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Abstract

Cognitive deficits are prevalent in individuals with psychosis and are associated

with neurobiological changes, potentially serving as an endophenotype for psychosis.

Using the HCP-Early-Psychosis-dataset (n=226), we aimed to investigate cognitive

subtypes (deficit/intermediate/spared) through data-driven clustering in a↵ective (AP)

and non-a↵ective psychosis patients (NAP) and controls (HC). We explored di↵erences

between three clusters in symptoms, cognition, medication, and grey matter volume.

Applying principal component analysis, we selected features for clustering. Features

that explained most variance were scores for intelligence, verbal recognition and com-

prehension, auditory attention, working memory, reasoning and executive function-

ing. Fuzzy K-Means clustering on those features revealed that the subgroups sig-

nificantly varied in cognitive impairment, clinical symptoms, and, importantly, also

in medication and grey matter volume in fronto-parietal and subcortical networks.

The spared cluster (86%HC, 37%AP, 17%NAP) exhibited unimpaired cognition, low-

est symptoms/medication, and grey matter comparable to controls. The deficit cluster

(4%HC, 10%AP, 47%NAP) had impairments across all domains, highest symptoms

scores/medication dosage, and pronounced grey matter alterations. The intermedi-

ate deficit cluster (11%HC, 54%AP, 36%NAP) showed fewer deficits than the second

cluster, but similar symptoms/medication/grey matter to the spared cluster. Control-

ling for medication, cognitive scores correlated with grey matter changes and negative

symptoms across all patients. Our findings generally emphasize the interplay between

cognition, brain structure, symptoms, and medication in AP and NAP, and specifically

suggest a possible mediating role of cognition, highlighting the potential of screening

cognitive changes to aid tailoring treatments and interventions.
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1 Introduction

Cognitive alterations are core symptoms of psychosis [1–4], which have been described

in areas of working memory [5, 6], attention [7, 8], reasoning [9, 10], decision-making [11–

13], salience processing [14, 15], learning (e.g., lower learning rate or increased forgetting,

[16–18]) and problem solving [19, 20] and across all stages of the disease [21–25]. Cognitive

deficits furthermore precede the clinical onset of psychosis [26], and predict functional out-

come in later stages of the disease [27, 28], impacting employment status, independent living

and social functioning [28, 29]. Although cognitive impairments are present in about 80%

of patients su↵ering from psychotic disorders [30–32], therapeutic interventions are limited.

A meta-analysis including 93 studies using di↵erent agents targeting mainly glutamatergic

and cholinergic neurotransmitter systems, but also serotonin, dopamine, GABA and nora-

drenaline agents [33] reported a significant, although very small (g=0.10) improvement of

cognition in general. However, this meta-analysis failed to find significant improvement for

cognitive subdomains [33]. Cognitive training, also called cognitive remediation therapy, has

produced more promising e↵ects [34, 35]. A recent meta-analysis found that cognitive reme-

diation showed significant small-to-moderate cognitive improvements in all domains studied

(g=.19–.33) and a small improvement in function (g=.21). Furthermore, research has shown

that fewer cognitive deficits and higher cognitive reserve during prodromal and first episode

psychosis are generally, independent of diagnosis, associated with better functioning and

recovery [36, 37]. This indicates that maintaining and improving cognitive functioning is

crucial in the interventional and therapeutic processes.

Cognitive deficits in psychosis, in general, have been linked to alterations in the cortico-

cerebellar-thalamic-cortical circuits [38]. Here, dysfunctional GABA (gamma-amino-butyric

acid) inter-neurons, the main inhibitory neurons of the central nervous system, may disrupt

the balance between excitatory and inhibitory processes in the cortex [39]. A recent review

[25] summarizes the association between functional brain alterations and cognitive deficits

in individuals at-risk for psychosis, early onset psychosis, and chronic schizophrenia. They

report a clear association between altered cortical (e.g., prefrontal cortex, anterior cingu-

late cortex, insula) and subcortical (e.g., thalamus, striatum, hippocampus, cerebellum)

brain signalling and aberrant cognition across the di↵erent stages. Imaging studies pro-

vide further support showing reduced grey matter volume and altered network organization

which correlates with cognitive deficits at illness onset [40, 41], early psychosis [42] and

chronic schizophrenia [43]. Furthermore, a study by Van Rheenen et al. [44] reported global

grey matter volume and thickness reductions which were more prominent in patients with

stronger cognitive impairments.

Interestingly, psychosis patients with di↵erent diagnoses, e.g., a↵ective vs non-a↵ective

psychosis, show varying cognitive deficits [45–47]. In a review, Barch and She�eld [47] sum-

marized that while the severity of cognitive impairment is stronger in non-a↵ective compared
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to a↵ective psychosis, the relative impairments across di↵erent cognitive domains are very

similar. Other studies, however, do not di↵erentiate between a↵ective vs non-a↵ective psy-

chosis when investigating cognitive deficits [34, 48, 49]. Despite these di↵erences in cognitive

alterations with regard to specific diagnoses, cognitive deficits in psychosis have been de-

scribed and investigated as intermediate phenotypes [50]. In a recent study, Shafee et al.

[51] revealed that cognitive phenotypes may vary grossly depending on specific types of psy-

chosis (e.g. a↵ective vs non-a↵ective), suggesting that certain domains of cognition (e.g.,

working memory vs face processing) may be more etiologically linked to psychosis than

others. Using a K-means clustering approach in a cross-diagnostic sample, Lewandowski

et al. [52] identified four cognitive subgroups combining di↵erent psychosis groups. Im-

portantly, they identified one cognitively intact cluster consisting of healthy controls and

patients with di↵erent diagnoses, while the other three clusters were dominated by di↵erent

cognitive impairment profiles [52]. The data-driven identification of cognitive clusters varies

between two and four-cluster solutions, as shown in a recent systematic review [53]. One

major contributing factor may be the variance in the data, especially the cognitive measures

that are being used. Interestingly, a recent systematic review of data-driven identification of

cognitive subtypes [54] highlighted that despite the heterogeneity of clustering methods used

and cognitive domains studied, there is some commonality in the identification of a severe

cognitive deficit phenotype showing deficits across multiple domains, and a spared cognitive

deficit phenotype with similar performances to controls. While it is unclear from the liter-

ature which cluster solution is the most reliable, especially an intermediate phenotype may

be interesting from an interventional point of view, as this group of individuals may benefit

the most from cognitive interventions to improve functional outcome. It has been shown

[55] that patients at early compared to late illness stages have a higher potential for cogni-

tive improvement after cognitive remediation therapy. This may be directly translatable to

an intermediate cognitive phenotype, as this group may possess residual cognitive abilities

that can be enhanced through targeted interventions and may also have more intact neural

substrates that support cognitive training. Furthermore, those cognitive improvements may

be more likely to translate into functional gains, such as better social and occupational

outcomes, which are crucial for improving the overall quality of life [56–58]. Additionally,

all studies using cognitive clustering concentrated on cognitive toolboxes, or basic measures

such as measures of processing speed or working memory. Using simple task data, however,

such as the Delay Discounting task may be a beneficial contribution as they include reward

processing an ability reported to be impaired across all stages of psychosis [12, 13, 15, 17].

Furthermore, it is unclear how cognitive subtypes are linked to di↵erences in medication

status and brain structure (i.e., grey matter volume). These open questions, however, are

crucial to understand whether cognitive subtypes are clinically relevant, and whether they

could increase our mechanistic understanding of the disorder.
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In the current study, we, therefore, aimed to explore these important questions. First,

we wished to investigate three cognitive subtypes using the HCP Early Psychosis dataset

(https://www.humanconnectome.org/study/human-connectome-project-for-early-psychosis,

[59]) using data-driven clustering on standardized cognitive, perceptual and emotional task

and score data, but no clinical data. Second, we explored whether the patients in the three

clusters di↵ered in symptom expression, cognition, medication and grey matter volume.

And third, depending on the results for the first two questions, we wished to understand

if symptoms, alterations in cognition and brain morphometry were linked while controlling

for medication within and across the clusters.

2 Methods

2.1 Participants

We analyzed data collected by the “Human Connectome Project for Early Psychosis”

(HCP-EP, [60], [49]). The HCP-EP 1.1 release (August 2021 HCP-EP Release 1.1 on NDA)

contains 251 subjects consisting of 68 healthy control individuals, 57 patients with a↵ective

and 126 patients with non-a↵ective psychosis, both patient groups were within the first three

years of the onset of psychotic symptoms. The Structured Clinical Interview for DSM-5:

Research Version (SCID-5-RV) [61] was used to confirm diagnoses of non-a↵ective (i.e.,

schizophrenia, schizophreniform, schizoa↵ective, psychosis not otherwise specified, delu-

sional disorder, brief psychotic disorder) or a↵ective psychosis (i.e., major depression with

psychosis or bipolar disorder with psychosis). Clinical symptoms were assessed using the

Positive and Negative Syndrome Scale (PANSS, [62]). Disease onset for all patients was

within the last five years prior to study enrollment. For a comprehensive cognitive, percep-

tual and emotional assessment, the NIH toolbox ([63], [64]; i.e., cognition (Picture Sequence

test, Dimensional Change test, Flanker test, Picture Vocabulary test, Pattern Completion

test, List Scoring test, and Oral Reading test), emotion (Self-report emotion), perception

(Words in Noise, Odor Identification, and Dynamic Visual Acuity), sensory-motor func-

tions (9-Hole Pegboard, and Grip Strength), the HCP Lifespan Measures ([65]; i.e., Delay

Discounting and Penn Emotion Recognition), the WASI-II [66] and the Seidman Auditory

Continuous Performance Test [67] was used. Structural brain imaging data was available

for 183 of the 251 subjects. After ensuring that there were su�cient data for features and

subjects (see description of analysis below), the analysis was performed on 226 subjects

(i.e., 56 healthy controls, 52 a↵ective psychosis group, 118 non-a↵ective psychosis group).

Demographics and clinical scores for the three groups are presented in Tab. 1. Detailed

analysis of PANSS items are presented in Suppl. Fig. 1.
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2.2 Ethics statement

All participants provided written informed consent to participate in the HCP-EP, and

for their data to be shared openly. HCP-EP was reviewed and approved by the Human

Connectome Project (HCP). The HCP-EP complied with the ethical standards of the rel-

evant national and institutional committees on human experimentation and with the code

of ethics of the World Medical Association, the Helsinki Declaration of 1975, as revised in

2013.

Table 1: Group demographics and clinical scores of final sample (N=226).

Group Comparison
Control A↵ective Non-A↵ective KW-chi2/P-ch2,

chi2(df), p-value

N 56 52 118

Age - mean (std) 24.55 (4.42) 23.63 (3.85) 22.73 (3.38) 7.25 (2), <0.05

Gender - female % 33.9 57.7 30.51 11.78 (2), <0.01

PANSS total na 45.3 (12.87) 51.97 (14.54) 14.71 (1), <0.001

PANSS positiv na 10.1 (3.89) 12.17 (4.59) 9.09 (1), <0.01

PANSS negative na 11.65 (4.66) 14.14 (5.58) 9.44 (1), <0.01

General psycho- na 23.52 (6.22) 25.67 (5.69) 7.01 (1), <0.01

pathology

2.3 Variable selection and preprocessing

Initially, all cognitive, perceptual and social/emotional functioning scores available in

the HCP-EP dataset were selected, resulting in 70 variables as potentially relevant to our

analysis (Suppl. Tab. 1). As covariates, we chose age, gender, socio-economic status

and mother’s level of education. Variables containing information of primary diagnosis

for a↵ective and non-a↵ective psychosis, such as the PANSS or the Clinical Assessment

Interview for Negative Symptoms, as well as variables describing medication dosage, usage

or equivalent doses, were not included in the clustering analysis, but only used for subsequent

analyses.

Many of the selected variables contained missing data. We therefore excluded variables

when more than 10% of the entries were missing, and we excluded subjects with more than

20% missing variables (Suppl. Tab. 1). As a result, 33 out of the initial 70 variables

remained in the data set and 226 subjects. The distribution of the remaining subjects

reflected the distribution of the original data with regard to diagnosis type. For an overview

of selected variables and group comparison, see Suppl. Tab. 2. In the final dataset used

for analysis, subjects were missing a maximum of seven variables (Suppl. Tab. 3 and
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4). Missing data were imputed using the mean for continuous and mode for categorical

variables (e.g. demographic control variables). Since the ratio of patients and controls was

not balanced, mean or mode for data imputation was calculated separately for patients and

controls. Both patient groups were combined in order to minimize the bias of classical group

membership (Suppl. Tab. 2).

Prior to our analysis, all continuous features and covariates were normalized using z-score

normalization. Ordinal covariates such as socio-economic status and mother’s education

were scaled between 0 and 1, and gender was treated as a binary variable.

In (Fuzzy) K-Means clustering, all input features are considered equally, and no fea-

ture selection is inherently performed. Therefore, it is crucial to carefully choose which

features to include, as each will impact the clustering results. To address this, we used

principal component analysis (PCA) as a further preprocessing step. PCA helps reduce the

dimensionality of the data, retaining only the most significant components based on how

much variance is being explained. This is an essential preprocessing step to improve the

clustering performance. PCA is suitable for our data type [68, 69], and was applied to all

variables. Covariates were also included as control variables, which at the same time allowed

us to detect whether any covariate might be influential. Significant principal components

were identified using a permutation test (5000 random permutations of each feature across

subjects). Components that survived permutation testing were considered significant.

The HCP-EP brain imaging data contained structural magnetic resonance imaging (MRI)

data. We used T1-weighted structural images recorded at a 3T SIEMENS MAGNETOM

Prisma scanner using an MPRAGE sequence (TR=2400ms, TE=2.22ms, FoV read=256mm,

FoV phase=93.8%, flip angle=8 deg, slices per slap=208, slice thickness=0.8mm). In order

to receive individual grey matter volume for structural covariance networks generated across

all subjects (Suppl. Fig. 2), the structural brain data was preprocessed as described in the

supplementary material A.4 and elsewhere [70]. In short, structural covariance network

analyses apply an independent component analysis which is based on all subjects’ grey mat-

ter maps in order to identify common spatial components. These components are derived

from the covariation of grey matter patterns across all participants. We allowed the process

to identify 30 components (i.e., structural covariance networks, SCN), as done previously

[70–72]. While atlas-based procedures are usually based on brain segmentations derived

from healthy brains, the procedure of the present study has the advantage of taking the

brain anatomy of both healthy individuals as well as patients into account, thus avoiding a

healthy brain bias of other methods. Di↵erences within these group-independent networks

identified by the current method should therefore be highly reliable, and the risk of false

positive results should be minimized. The structural covariance networks were used for

analyses following the clustering.
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2.4 Correlation and homogeneity

To investigate correlations between all features, we performed a Pearson’s correlation

between all subjects’ non-standardized variables. Di↵erences in correlations between the

groups were evaluated with a T-test for means of two independent samples. We then tested

homogeneity between groups, using Levene’s test for equal variances between groups. Bon-

ferroni corrections were applied.

2.5 Fuzzy clustering

Instead of a hard clustering approach that assumes well separated clusters and assigns

each data point to only one cluster (e.g., K-Means), we used a soft clustering approach. This

approach accounts for fuzzy boundaries between groups, and is thus better suited for over-

lapping subgroups [73], as would be expected for clinical groups. We, therefore, used Fuzzy

K-Means clustering as described in Bezdek et al [74]. As input to our clustering analysis, we

used the dimensionality-reduced data which included demographic control variables for all

three groups (i.e., controls, a↵ective and non-a↵ective patients). We specified the number

of clusters prior to our analysis. We used a priori knowledge about the number of cognitive

clusters (i.e., three di↵erent cognitive clusters were reported in the literature [54]). As a

control analysis, we also used three clusters on the patient data only. This analysis was used

to determine influence of control subjects on the clustering, and is presented in the supple-

ments (Suppl. Fig. 4). Although we used a predefined number of clusters, which was based

on other studies [54], a data-driven approach supports this view at least partially, showing

that three clusters could also be derived from the investigation of inertia (Suppl. Fig. 5).

The numbers of clusters should be chosen to achieve low inertia and a low number of clus-

ters. Commonly, the elbow method is employed, which identifies the point after which the

improvement in the inertia value levels o↵. With this method, we identified three clusters

the best solution (Suppl. Fig. 5a). However, other partition indices, such as the partition

coe�cient (Suppl. Fig. 5b) and the partition entropy coe�cient (Suppl. Fig. 5c), which are

often chosen for fuzzy clustering [75], indicated a two cluster solution as the preferable one

as compared to a three or four cluster solution. A larger partition coe�cient indicates low

overlap between the clusters, meaning better separation, and a larger value of partition en-

tropy coe�cient, however, indicates a higher overlap between cluster. As no clear statement

can be made from this data-driven point of view, we decided to follow the approach that

allowed addressing our research question most appropriately, using a predefined number of

three clusters.

Performance of the clustering analysis was determined by the ratio of the subjects of one

group (healthy controls, a↵ective psychosis group and non-a↵ective psychosis group) in each

cluster. The ratio of subjects in cluster j for group i in {controls, a↵ective and non-a↵ective}
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is defined as:

ratioi,j =
number of subjects of group i in cluster j

total number of subjects of group i

2.6 Cluster exploration

After the identification of the three clusters, we explored di↵erences in the patients dis-

tributed over those three clusters and controls in cognitive scores, clinical scores, medication

and grey matter volume. The control subjects were removed from each of the clusters and

combined in one healthy group. Thus, a group comparison across four groups was computed.

For comparing groups, we used SciPy’s Kruskal-Wallis test with Dunn’s test for post-hoc

analyses, a Chi-square test of independence or ranked analysis of variance (ANOVA) with

Bonferroni corrected post-hoc tests. The Kruskal-Wallis test and Dunn’s test for post-hoc

analyses are non-parametric, rank-based methods that minimize the impact of outliers by

converting data into ranks. This approach reduces the influence of extreme values, as out-

liers are represented by extreme ranks rather than a↵ecting the analysis based on their raw

values. Consequently, both tests o↵er robust results even in the presence of outliers, ensur-

ing that the outcomes are not disproportionately influenced by these extreme data points.

As a control analysis, we performed partial Pearson’s correlations between cognitive scores,

clinical scores, and grey matter volume controlled for medication across all patients, with

multiple comparison corrections.

2.7 Statistical implementation

Preprocessing and data analysis was performed in Python 3.9.7. We used scikit-learn

1.0.2, SciPy 1.7.2 for all analyses and the fuzzy clustering implementation of Dias et al.

[76]. Partial correlations were performed using the ppcor 1.1 [77]. For clustering analyses,

brain data was corrected for total intracranial volume (TIV), age and sex, using the R stats

package, version 4.0.5 R [78].

3 Results

3.1 Homogeneity of data across groups

Correlations of all cognitive, perceptual and emotional functioning data revealed that cor-

relations were highest within controls compared to a↵ective (T-test: t5838=16.34, p<0.001)

and non-a↵ective (T-test: t17058=26.03, p<0.001) patients. For non-a↵ective patients, corre-

lations within subjects were lowest (non-a↵ective vs. a↵ective patients: T-test: t16626=8.47,

p<0.001), indicating greatest variability. Confirming these results, highest heterogeneity

was found in non-a↵ective patients compared to controls (Levene’s test for equal variance:
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F1,174=187.3, p<0.001) and a↵ective patients (Levene’s: F1,168=70.39, p<0.001). Controls

were the most homogeneous (Levene’s: F1,106=22.34, p<0.001) (Fig. 1a).

P
ea
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's
 r

a b

c

Figure 1: Variable correlations and dimensionality reduction of cognitive data.
(a) All variables (i.e., cognitive, emotional, perceptual data) correlated across subjects using
Pearson correlation. Correlations within groups are displayed in squares on the diagonal, and
correlations between groups are displayed in o↵-diagonal squares. (b) Variance explained
by each of the principal components (PCs) in % of a PCA performed on all variables
and covariates across 226 subjects. The first five PCs (blue) survived permutation testing
(p<0.05, 5000 permutations). Significant components captured 55.8 % of all variance. (c)
Individual data points represent relevant variables for each subject, displayed on the first
two principal components and are colored according to subject group a�liation.

3.2 Feature selection using principal component analysis

During the data dimensionality reduction, we identified five significant PCs using all data

from all groups, which captured 55.8 % of the total variance (Fig. 1b). Explained variance

of PCAs was consistent with other symptom-reduction studies [79]. Fig. 1c illustrates the

data reduction using the first two principal components. The two patient groups and the

control group are predominantly distributed across the dimension of PC1. However, no clear

boundaries between groups could be detected. The features that explained most variance

were Fluid Intelligence and Crystallized Intelligence, Total IQ, the Picture Vocabulary Test,

Oral reading recognition, Auditory attention, Working memory, WASI - Verbal comprehen-

sion, WASI - Matrix reasoning as well as DCCS - Executive functioning (Suppl. Fig. 3). To

check the influence of combining patient and control data, the same analysis was performed

on only patients data (without controls), which also resulted in five significant components

that captured 53.7 % of all variance (p<0.05, 5000 permutations) (Suppl. Fig. 4a, b). The

top ten features contributing to the explained variance were the same across both analysis

- with and without controls. These features were taken for subsequent statistical analyses.
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3.3 Group representation in the three clusters

We performed clustering on the significant PCs, including controls and both patient

groups, with three clusters. Fig. 2a and b present the results. One cluster (cluster 0)

contained 86% (48/56) of all controls and 37% (19/52) of all a↵ective subjects. Non-a↵ective

subjects were represented only in a small proportion of 17% (20/118). A mixed, second

cluster (cluster 1) consisted of mostly patients, with the majority of a↵ective individuals:

54% (28/52) of non-a↵ective and 36% (42/118) of a↵ective patients and only 11% (6/56)

controls. Most non-a↵ective subjects were contained in the third cluster (cluster 2) with

47% (56/118) of the non-a↵ective, and only 10% of a↵ective patients (5/52) and 4% (2/56)

of controls. (Fig. 2b).

a b

Figure 2: Cluster analysis: group representations and cognitive di↵erences. (a)
Result of clustering. Cluster a�liation of each subject is displayed on the first two PCs.
Colors correspond to cluster 0, 1 or 2. (b) Percentage of subjects of each group in each
cluster. E.g. 47 % (56/118) of all non-a↵ective subjects are in cluster 2.

3.4 Exploring cognition, symptoms, medication and grey matter

volume in the clusters

To identify possible cognitive subgroups represented in the clusters, we explored cogni-

tive scores and symptom expression for patients assigned to the clusters (see comprehensive

display of statistical di↵erences between all clusters and cognitive items in Suppl. Tab.

5). We compared cognitive scores across patients in respective clusters. Scores of control

subjects were used for comparison. Patients in cluster 2 (mainly non-a↵ective patients)

showed a significant decrease in all cognitive features compared to patients assigned to

other clusters as well as controls. Patients in cluster 1, which contains 28 a↵ective and 42

non-a↵ective patients, showed significant decrease of Fluid Cognition, Auditory attention

(%correct) and DCCS - Executive functioning compared to controls. Patients (19 a↵ective

and 20 non-a↵ective) in cluster 0 showed most similar scores compared to control subjects,

with Auditory attention (%correct) being the only score that was significantly lower com-

pared to controls (Fig. 3c). Group comparisons are presented in Tab. 2.

Patients in cluster 2, who showed the strongest cognitive deficits and who were mainly
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diagnosed with non-a↵ective psychosis, showed a significantly increased PANSS total score

compared to patients in both, cluster 0 and 1. They also had a significantly increased PANSS

positive, PANSS negative score and general psychopathology compared to patients in cluster

0. Even though patients in cluster 0 and cluster 1 did not show as a strong di↵erence in

cognitive scores, patients in cluster 1 had a significantly increased PANSS total score and

general psychopathology compared to patients in cluster 0 (Fig. 3a). Group comparisons

are presented in Tab. 2.

Further, we explored the medication status of patients within the clusters. We found

that patients assigned to cluster 2 had a significantly higher Chlorpromazine equivalence

dose in general and at the scanning date compared to patients in both cluster 0 and 1, and

a significant increase in lifetime antipsychotic drug exposure compared to patients in cluster

1 (Fig. 3b) and group comparisons are presented in Tab. 2.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2022.08.03.22278370doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.03.22278370
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

b

Cluster/ control

c

d

NW NW NW

Figure 3: Symptom expression and medication status. (a) Clinical scores of a↵ective
and non-a↵ective patients within each cluster are displayed in boxplots. Individual boxplots
show data minimum, first quartile, median, third quartile, and data maximum. Individual
subjects are overlaid as dots. Outliers are indicated outside the data minimum or maxi-
mum. (b) Medication dosage and status of a↵ective and non-a↵ective patients within each
cluster. (c) Cognitive scores of a↵ective and non-a↵ective patients within each cluster are
displayed and compared to all control subjects (c, light blue). The plots display the ten
features contributing most to explained variance of the PCs. (d) Di↵erences in three grey
matter volume networks between a↵ective and non-a↵ective patients within each cluster
are displayed and compared to all control subjects (c, light blue). NW 18 comprises the
putamen and the amygdala; NW 29 comprises the paracingulate gyrus, the juxtapositional
lobule, the superior parietal lobule, and the precentral gyrus; and the NW 30 comprises
the superior frontal gyrus, the frontal pole, the putamen, the postcentral gyrus and the
cerebellum crus. The plots display the ten features contributing most to explained variance
of the PCs. Significance is indicated as p  0.05 (*), p  0.01 (**) and p  0.001 (***).
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We also considered di↵erences in grey matter networks across the patients in the clus-

ters and the controls. The ranked ANOVA revealed a highly significant interaction e↵ect

(F(87)=2.564, p=1.79e-13) between the patients in the three clusters and the controls (four

groups) and the grey matter volume in each network (30 networks). Bonferroni corrected

post-hoc analyses revealed significant di↵erences in network 18 comprising the putamen

and the amygdala (F(3,48.64)=9.32, p=0.00027), network 29 consisting of the paracingu-

late gyrus, the juxtapositional lobule, the superior parietal lobule, and the precentral gyrus

(F(3,45.13)=7.8, p=6e-05) and network 30 including the superior frontal gyrus, the frontal

pole, the putamen, the postcentral gyrus and the cerebellum crus (F(3,45)=10.95, p=2e-05)

(Fig. 3d). Group comparisons are presented in Tab. 2.

Finally, we investigated partial Pearson correlations between the ten cognitive features,

the three significant grey matter volume networks, and the clinical scores, controlling for

Chlorpromazine equivalent dose within each cluster and across all patients. Across all

patients, but not within the clusters, we found several significant, multiple-comparison-

corrected associations, see Fig. 4 and Suppl. Tab. 6.
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Figure 4: Partial correlations between brain, cognition and clinical scores.
Correcting for the equivalent dose of medication, we used Partial Pearson correlations to
investigate the interaction between cognitive scores (i.e., Fluid Intelligence and Crystallized
Intelligence, Total IQ, the Picture Vocabulary Test, Oral reading recognition, Auditory at-
tention, Working memory, WASI - Verbal comprehension, WASI - Matrix reasoning as well
as DCCS - Executive functioning), brain networks (i.e., NW18, NW29, NW30), and clini-
cal scores (i.e., PANSS total, PANSS positive, PANSS negative, General psychopathology
score) across all patients independent of cluster.
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4 Discussion

The aim of this study was, first, to investigate three cognitive subtypes using the HCP

Early Psychosis dataset using data-driven clustering on standardized cognitive, perceptual

and emotional task and score data, but no clinical data; second, whether the patients in

the three clusters di↵ered in symptom expression, cognition, medication and grey matter

volume; and, third, depending on the results for the first two aims, we wished to under-

stand if symptoms, alterations in cognition and brain morphometry were associated when

controlling for medication within and across the clusters. Using a data driven parameter

selection and clustering approach, we were able to show significant di↵erences across our

three clusters revealing a cognitively intact cluster, an intermediately a↵ected cluster and

a cognitively a↵ected cluster, which seem to confirm subgroups previously described in the

literature [36, 52, 80–85]. Importantly, our results extend those findings, showing that pa-

tients within those clusters also di↵er in medication dosage in specific grey matter brain

networks and in clinical symptoms. Interestingly, across all patients but not within clusters,

we found that decreased grey matter volume in frontal, parietal and subcortical regions was

linked to higher cognitive scores including crystallized cognition, verbal comprehension and

matrix reasoning, when controlling for medication, and that decreased cognitive scores were

linked to increased negative symptoms, when controlled for medication.

Using a three cluster solution on all participants (i.e., controls, a↵ective and non-a↵ective

psychosis) allowed the identification of cognitive subtypes, which significantly varied in clin-

ical and cognitive impairment. Patients of cluster 2, consisting of nearly 50% of the non-

a↵ective psychosis individuals, expressed the highest symptom scores across PANSS total,

PANSS negative and positive and general psychopathology. They also showed impaired

cognition in all domains compared to cluster 0 containing 17% of the non-a↵ective and 37%

of the a↵ective individuals, and partially also compared to cluster 1 which consists of the

majority of a↵ective individuals and 36% of non-a↵ective individuals. Patients in cluster 0

had the lowest symptom scores and globally spared cognitive abilities, which were similar

to those of controls. Cluster 1 was intermediate, with cognitive impairments in several but

not all domains and slightly increased symptoms compared to the cognitively spared clus-

ter. This finding confirms results from Lewandowski et al. [52] who found a four-cluster

solution to provide the best fit to their data containing three diagnostic patient groups,

with one globally impaired cluster for which cognitive deficits were associated with symp-

tom severity and poorer functioning, one cognitively spared cluster and two intermediate

clusters [52]. The overall structure of cognitive clusters identified in the present study sup-

ports findings discussed in a recent meta-analysis of data-driven identification of cognitive

phenotypes in schizophrenia [54]. Green et al. [54] describe that what is characteristic to

all cluster solutions is the presence of a cognitively spared, one or multiple intermediate

and a deficit subgroup [54]. Importantly, the current study explores three cognitive clusters
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using standard cognitive, perceptual and emotional assessments, selected for general cogni-

tive screening purposes but not necessarily to detect the largest or most consistent cognitive

deficits in early stages of psychosis, suggesting generalisability among these clusters.

In addition to the di↵erences across many cognitive domains between the patients of the

clusters, we also found di↵erences with regard to the amount of medication using Chlorpro-

mazin equivalent doses and grey matter volume in frontal, parietal and subcortical brain

areas. This emphasizes the complexity of the inter-relationships of cognitive deficits, brain

alteration, medication usage and symptom expression, especially when considering that the

clustering is based on task and questionnaire data only, and still, di↵erences across all do-

mains - cognition, brain scores, medication and symptoms - have been identified. Several

studies indicate an association between higher doses of medication and stronger cognitive

deficits [86–88]. In a birth cohort study, for example, Husa et al. [86] showed that a

higher lifetime dose of anti-psychotics was associated with lower cognitive performance in

schizophrenia patients at the age of 43. Interestingly, a longitudinal study [87] investigating

the e↵ect of anti-psychotic treatment discontinuation showed that those individuals who did

not remain on their medication after a 3.5 year follow up had improved significantly more

than those who stayed on their medication even when controlling for symptom severity and

cognitive scores at baseline. General non-adherence of medication use, however, does not

have the same positive e↵ect on cognition [89]. Especially, anticholinergic medication has

been associated with a high cognitive burden [88], which is supported by our results.

Changes in grey matter volume have been associated with an increased risk for psychosis

and disease development [90–92], and provided the basis for good classification in a recent

multicohort-study [93], as well as in earlier studies [94, 95], although classification results

are inconsistent [96]. Our results show that the cluster with the strongest cognitive deficits

has increased grey matter volume in three brain networks spanning fronto-parietal and

subcortical areas. Across all participants and when correcting for medication we also found

a negative correlation between grey matter volume and cognitive performance in several

cognitive tests, including general cognition, verbal cognition and reasoning. Interestingly,

grey matter volume alterations, especially reductions have been reported in association

with schizophrenia [41, 97–99]. Results however depend on the specific region [100], illness

stage and medication [101, 102]. Interactions between grey matter alterations and various

cognitive scores have not been studied extensively [103–106]. Most studies investigated

cognitive alterations in specific domains (e.g., working memory) and often reported positive

correlations [107–109]. Very few studies report negative correlations - increased grey matter

volume being linked to reduced cognitive scores. Zhang et al. [110] for example showed,

comparable with our results, that the performance in the Stroop Color-Word Test’s Card

C was negatively correlated with grey matter volumes of frontal and middle frontal brain

areas. In a cohort of at-risk mental state for psychosis individuals, Koutsouleris et al.
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[105] found positive and negative correlations between grey matter volume and performance

in the trail-making test, with negative correlation reported for cerebellar regions, which

is comparable to what we report in the current study. We suspect that the structural

covariance network analysis, which specifically aims at finding similarity networks between

participants, and then analyses grey matter volume di↵erences within these similar networks

might contribute to the di↵erence in directionality of the correlations. Our results however

clearly demonstrate di↵erences in the cluster containing the most strongly a↵ected patients

- clinically and cognitively. A study by Wenzel et al. [104] took a di↵erent approach. They

attempted to classify individuals of di↵erent cognitive clusters using grey matter volume

data and a support vector machine approach. They achieved a 60.1% classification accuracy,

similar to an early study [106], indicating some morphological alterations associated with

the cognitive subtypes. Taken together, these di↵erences reported here and in the literature

may suggest that grey matter changes are not generally linked to cognitive changes, but

rather play a mediating role. This argument would be in the same line of thought as put

forward by Palaniyappan [111], stating that grey matter changes in multimodal brain regions

which have a supervisory function on sensory, emotional and language processing, may link

to symptom expression when occurring with functional impairments. Future studies should

therefore aim at the combination of additional structural imaging data, such as structural or

white matter connectivity, to complement their analysis and potentially identify underlying

neuropathological mechanisms.

Our data furthermore reveals a strong link between negative symptoms and cognitive

impairments. Investigating PANSS total, we found a step-wise increase in symptom severity

from cluster 0 to cluster 2, with the cognitive deficit cluster (cluster 2) showing highest

symptom scores. We found, also, that cluster 0, the cognitively spared cluster, showed

significantly lower positive symptoms compared to cluster 1 and 2. Furthermore, the globally

impaired cluster (cluster 2) revealed increased negative symptoms compared to both other

clusters, and increased global psychopathology compared to the cognitively spared cluster

(cluster 0), indicating that the cognitive deficits occur in those subjects with strong negative

symptoms and a higher severity of general psychopathology [112]. This is in congruence

with Oomen et al. [113] who reported three clusters based on only cognitive data with one

severely cognitively impaired cluster, which showed general functioning being significantly

lower compared to the patients in the other clusters. Interestingly, patients of the severely

impaired cluster also showed lower general functioning scores at a trend at 6- and 12-

month follow-up. Similar results were reported by Haining et al. [84]. Tan et al. [85] on

the other hand did not find associations between the three cognitive clusters and symptom

expression, but found that the cognitively impaired subgroup already showed worse academic

performance during childhood, early and late adolescence. These findings confirm the critical

relevance of cognitive deficits for early detection and functional prediction [26–28, 84]. This
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often replicated distribution of a severely impaired cluster, indicating that early interventions

based on such cluster analysis would be suitable too.

Finally, as our results confirm that patients with non-a↵ective psychosis show stronger

cognitive deficits compared to patients with a↵ective psychosis, it is not surprising that non-

a↵ective patients are more likely to be in the intermediate and impaired subgroups. Still both

patient groups are present in all clusters, with the cognitively intact subgroup consisting

of 19/52 and 20/118 patients with a↵ective and non-a↵ective psychosis, respectively, the

intermediate group with 28/52 a↵ective and 42/118 non-a↵ective psychosis patients, and the

cognitively impaired group with 5/52 a↵ective and 56/118 non-a↵ective psychosis patients.

Our results indicate that clustering extends classical patient classification and diagnosis

solely based on International Statistical Classification of Diseases (ICD)/Diagnostic and

Statistical Manual of Mental Disorders (DSM) [114, 115], and may provide an additional

characterization of patients which may emphasize additional targets of interventions and

treatment, such as cognitive remediation, especially for those individuals in the intermediate

and in the deficit cluster. This notion is supported by an increased sensitivity in revealing

cluster-specific di↵erences across symptom scores, cognitive scores, grey matter volume and

medication, when comparisons between diagnosis groups did not show significant e↵ects

(Suppl. Table 2).

This study has several limitations: Generally, K-Means [116] is a commonly used clus-

tering algorithm that performed well on our data. Nevertheless, there are some drawbacks

of this method: First, the algorithm requires a predefined number of clusters. We did not

use a purely data-driven number of clusters. Instead, we predefined three clusters based on

previous literature, where a spared, an impaired and an intermediate cluster are regularly

detected [54], and the number of three pre-existing diagnosis groups in the data. As a data-

driven control analysis for cluster number specification provided non-conclusive evidence

for either two or three clusters, we suggest that future research should aim at replicating

the current results in a larger cohort and across a more heterogeneous sample of patients,

also including chronic schizophrenia patients. Second, K-Means clustering does not work

well with non-spherical cluster or clusters with di↵erent sizes [117]. We, therefore, also

performed fuzzy K-means clustering approach which accounts for fuzzy boundaries between

subgroups, and is suited for potentially overlapping subgroups [73]. The age di↵erence be-

tween the groups might constitute a third limitation of the study. However, since age was

added as a covariate to all analyses, we believe that this aspect did not a↵ect the results to

a significant degree. Third, the basis of our clustering approach provided cognitive, percep-

tual and emotional test scores, which were taken from the standardised NIH toolbox ([63],

[64]). Generally, improvement of clustering and identification of cognitive subgroups may be

achieved through the selection of specific behavioral tasks and cognitive domains. Moreover,

advanced analysis strategies, e.g., computational modelling may improve clustering [16, 17,

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2022.08.03.22278370doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.03.22278370
http://creativecommons.org/licenses/by-nc-nd/4.0/


118], as it provides the opportunity to identify and mathematically di↵erentiate behavioral

parameters, which were found to be reliable and unique across individuals [119].

In conclusion, our results provide evidence for the presence of three cognitive subgroups

- one cognitively intact, one intermediate and one deficit group - confirming previous find-

ings. This study however extends those results, showing that patients within those three

clusters also di↵er with respect to current medication dosage and grey matter volume in

fronto-parietal and subcortical regions. Our results therefore emphasize the complex inter-

relations between cognition, symptoms, brain structure and medication, drawing attention

to the pivotal role of alterations in cognition as a factor for the selection of treatments and

interventions.

References

[1] P. Fusar-Poli, G. Deste, R. Smieskova, S. Barlati, A. R. Yung, O. Howes, R.-D.

Stieglitz, A. Vita, P. McGuire, and S. Borgwardt. “Cognitive Functioning in Prodro-

mal Psychosis: A Meta-analysis”. Archives of General Psychiatry 69.6 (June 2012),

pp. 562–571. issn: 0003-990X. doi: 10.1001/archgenpsychiatry.2011.1592.

[2] D. M. Barch and A. Ceaser. “Cognition in schizophrenia: core psychological and

neural mechanisms”. Trends in cognitive sciences 16.1 (2012), pp. 27–34.

[3] S. J. Dienel and D. A. Lewis. “Alterations in cortical interneurons and cognitive

function in schizophrenia”. Neurobiology of Disease 131 (2019), p. 104208. issn: 0969-

9961. doi: https://doi.org/10.1016/j.nbd.2018.06.020.

[4] M. F. Green and P. D. Harvey. “Cognition in schizophrenia: Past, present, and fu-

ture”. Schizophrenia Research: Cognition 1.1 (2014), e1–e9. issn: 2215-0013.
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Boston, MA: Brigham and Womenś Hospital, Beth Israel Deaconess-Massachusetts

Mental Health Center, McLean Hospital, Massachusetts General Hospital; 2021.

[61] M. First, J. Williams, R. Karg, and R. Spitzer. “Structured Clinical Interview for

DSM-5-Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV).(2015)

Arlington”. VA: American Psychiatric Association ().

[62] S. R. Kay, A. Fiszbein, and L. A. Opler. “The positive and negative syndrome scale

(PANSS) for schizophrenia”. Schizophrenia bulletin 13.2 (1987), pp. 261–276.

[63] R. C. Gershon, M. V. Wagster, H. C. Hendrie, N. A. Fox, K. F. Cook, and C. J.

Nowinski. “NIH toolbox for assessment of neurological and behavioral function”.

Neurology 80.11 Supplement 3 (2013), S2–S6.

[64] [Anonymous]. “NATIONAL INSTITUTES OF HEALTH TOOLBOX COGNITION

BATTERY (NIH TOOLBOX CB): VALIDATION FOR CHILDREN BETWEEN

3 AND 15 YEARS”. MONOGRAPHS OF THE SOCIETY FOR RESEARCH IN

CHILD DEVELOPMENT 78.4 (Aug. 2013), pp. 147–149. issn: 0037-976X. doi:

10.1111/mono.12040.

[65] R. C. Gur, J. Richard, P. Hughett, M. E. Calkins, L. Macy, W. B. Bilker, C.

Brensinger, and R. E. Gur. “A cognitive neuroscience-based computerized battery for

e�cient measurement of individual di↵erences: standardization and initial construct

validation”. Journal of neuroscience methods 187.2 (2010), pp. 254–262.

[66] D. Wechsler. “Wechsler abbreviated scale of intelligence” (1999).

[67] L. J. Seidman, E. C. Meyer, A. J. Giuliano, H. C. Breiter, J. M. Goldstein, W. S.

Kremen, H. W. Thermenos, R. Toomey, W. S. Stone, M. T. Tsuang, et al. “Auditory

working memory impairments in individuals at familial high risk for schizophrenia.”

Neuropsychology 26.3 (2012), p. 288.

[68] Z. Kalantan and N. Alqahtani. “A study of principal components analysis for mixed

data”. International Journal of ADVANCED AND APPLIED SCIENCES 6 (Dec.

2019), pp. 99–104. doi: 10.21833/ijaas.2019.12.012.

[69] C. Sperber. “The use of principal component and factor analysis to measure fun-

damental cognitive processes in neuropsychological data”. bioRxiv (2022). doi: 10.

1101/2021.11.10.468133. eprint: https://www.biorxiv.org/content/early/

2022/03/19/2021.11.10.468133.full.pdf.

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2022.08.03.22278370doi: medRxiv preprint 

https://doi.org/10.1111/mono.12040
https://doi.org/10.21833/ijaas.2019.12.012
https://doi.org/10.1101/2021.11.10.468133
https://doi.org/10.1101/2021.11.10.468133
https://www.biorxiv.org/content/early/2022/03/19/2021.11.10.468133.full.pdf
https://www.biorxiv.org/content/early/2022/03/19/2021.11.10.468133.full.pdf
https://doi.org/10.1101/2022.08.03.22278370
http://creativecommons.org/licenses/by-nc-nd/4.0/


[70] F. Knolle, S. S. Arumugham, R. A. Barker, M. W. Chee, A. Justicia, N. Kamble,

J. Lee, S. Liu, A. Lenka, S. J. Lewis, et al. “A multicentre study on grey matter

morphometric biomarkers for classifying early schizophrenia and parkinson’s disease
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