestry 
analysis.  

De-novo GWAS 
Caribbean Hispanic GWAS 
Data from the Columbia University Study of Caribbean Hispanics and Late Onset Alzheimer's 
disease were accessed via application to dbGaP accession number phs000496.v1.p1 in April of 
2022. Samples were filtered to keep unrelated individuals without missing values for AD affection 
status, age, study category, education, and a missing call rate < 0.02. Principal component 
analysis (PCA) was performed on a combined dataset of study subjects and HapMap was used 
as a reference to identify potential outliers. Controls with a family history of dementia were 
removed. Variant QC included exclusion filters for monomorphic SNPs, variants with MAF < 1%, 
missingness rates > 2%, sex differences in allelic frequency ≥ 0.2 and heterozygosity > 0.3, 
duplicate SNPs, Hardy–Weinberg Equilibrium (HWE) P-value < 1 x 10-4, and > 1 discordant calls 
or Mendelian errors. All variants with a significant frequency mismatch (χ2 > 300) with the 
TOPMed reference panel were removed prior to imputation.  
 
Using PLINK v1.9 24, we evaluated the association between AD and imputed genotypes via 
logistic regression on allele dosages with imputation quality > 0.3, adjusting for sex, age (age at 
disease onset for cases, age last seen for controls), education, study category, and the first 10 
principal components (PCs). Study category denotes subcategories within the Caribbean 
Hispanic dataset (individuals are from the United States, Puerto Rico and the Dominican 
Republic) and is included to account for potential batch effects.  

Meta-analysis and fine-mapping 
Meta-analysis 
Three models were used to conduct multi-ancestry meta-analyses. Fixed effect and random 
effects models were performed using PLINK v1.9, while a separate analysis was performed using 
MR-MEGA v0.2 25. MR-MEGA is well-powered to detect associations at loci with allelic 
heterogeneity since axes of genetic variation are included as covariates in the model. The 
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European and Finnish European GWAS were included separately to account for finer-scale 
differences in allele frequencies. To determine the optimal number of PCs needed to distinguish 
cis- and trans-ancestry AD summary statistics, we visually inspected pairwise PC plots generated 
using all five GWAS referenced in Table S1. We observed adequate separation between the 
Caribbean Hispanic, European, African American, and East Asian GWAS using the first two meta-
regression PCs (Figure S16). To increase the variant set, we also ran MR-MEGA separately for 
each combination of four input GWAS. A single axis of genetic variation (T=1) was included in 
this analysis since this is the maximum allowable given the constraints of the model (T ≤ K-2), 
where K is the number of input GWAS. Summary statistics were aggregated to maximize the 
effective sample size for each variant.  
 
Fine-mapping 
Fine-mapping was performed using approximate Bayes’ factors in favor of association from the 
meta-regression model implemented in MR-MEGA. In brief, FUMA was used to find maximal LD 
blocks around loci that reached P < 5 x 10-8 in the MR-MEGA analysis. LD blocks of independent 
significant SNPs (R2 >0.3, 1000 Genomes all populations) were merged into a single genomic 
locus if the distance between LD blocks was less than 250kb. Posterior probabilities (PP) were 
calculated using single-SNP Bayes factors and credible sets were generated for each locus until 
the cumulative PP exceeded 99%. All SNPs in the 99% credible sets were annotated with VEP  
(http://grch37.ensembl.org/Homo_sapiens/Tools/VEP) using default criteria to select one block of 
annotation per variant (Table S3).  

Assessment of allelic effect heterogeneity 
Allelic effect heterogeneity between studies was assessed for all lead SNPs reaching genome-
wide significance (P < 5 x 10-8) in the meta-regression, implemented in MR-MEGA. Genomic loci 
were defined as discussed in the fine-mapping methods. The meta-regression model derives axes 
of genetic variation from pairwise allele frequency differences between the input GWAS. 
Heterogeneity is then partitioned into (1) ancestry-related heterogeneity that is correlated with the 
axes of genetic variation and (2) residual heterogeneity that is likely due to other factors such as 
study design (e.g. covariate adjustments, phenotype definition, imputation quality) and/or 
geographical region. Total heterogeneity at each index SNP was quantified using the I2 statistic 
in PLINK v1.9 to avoid bias due to sample size for SNPs not tested in the large European studies. 
The I2 statistic describes the proportion of variation in effect estimates that is due to heterogeneity. 
We considered SNPs with an I2 > 30% as having significant heterogeneity since this suggests at 
least moderate variation in allelic effects 61. The percentage of this heterogeneity that is 
attributable to genetic ancestry was then calculated using Cochran's Q statistics for ancestral and 
residual heterogeneity from the meta-regression (equation 1; ANC: ancestry, RESID: residual).  
 

%			𝐻𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦!"# 	= 		𝑄!"# 			/			(𝑄$%&'( 	+ 		𝑄!"#) 		∗ 	100%																																															(1)	 

Functional inferences 
To prioritize genes underlying the two novel loci, we first looked at public eQTL data to determine 
whether the GWAS-identified lead variants are eQTLs for nearby genes. This allowed us to cast 
a wide net of potential regional genes of interest. We employed Open Targets for this effort, which 
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shares eQTL results for variants from blood, brain, and a wide array of tissues from multiple public 
eQTL datasets 28. We additionally investigated a multi-ancestry brain eQTL dataset 29 which is 
currently not available on Open Targets. We considered the lead variants as significant eQTLs 
for a gene if they passed the significance threshold of P < 1 x 10-6, which has been shown to 
correspond to a genome-wide false discovery rate (FDR) of 5%, although we do acknowledge 
this may be overly conservative in our regional analyses 62. 
 
Once we had nominated potential genes for which our lead variants were significant eQTLs, we 
used summary-based Mendelian Randomization (SMR) to make functional inferences as to 
whether the disease risk SNPs in these regions mediate gene expression. We integrated 
summary-level data from the most recent AD GWAS 4 with data from multiple eQTL studies in 
different tissues using the SMR method 63. SMR uses summary statistics to determine if an 
exposure is associated with a trait through a shared casual variant. MR can be used to mimic a 
randomized controlled trial, as having a variant that increases or decreases expression of a gene 
may be comparable to life-long treatment with a drug targeting the encoded protein of that gene.64 
For example, if SNP A affects gene B expression (the exposure), and SNP A is also associated 
with AD risk (the outcome), you can infer the causal effect of the expression of gene B on AD risk. 
 
We limited our results to the genes that were prioritized by our eQTL search and considered a 
gene significant for expression effect on a disease if it passed an FDR-adjusted SMR significance 
threshold of P < 0.05 and a HEIDI threshold of P > 0.01. Filtering for a HEIDI P-value of this 
magnitude helps to remove associations that are likely due to polygenicity and have violated the 
central assumptions of SMR. Finally, we assessed the colocalization between the SMR-
nominated genes in brain tissues and the multi-ancestry random effects GWAS using 
LocusCompare 65. 

Polygenic risk scoring 
PRS application cohort 
Whole genomes from the Colombian population were accessed from “The Admixture and 
Neurodegeneration Genomic Landscape (TANGL) study and quality controlled as previously 
described 58. The TANGL cohort was further quality controlled in PLINK v1.9 to remove carriers 
of pathogenic variants for mendelian forms of dementia, as well as related individuals for a final 
cohort of 281 cases and 87 controls.  
 
Pre-PRS variant alignment 
Base summary statistics were pruned with the MungeSumStats R package 66 to remove 
multiallelic variants, align reference alleles to build GRCh37, and adjust weights for the 
appropriate reference alleles. The target TANGL cohort was also filtered to keep only bi-allelic 
variants and aligned to the same reference using PLINK v2.0. 
 
PRS method 
Polygenic risk score (PRS) analyses can be used to estimate an individual’s genetic liability to a 
phenotype by calculating the sum of risk allele effect size weights for an individual. Weights for 
the PRS were obtained from β estimates generated from multi-ancestry random and fixed effects 
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meta-analyses as well as from individual ancestry summary statistics. PRS analyses were 
conducted using PRSice v2.3.5 including variants with minor allele frequency > 5%, genotype 
missingness < 10%, sample missingness < 10%, and HWE p-value < 1 x 10-6. The APOE region 
(with ranges defined by FUMA as described previously) was excluded prior to variant clumping. 
For PRS analyses including APOE, the genetic polymorphisms rs7412 and rs429358 were added 
to the QC’d summary statistics prior to variant clumping. β estimates for the APOE polymorphisms 
were not available in the Bellenguez et al. summary statistics 4 and therefore European-ancestry 
estimates were taken from another recent AD GWAS by Schwartzentruber et al. 34.  
 
Variants were clumped in each 500 kb window with the index SNP at the center, an r2 threshold 
of 0.3, and a clump P-value threshold of 1. Sex, age, and the first 5 PCs were used as covariates 
in the PRS analysis. PCs were generated from non-imputed genotype data using FlashPCA 67. 
Variants with a MAF < 1%, genotype missingness < 10%, sample missingness < 10%, and HWE 
P-values < 5 x 10-6 were excluded using PLINK v1.9. The remaining variants were pruned with a 
1000-kb window, a 10-SNP shift per window and an r2 threshold of 0.02 prior to PC calculation. 
PRS analysis was performed at select P-value thresholds to determine the best fit model (P=5 x 
10-10, 5 x 10-9, 5 x 10-8, 5 x 10-7, 5 x 10-6, 5 x 10-5, 5 x 10-4, 5 x 10-3, 5 x 10-2). To assess the 
performance of each model, receiver operator characteristic curves were created using the pROC 
library in R for the best fit model from each analysis. An additional “composite” ROC curve was 
generated through a linear combination of each super population, with each PRS weighted by its 
associated admixture population percentage, previously determined in the TANGL cohort for each 
individual (equation 2; AFR: African American, EUR: European (including Finnish), EAS: East 
Asian, NAT: Native American) 58. Given the population history and similarities in haplotype 
structure between the East Asian and Native American populations, Native American admixture 
proportions were used to weight the East Asian PRS 68,69.  
 
𝑃𝑅𝑆)*+,*-./0,. =	𝑃𝑅𝑆!2$,. ∗ %!2$,. 		+ 			𝑃𝑅𝑆%3$,. ∗ %%3$,. 		+ 𝑃𝑅𝑆%!&,. ∗ %"!4,. 																							(2)	 

 

TABLE LEGENDS 
Table 1: Summary of novel loci. 
 
Table 2: Fine-mapping results for all SNPs with a posterior probability (PP) > 0.8. Fine-mapped 
SNPs were considered novel if they were not previously fine-mapped with PP > 0.8 in two recent 
European-focused studies, Schwartzentruber et al. 2021 and Wightman et al. 2021.  
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FIGURES 

 
 
Fig. 1: Outline of multi-ancestry meta-analysis procedure and downstream analysis. Created with 
BioRender.com.  
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Fig. 2: Summary of multi-ancestry meta-analysis. Panel A shows the Manhattan plot for the 
random effects meta-analysis P-values, truncated at -log10(P) < 50. Panels B and C show the 
corresponding local association plots for the two loci of interest. Panels C and D show forest plots 
summarizing the effect estimates per ancestry group for lead SNPs at the two loci of interest. 
Lead SNPs from both novel loci were absent in the East Asian dataset used for discovery. 
Abbreviations - MR: MR-MEGA, RE: Random effects, FE: Fixed effects, EUR: European, EUR 
(FIN): Finnish European, AFR: African American, CAR HISP: Caribbean Hispanic.  
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Fig. 3: Graphical summary of heterogeneity at AD genetic risk loci. Lead SNPs were derived from 
MR-MEGA using maximal LD blocks, apart from APOE rs429358 and rs7412. Both APOE SNPs 
were absent in summary statistics from the most recent European-ancestry AD GWAS. Aggregate 
effects were estimated using a random effects model since MR-MEGA assumes that effects differ 
across populations. Allelic effect heterogeneity that is attributable to genetic ancestry was 
estimated using Cochran's Q statistics for ancestral and residual heterogeneity from the meta-
regression (Online Methods).  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.04.22278442doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.04.22278442


 

 
 

 
 
Fig. 4: Graphical summary of genetic risk scores. These genetic risk scores were derived from 
multi-ancestry and ancestry-specific risk estimates, then applied to an admixed Colombian cohort 
to evaluate significance and predictive power. Panels A and B show the AUC for each genetic 
risk score with color coding to delineate the source of the risk estimates for scores excluding and 
then including APOE-e4 variants. 
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DATA AND CODE AVAILABILITY 
Code is available on the CARD GitHub linked here. 
Summary statistics from this study will be available to browse and download via our collaboration 
with the Broad’s Neurodegenerative Disease Knowledge Portal linked here after peer review. 
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