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Abstract  15 

Providing user-focused, objective, and quantified metrics for prosthesis usability may help reduce 16 

the high (up to 50%) abandonment rates and accelerate the clinical adoption and cost reimbursement for 17 

new and improved prosthetic systems. We comparatively evaluated several physiological, behavioral, and 18 

subjective cognitive workload measures applied to upper-limb neuroprosthesis use. 19 

Users controlled a virtual prosthetic arm via surface electromyography (sEMG) and completed a 20 

virtual target control task at easy and hard levels of difficulty (with large and small targets, respectively). 21 

As indices of cognitive workload, we took behavioral (Detection Response Task; DRT) and 22 
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electroencephalographic (EEG; parietal alpha and frontal theta power, and the P3 event-related potential) 23 

measures for one group (n = 1 amputee participant, n = 10 non-amputee participants), and 24 

electrocardiographic (ECG; low/high frequency heart-rate variability ratio) and pupillometric (task-25 

evoked pupillary response) measures for another group (n = 1 amputee participant, n = 10 non-amputee 26 

participants), because all measures could not reasonably be recorded simultaneously. Participants of both 27 

groups also completed the subjective NASA Task-Load Index (TLX) survey.  28 

Ease of use, setup, piloting, and analysis complexity varied among measures. The DRT required 29 

minimal piloting, was simple to set up, and used straightforward analyses. ECG measures required 30 

moderate piloting, were simple to set up, and had somewhat complex analyses. Pupillometric measures 31 

required extensive piloting but were simple to set up and relatively simple to analyze. EEG measures 32 

required extensive piloting, extensive setup and equipment, careful monitoring, and moderately complex 33 

analyses.  34 

Across subjects, the DRT, low/high frequency heart-rate variability ratio, task-evoked pupillary 35 

response, and NASA TLX significantly differentiated between the easy and hard tasks, whereas EEG 36 

measures (alpha power, theta power, and P3 event-related potential) did not. Aside from the NASA TLX, 37 

the DRT was the easiest to use and most sensitive to cognitive load across and within subjects. Among 38 

physiological measures, we recommend ECG, pupillometry, and EEG/ERPs, in that order.   39 

This study provides the first evaluation of multiple objective and quantified cognitive workload 40 

measures during the same task with prosthesis use. User-focused cognitive workload assessments may 41 

increase our understanding of human interactions with advanced upper-limb neuroprostheses and 42 

facilitate their improvements and translation to real-world use. 43 

 44 

Significance Statement (194/250 words) 45 

 The human arm is dexterous and able to sense objects it contacts. Restoring sensory and motor 46 

function to a person with limb loss presents multiple challenges and requires improvements in robotics, 47 

biological interfaces, decoding biological signals for prosthesis movement, and sensory restoration. The 48 
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scientific and engineering communities have made progress toward restoring arm function through 49 

advanced neuroprostheses. However, most studies focus solely on task performance, and they typically 50 

employ artificial experimental paradigms in which the user can devote full attention to the task, which is 51 

often unrealistic for use in everyday activities. To develop neuroprostheses capable of restoring intuitive 52 

arm function, engineers and scientists must also consider the difficulty of use, or cognitive burden, of 53 

using the neuroprosthesis. Although many measures of cognitive workload have been developed, few 54 

studies directly interrogate cognitive workload during neuroprosthesis use. An engineer or scientist 55 

seeking to employ cognitive workload measures during neuroprosthesis use will likely wonder, as we did, 56 

which measures are most suitable for their needs. To address this question, we empirically assess the 57 

practical and functional merits and limitations of several physiological, behavioral, and subjective 58 

techniques to measure cognitive workload during use of an advanced prosthesis. We anticipate that these 59 

findings may influence other medical and consumer areas of human-computer interaction, such as virtual 60 

reality or exoskeleton use. 61 

 62 

Keywords (Min.3 - Max. 10): 63 

cognitive workload, neuroprosthetics, rehabilitation, brain-computer interface, electromyography (EMG), 64 

bionic arm, prosthesis, usability.  65 

Introduction 66 

Upper-limb prostheses generally rely on unintuitive controllers and do not restore sensation to the 67 

user, often resulting in prosthesis abandonment (Biddiss and Chau, 2007a). These limitations are among 68 

the major factors (Biddiss et al., 2007; Espinosa and Nathan-Roberts, 2019) in the high (30% to 50%) 69 

prosthesis abandonment rate (Pons et al., 2005; Biddiss and Chau, 2007b). More recent innovations, such 70 

as advanced, multi-articulating prostheses, have not yet produced substantial reductions in prosthesis 71 

abandonment (Salminger et al., 2020). Sophisticated solutions for restoring sensation (Tan et al., 2014; 72 

Graczyk et al., 2018; D’Anna et al., 2019; George et al., 2019; Schofield et al., 2019; Mastinu et al., 73 
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2020), improving motor control (Ortiz-Catalan et al., 2014b; Hargrove et al., 2017; Ameri et al., 2019; 74 

Salminger et al., 2019; Vu et al., 2020; Paskett et al., 2021), and improving prosthesis comfort through 75 

interventions such as osseointegration (Ortiz-Catalan et al., 2014a; Mastinu et al., 2020) provide valuable 76 

steps toward increasing user satisfaction and reducing abandonment.  77 

One aspect of upper-limb prosthesis improvements that rarely is directly studied is the cognitive 78 

workload or effort required to use a prosthesis. Previous work (Resnik et al., 2012) has conveyed the need 79 

for direct cognitive workload measures for prosthesis use. Most studies with advanced prostheses 80 

demonstrate some form of performance improvement; however, performance does not necessarily imply 81 

ease-of-use and desirability. Ultimately, translating neuroprostheses from the laboratory to the clinic for 82 

long-term use will require the technologies to be desirable. Desirability will very likely increase with 83 

higher performance systems; it will certainly increase with high-performance systems that are easy to use. 84 

We found strong subjective preferences for certain movement decoders even though the objective 85 

performance was similar (Paskett et al., 2021), implying that user satisfaction and the desirability of the 86 

decoder was influenced by more than performance alone. Humans move their endogenous hand with 87 

dexterity and very little cognitive effort. That is, most movements are executed with a great deal of 88 

automaticity, without occupying the mind with the low-level details of the action. The ideal prosthesis 89 

should restore such automaticity to the user, enabling them to extend their focus beyond the prosthesis 90 

when carrying out a task. Quantifying cognitive workload during prosthesis use may provide a clearer 91 

path toward restoring automaticity. 92 

Interrogating cognitive workload is possible through subjective, behavioral, and physiological 93 

measures. There are benefits and limitations to each. In the upper-limb prosthesis domain, most attempts 94 

at measuring cognitive workload (Markovic et al., 2018, 2020; Thomas et al., 2019) have been through 95 

subjective measures, such as the NASA TLX survey (Hart and Staveland, 1988). Subjective measures are 96 

quick and simple; however, they can suffer from large inter-individual variability, recall bias (Zahabi et 97 

al., 2019), and task-order dependency (McKendricka and Cherry, 2018). A few studies have employed 98 

behavioral measures (Witteveen et al., 2012; Raveh et al., 2018b; Valle et al., 2020) that generally use the 99 
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performance in a secondary task (e.g., a memory task) as an index of difficulty of the primary (prosthesis) 100 

task. Behavioral measures are appealing because they measure cognitive workload contemporaneous with 101 

the prosthesis task and do not suffer as directly from recall bias or task-order dependency. However, they 102 

make the assumption that the paired secondary task will use mental capacity spared by the primary task 103 

and that trade-off strategies are not employed during the tasks (Fisk et al., 1983).  Some studies have used 104 

physiological measures (Gonzalez et al., 2012; Deeny et al., 2014; White et al., 2017; Parr et al., 2019; 105 

Thomas et al., 2021) to quantify cognitive workload. Physiological measures are valuable because they 106 

rely on subconscious mechanisms to quantify cognitive workload and are relatively unaffected by 107 

experimenters’ or subjects’ biases or expectations. However, capturing these phenomena generally 108 

requires sophisticated equipment and well-prepared, and ofttimes constrained, conditions. 109 

The question therefore arises: Which approach(es) should one use to measure cognitive 110 

workload? To answer this question, we used an ordinary prosthesis control task – matching a virtual hand 111 

to a target on a screen – for which we could easily manipulate task difficulty in order to compare 112 

subjective, behavioral, and physiological measures of cognitive workload. By collecting multiple 113 

cognitive workload measures during the same prosthesis task, our results facilitate direct comparisons of 114 

the measures’ effectiveness and utility. The results presented herein may thus aid researchers in selecting 115 

quantified cognitive workload measures for their own studies with advanced prostheses. Additionally, 116 

they may facilitate development, implementation, and clinical translation of easy-to-use prostheses. 117 

Methods 118 

Participant Recruitment 119 

The present study was completed with two groups. In one group, we recorded behavioral and 120 

EEG measures of cognitive workload. One amputee participant, male, in his 40s, had a congenital left 121 

amputation approximately 10 cm below the elbow. Ten non-amputee participants completed the study: 122 

three female, seven male, 24.6 ± 3.4 years old, one left-handed, nine right-handed.  123 
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In the other group, we recorded cardiac and pupillometric measures of cognitive workload. One 124 

amputee participant, male, in his 40s, had bilateral traumatic amputations 10 years prior, about 8 cm 125 

below the elbow, and is right hand dominant. Ten non-amputee participants completed the study: five 126 

female, five male, 27.3 ± 12.2 years old, all right-handed. No participant from the first group was 127 

included in the second group, so that both groups had equally naïve participants.  128 

Cognitive Workload Measure Overview 129 

We first briefly introduce the measures we employed in this study. For more in-depth reviews, we 130 

recommend (Charles and Nixon, 2019; Lohani et al., 2019).  131 

DRT 132 

The DRT is a secondary task in which a visual, auditory, or tactile stimulus prompts the user to 133 

respond by pressing a button. As the primary task increases in difficulty, the response time typically 134 

increases, and stimulus detection rate typically decreases (i.e., the user does not respond). An ISO 135 

standard of the DRT (ISO 17488:2016, 2016) has been used extensively in driving contexts (Ranney, T. 136 

A., Baldwin, G. H. S., Smith, L. A., Mazzae, E. N., & Pierce, 2014; Chang et al., 2017; Stojmenova et al., 137 

2017; Strayer et al., 2017; Stojmenova and Sodnik, 2018), in which the stimulus is presented at random 138 

intervals of 3-5 s. More broadly, secondary tasks have been applied to prosthesis tasks with promising 139 

results, such as auditory discrimination tasks (Witteveen et al., 2012), memory tasks (Valle et al., 2020), 140 

and games (Raveh et al., 2018b, 2018a). In contrast with the referenced uses of secondary tasks, we find 141 

the DRT attractive because trials are collected rapidly (every few seconds) and the response times are 142 

nearly continuous. The DRT has not been applied previously to prosthesis research. 143 

EEG and Event-Related Potentials 144 

 EEG is the measure of electrical potentials produced by the brain at the scalp surface. Alpha 145 

waves (8-12 Hz) in parietal regions indicate cortical idling and alpha power decreases with increased task 146 

demands (Keil et al., 2006). Theta waves (4 - 7 Hz) in frontal midline regions arise when cognitive 147 

control is required for a task (i.e., the task cannot be completed through an automatic strategy). Two 148 
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studies have measured alpha waves (Gonzalez et al., 2012; Parr et al., 2019), but no study has analyzed 149 

theta waves during prosthesis use.  150 

 Event-related potentials (ERPs) are the brain’s electrophysiological response to a particular 151 

sensory, cognitive, or motor event (Luck, 2005). ERPs contain several components that represent various 152 

stages in neural processing of an event. When used to measure cognitive workload, ERPs are usually 153 

elicited through a secondary task, such as a DRT (Strayer et al., 2014). The P3 component, a positive 154 

potential arising roughly 300-ms post-stimulus, decreases in amplitude as the primary (in our case, 155 

prosthesis) task increases in difficulty and requires more resource allocation (Luck, 2005). Only one 156 

previous study has used ERPs as a cognitive workload measure during prosthesis use (Deeny et al., 2014).   157 

Pupillometry 158 

 The eyes have been described as the “visible part of the brain” (Hess and Janisse, 1978). 159 

Pupillometry is the continuous measure of pupil size over the course of a task. Pupil size increases with 160 

cognitive demands, demonstrated as early as the 1960s (Kahneman and Beatty, 1966). Because pupil size 161 

changes due to several environmental, neurological, and psychological factors, trial averaging is often 162 

used to produce a “task-evoked pupillary response” (Beatty, 1982). Measuring the percentage of pupil 163 

dilation provides a measure that is robust to inter-individual and inter-trial baseline pupil size differences 164 

(Payne et al., 1968). Pupillometry has been used only rarely in the prosthesis domain (White et al., 2017; 165 

Zahabi et al., 2019).  166 

Electrocardiography 167 

 Electrocardiography (ECG) is the measure of electrical potentials produced from the heart. 168 

Several time-domain and frequency-domain measures are sensitive to cognitive workload (Charles and 169 

Nixon, 2019). For our study, we used the low frequency (0.02 – 0.06 Hz) to high frequency (0.15 – 0.5 170 

Hz) ratio (LF/HF ratio) because it showed the greatest sensitivity in our pilot experiments. One other 171 

prosthesis study has used ECG to measure cognitive workload (Gonzalez et al., 2012). 172 
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NASA TLX Survey 173 

 The NASA TLX is a subjective survey designed to measure perceived workload (Hart and 174 

Staveland, 1988) through six different categories on a 100-point scale: mental demand, physical demand, 175 

temporal demand, performance, effort, and frustration. Participants compare categories pairwise based on 176 

perceived importance in the task, and individual weightings from these comparisons are used to produce a 177 

composite score. The TLX has been used widely across many domains, including prostheses (Gonzalez et 178 

al., 2012; Markovic et al., 2018, 2020; Shaw et al., 2019; Thomas et al., 2019).  179 

Experiment Overview 180 

 Participants controlled a virtual prosthetic hand using sEMG signals to complete a virtual target 181 

task at easy and hard difficulties (Fig. 1). During the virtual task, we recorded subjective (NASA TLX), 182 

physiological (ECG, EEG, and pupillometry) and behavioral (DRT) data to be used as measures of 183 

cognitive workload. Because all the measures could not reasonably be collected at the same time, we 184 

recorded ECG and pupillometry together in one set of experiments, and EEG and the DRT together in 185 

another set of experiments.  186 

Prosthesis Control 187 

 The prosthesis control methodology used in this study has been described previously (George et 188 

al., 2020a). In brief, sEMG was collected from an sEMG sleeve (George et al., 2020b) with the Grapevine 189 

System (Ripple Neuro LLC, Salt Lake City, UT). Thirty-two single-ended channels were acquired at 1 190 

kHz and band-pass filtered between 15 Hz and 375 Hz with 4th-order Butterworth filters, and 60, 120, and 191 

180 Hz 2nd-order Butterworth notch filters. After the sEMG sleeve was connected to the acquisition 192 

device, channels were manually inspected and removed if broken channels were detected (generally less 193 

than two channels). The differential pairs of all monopolar channels were calculated, and features (single-194 

ended and differential) were created at 30 Hz using the mean absolute value of a 300-ms buffer (i.e., 528 195 

features from an overlapping 300-ms boxcar filter). At 30 Hz, the buffer is updated every 33 ms. This 196 

update rate and buffer length has been used by our group extensively (George et al., 2018, 2020a). 197 
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 sEMG was collected as participants mimicked preprogrammed movements of the virtual MSMS 198 

hand (Davoodi and Loeb, 2011). The preprogrammed movements consisted of index, middle, and ring 199 

finger flexions. Each movement consisted of a 0.7-s transition to flexed position, 4-s hold, and 0.7-s 200 

return to rest position. Participants completed two trials of each flexion as practice to gain familiarity with 201 

the virtual environment. After familiarization, participants completed five trials of each movement. Using 202 

Figure 1. Virtual Target Task. Participants control the 
virtual hand and attempt to keep all targets green as 
random targets move to a target position for a specific 
time (5-15 s). (A) Large target with the middle finger 
active. Because the middle finger is within the target 
window, the target is green. (B) Small target with the 
middle finger active. Because the finger is outside the 
target window, the target is red.  
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a Gram-Schmidt forward selection algorithm (Nieveen et al., 2017), 48 sEMG features were selected as 203 

inputs to the decoder, a modified Kalman filter (George et al., 2020a). The 48 features and virtual hand 204 

kinematics were used to fit the parameters of the modified Kalman filter. After fitting the modified 205 

Kalman filter, users were given control over the virtual hand. We let the participants spend a few minutes 206 

exploring the control; in cases where the participants struggled to fully flex the fingers, participants 207 

repeated the five-trial mimicry and the modified Kalman filter was refitted.  208 

DRT 209 

 We made a custom DRT system that interfaced with the Ripple Grapevine Digital I/O board. This 210 

system turned the tactile buzzer, a 10 mm x 2 mm vibration motor on a 4.5 V power supply, on or off 211 

when an output of the Digital I/O was set to high or low, respectively. The response button, when 212 

depressed, was recorded by the Ripple Grapevine system. The DRT vibrations were set to 1 s and turned 213 

off if the user pressed the response button before the 1 s had ended. Timestamps for the Digital I/O board 214 

are recorded at 30-kHz resolution. The DRT system was placed on the table near the participant and two 215 

separate cables for the vibration motor and response button were routed to the participant. We attached 216 

the DRT vibration motor to the collarbone with medical tape, opposite the hand used for the prosthesis 217 

task. We attached the response button to the index finger using a hook and loop fastener.  218 

EEG & ERP Recordings 219 

 EEG was recorded based on the standard 10-20 system using a 34-electrode cap (Ripple Neuro 220 

LLC, Salt Lake City, UT). Electrode locations were: FP1, FP2, F7, F3, Fz, F4, F8, AFz, FT7, FT8, FC3, 221 

FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz, O2, A1, A2, VEOL, HEOR, 222 

HEOL. The online reference was on electrode CPz, and the ground was AFz. We used Electro-Gel™ to 223 

bridge the connection between the electrodes and the scalp. Impedances of the electrodes were brought 224 

below 10 kOhm, typically close to 5 kOhm, using gentle scalp abrasion. We recorded the scalp EEG at 1 225 

kHz and band-pass filtered between 1 Hz and 125 Hz with 4th-order Butterworth filters.  226 
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Pupillometry Recordings 227 

 Pupil diameter was recorded using the Pupil Labs’ Pupil Core head-mounted pupillometry device. 228 

We recorded pupil diameter with both pupil cameras at 120 Hz and 400x400 resolution. The 2D diameter 229 

output from the Pupil Labs’ software was used for analysis, which contains a measured diameter and the 230 

measurement confidence, ranging from zero to one. Room lighting was kept constant at approximately 231 

100 lux, as measured by an Urceri MT-912 light meter.  232 

ECG Recordings 233 

 ECG was recorded with the five-wire, four-lead Shimmer3 ECG unit. The unit recorded at 512 234 

Hz. The Vx electrode was placed at V5, as suggested in the Shimmer3 ECG user manual, and the 235 

remaining electrodes were placed on the chest in the direction of the right arm, left arm, right leg, and left 236 

leg. ECG recordings were programmatically started and stopped when a target set was started or finished, 237 

respectively. The Shimmer3 logs the data onto an internal SD card, which was later extracted using 238 

Shimmer3 Consensys software. 239 

Virtual Target Task 240 

 Participants completed a virtual target task in the MSMS virtual environment (Davoodi and Loeb, 241 

2011) for easy and hard difficulties. In the virtual target task, a spherical target indicates the desired 242 

position of each degree-of-freedom. When a degree-of-freedom is within a specified radius of the target, 243 

the target is green; outside the allowable radius, the target is red. For our target tasks, the target was 244 

placed halfway through the movement window, with a target size (i.e., allowable radius) of 35% and 15% 245 

of the movement window for the easy and hard difficulties, respectively. 246 

 Participants were instructed to focus most of their attention on the active target, which was only 247 

one degree-of-freedom at a time. Participants were instructed that their objective was to keep the target 248 

green, not to keep the active degree-of-freedom in the middle of the target. Participants were encouraged 249 

to stay focused on the task and to avoid talking during the task in order to reduce cognitive demands 250 

beyond the task itself. 251 
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 The subsequent sections describe the target task paradigm for each group. Because the different 252 

cognitive load measures have differing recording requirements, the experimental paradigms were slightly 253 

different for the two groups. The difficulty of the task (i.e., target size) was identical for both groups. 254 

EEG & DRT Experiments 255 

 In the EEG and DRT virtual target task, the targets were active for 15 s. The participants first 256 

completed one practice set without the DRT that included one trial of each degree-of-freedom for each 257 

target size in a random order, for a total of six trials. For the next practice set, vibrotactile stimuli from the 258 

DRT system were presented randomly 3-5 s apart (uniformly distributed), according to ISO 17488 (ISO 259 

17488:2016, 2016), resulting in, on average, 3 vibrotactile stimuli per active target. After the two practice 260 

sets, the participants completed eight rounds of the target task with the DRT. After the final target set was 261 

completed, users completed the NASA TLX for each target size in a random order.  262 

ECG & Pupillometry Experiments 263 

 In the ECG and pupillometry virtual target task, the targets were active for 5 s with a random 3-5 264 

s interval between targets (uniformly distributed). The participants first completed one practice target set 265 

for each target size. In the practice sets, each degree-of-freedom was tested twice, in a random order. 266 

After practicing the task, participants moved onto the full-length target sets. In one target set, each 267 

degree-of-freedom (index, middle, and ring finger) was tested six times, in a random order, for a total of 268 

18 target trials per set. A set included only one target size. To calculate difference waves with the 269 

pupillary responses, participants also completed a “mimicry” set of targets. In the “mimicry” set, the 270 

computer perfectly completed the target task while the participants watched and mimicked the 271 

movements. Before the “mimicry” target set, participants were informed that the computer would be in 272 

control of the virtual hand, and they were instructed to watch the task and mimic the computer’s 273 

movements. The difference waves are discussed in greater detail in the analysis section. Participants 274 

completed one target set and one “mimicry” set for a single target size, then completed one target set and 275 

one “mimicry” set for the other target size. The initial target size was randomized. For the full 276 
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experiment, participants completed four active and four “mimicry” target sets for each target size, 277 

resulting in 72 individual target trials per participant. After the final target set was completed for each 278 

target size, users completed the NASA TLX survey.  279 

Analysis 280 

DRT 281 

 We analyzed the DRT according to the ISO standard (ISO 17488:2016, 2016). Responses (button 282 

presses after vibrotactile stimuli) less than 100 ms or greater than 2500 ms were counted as a miss. 283 

Response times more than three scaled median absolute deviations from the median were excluded from 284 

the analysis. We measured the hit rates and response times during each target size.  285 

EEG & ERP 286 

 EEG was analyzed using EEGLAB v2021.0. The data were first resampled to 250 Hz. We re-287 

referenced the electrodes to electrodes A1 and A2. The data were filtered from 0.1 Hz to 30 Hz using a 288 

second-order Butterworth filter. Artificial blink and horizontal eye movement channels were created by 289 

subtracting VEOL from FP1, and HEOL from HEOR, respectively.  290 

 For the frequency analysis, 15-s bins were created for the duration of the active target and 291 

separated by target size.  Artifacts were detected and removed if the blink or horizontal movement 292 

channels exceeded a 100-µV threshold within a 200-ms sliding window. The 200-ms window passed 293 

across the 15-s bin in 50 ms increments. Individual bins were Hann-windowed prior to calculating the 294 

power-spectral density of each trial to avoid edge effects.  Power-spectral densities of each trial were 295 

averaged together. The power for the alpha band (8-12 Hz) on electrode Pz and theta (4-7 Hz) band on 296 

electrode Fz were calculated. The percentages of power in the alpha and theta bands were calculated by 297 

dividing the power in the selected bands by the total power.  298 

 For the ERP analysis, bins were created from 200 ms prior to the buzzer onset to 1100 ms after 299 

the onset and separated by target size. Artifacts were detected and removed if the blink or horizontal 300 

movement channels exceeded a roughly 60-µV threshold within a 200-ms sliding window. The threshold 301 
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was slightly adjusted when blinks or horizontal eye movements were not detected by the initial 60-µV 302 

threshold. The 200-ms window passed across the 1300 ms bin in 50 ms increments. Non-artifact trials 303 

were averaged together to produce an averaged ERP for each participant. The signed area was calculated 304 

from 200 ms to 650 ms (Strayer et al., 2014) to calculate the P3 ERP size. Averaged ERPs for each 305 

participant were averaged across participants to produce grand-averaged ERPs.  306 

Pupillometry 307 

 Pupil recordings were aggregated by target size. We removed outliers defined as measurements 308 

greater than three scaled mean absolute deviations from the median of 60 samples (a 0.5-s window). We 309 

removed measurements with measurement confidence less than 0.8. Removed measurements were 310 

replaced with linearly interpolated values. Target trials with more than 20% low confidence 311 

measurements were removed from the aggregated set. The pre-trial baseline diameter, 1 s before the 312 

target became active, was subtracted from each trial. The percentage change in pupil size was calculated 313 

by dividing the response by the average size of the pupil during the 1-s pre-trial baseline. The baseline-314 

subtracted pupillary responses of both eyes were combined and averaged to find the average pupillary 315 

response to the target task. The averaged pupillary response from the mimicry target (where the computer 316 

controlled the virtual hand) was subtracted from the averaged pupillary response to the active target 317 

(where the user controlled the virtual hand) to create a difference wave that would mitigate target-size 318 

dependent luminance effects in the response. We calculated the average value of the difference wave 319 

during the 5 s the target was active.  320 

ECG 321 

 We obtained the LF/HF heart-rate variability ratio using the standard settings of PhysioZoo 322 

version 1.2.0 (Behar et al., 2018). The ECG was band-pass filtered from 3 Hz to 100 Hz with second and 323 

fifth-order Butterworth filters, respectively. Peaks in the ECG were detected using an energy-based QRS 324 

detector (Behar et al., 2014). The heart rate variability (intervals between normal heart beats) was 325 

calculated after removing outliers in the R-R peak intervals. Outliers were defined as intervals above or 326 
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below 20% of the average of the moving window, which was 21 intervals. Power spectral density of the 327 

heart rate variability was calculated with Welch’s method. Finally, the LF/HF ratio was calculated by 328 

dividing the power in the low frequency region (0.04 Hz to 0.15 Hz) by the power in the high frequency 329 

region (0.15 Hz to 0.4 Hz).  330 

Target Task Performance 331 

 We calculated the average percentage of time spent within the target window for each target size 332 

for each participant.  333 

Statistical Procedures: Across-Subject 334 

 We tested the paired values derived from each measure for normality using the Shapiro-Wilk test. 335 

If the paired values were normally distributed, we used a paired t-test to show differences between the 336 

responses to the large and small targets. If the paired values were nonparametric, we used Wilcoxon’s 337 

signed-rank test. Because only one amputee participant completed each experiment, we did not include 338 

amputee participant results in our across-subject statistical measures and instead overlay results from 339 

amputee participants with the results of non-amputee participants.  340 

Statistical Procedures: Within-Subject 341 

 Different measures may work well for some individuals, but not others. Additionally, due to the 342 

costs associated with implanting neural and electromyographic interfaces, it is common for studies to be 343 

completed with only a few subjects. We therefore were interested in the within-subject reliability of the 344 

cognitive workload measures. We completed within-subject analyses for each subject for each measure as 345 

appropriate for the measure and experimental paradigm. For the DRT, we conducted a two-sample t-test 346 

for all the DRT trials in an experiment. For the EEG & ERP measures, we conducted paired-sample t-347 

tests with the average response for each of the eight rounds of the target task. For the pupil & ECG 348 

measures, we conducted paired-sample t-tests with the average response for each of the four rounds of the 349 

target task. We calculated the p-value from the statistical test and the absolute effect size using Cohen’s D 350 

for each participant. We report the median and first and third quartiles of p and D across non-amputee 351 
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participants and the individual outcomes for the amputee participant. We report the number of 352 

participants for whom p < 0.05 by measure. 353 

Results 354 

 In brief, several but not all measures of cognitive load differentiated between the easy and hard 355 

tasks reliably in the aggregate intact subject pool. Significant differences (p < 0.05 or less) occurred for 356 

DRT, pupil dilation, LF/HF ratio, and TLX scores. Averaged ERPs, alpha and theta EEG powers, task-357 

evoked pupillary responses, and heart-rate variability powers for the easy and hard tasks are shown in 358 

Fig. 2. Outcomes from individual participants are shown in Fig. 3. Each measure is discussed in detail in 359 

the following subsections. Parametric statistics are reported as mean ± standard error of the mean, and 360 

nonparametric statistics are reported as median [inter-quartile range]. 361 

Target Task 362 

 Confirming empirical differences in task difficulty, non-amputee participants performed 363 

significantly worse on the hard task (i.e., small target) compared with the easy task. For the DRT and 364 

EEG paradigm, non-amputee participants spent, on average, 33% ± 3% less time within the target 365 

window on the hard task (p < 0.001, paired t-test). The amputee participant had similar performance to 366 

the non-amputee participants, spending 41% less time within the target window for the hard task (small 367 

target: 48% [33%]; large target: 89% [9%]; p < 0.001, Wilcoxon’s rank sum test).  368 

 For the ECG & pupillometry paradigm, non-amputee participants spent 36% ± 2% less time 369 

within the target window for the hard task (p < 0.001, paired t-test). The amputee participant had similar 370 

performance to the non-amputee participants, spending 33% less time within the target window for the 371 

hard task (small target: 47% [21%]; large target: 80% [9%]; p < 0.001, Wilcoxon’s rank sum test). 372 
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Figure 2. Raw physiological measures of cognitive load acquired during virtual target task at easy (large) 
and hard (small) difficulties for non-amputee participants. (A) Event-related potential (ERP) at electrode 
Pz arising from vibrotactile DRT stimulus. (B) Theta EEG power (4-7 Hz) at electrode Fz. (C) Alpha EEG 
power (8-12 Hz) at electrode Pz. (D) Luminance-corrected task-evoked pupil response. (E) Heart-rate 
variability power.  
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  374 

Figure 3. Several but not all measures of cognitive load changed with task difficulty. Shown are cognitive 
load measures from the (A) DRT, (B) P3 event-related potential, (C) alpha EEG power, (D) theta EEG power, 
(E) pupil dilation, (F) heart-rate variability low/high frequency ratio, and NASA TLX scores from the (G) 
EEG & DRT set and the (H) ECG & pupillometry set. Group descriptive and inferential statistics are depicted 
for the non-amputee participants only, without data from the amputee subject. For boxplots, red lines 
represent the median, the box represents Q1 and Q3, and the whiskers represent the outermost non-outlying 
points, as defined by the 1.5 * interquartile range extending from Q1 and Q3. For bar graphs, the top of the 
bar represents the mean, and the error bars represent the standard error of the mean. Paired comparisons were 
made (right subfigures) using parametric or nonparametric statistical tests, as applicable, for non-amputee 
participants only. *, **, and *** represent p < 0.05, p < 0.01, p < 0.001, respectively.  
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DRT 375 

 Non-amputee participants’ response times to the vibrotactile stimulus significantly increased by 376 

21 ms [28 ms] when participants were completing the hard task (p < 0.001, Wilcoxon’s signed-rank test; 377 

Fig. 3a). The amputee participant’s response times increased by 9 ms for the hard task (small target: 419 378 

ms [90 ms]; large target: 410 ms [87 ms]), but the difference was not significant (p = 0.42; Wilcoxon’s 379 

rank sum test). Hit rates (i.e., responses between 100 ms and 2500 ms) for both conditions were above 380 

98% for all participants with no significant differences. 381 

EEG & ERP 382 

 EEG power spectra and grand-averaged ERPs for non-amputee participants are shown in Fig. 2a-383 

c. No EEG or ERP measures were found to differ significantly between the easy and hard tasks (Fig. 3b-384 

d). Theta power was not significantly different between easy and hard tasks for non-amputee participants 385 

(mean difference, hard task - easy task, 1.0% ± 0.6%; p = 0.12, paired t-test) or for the amputee 386 

participant (mean difference, hard task - easy task, 1.1% ± 0.4%; p = 0.22, paired t-test). Alpha power 387 

was not significantly changed for non-amputee participants (mean difference, hard task - easy task, 0.7% 388 

± 1.3%; p = 0.58, paired t-test) or amputee participant (mean difference, hard task - easy task, 0.4% ± 389 

0.2%; p = 0.70, paired t-test) for the amputee participant. The ERP size significantly decreased by 0.5 μV 390 

± 0.1 μV for the hard task for the amputee participant (p < 0.001; paired t-test), but there was no 391 

significant difference for the non-amputee participants (mean difference, hard task - easy task, 0.0 μV ± 392 

0.1 μV; p = 0.8, paired t-test).  393 

Pupillometry 394 

 The task-evoked pupillary responses for the non-amputee participants are shown in Fig. 2d. The 395 

task-evoked pupillary response significantly increased by 2.4% ± 0.6% for the hard task for non-amputee 396 

participants (p < 0.01, paired t-test; Fig. 3e). The amputee participant’s pupil response was not 397 

significantly different (mean difference, hard task - easy task, 1.4% ± 1.4%; paired t-test).  398 
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ECG 399 

 The heart-rate variability power spectrum is shown in Fig. 2e. The LF/HF ratio significantly 400 

increased by a median value of 0.34 (p < 0.01, Wilcoxon’s signed-rank test; Fig. 3f) for non-amputee 401 

participants. The LF/HF ratio for the amputee participant did not significantly differ (mean difference, 402 

hard task - easy task, 2.4 ± 2.0%; p = 0.32, paired t-test) .  403 

NASA TLX 404 

 For the DRT and EEG paradigm, the TLX score significantly increased by a median value of 18 405 

for non-amputee participants (p < 0.01, Wilcoxon’s signed-rank test; Fig. 3g), and increased by 7 for the 406 

amputee participant. For the ECG & pupillometry paradigm, the TLX score significantly increased by an 407 

average value of 20 for non-amputee participants (p < 0.001, paired t-test; Fig. 3h), and increased by 19 408 

for the amputee participant.  409 

Within-Subject Analysis 410 

 The p-values and effect sizes for the different cognitive load measures are shown in Table 1 for 411 

within-subject analyses for non-amputee participants and the amputee participant. Consistent with 412 

statistically significant results for across-subjects analyses, the DRT was the most reliable for the within-413 

subject analysis, being significantly different for eight of ten non-amputee participants, with a median p-414 

value of 0.001. Although EEG alpha power and theta power were not significantly different in the across-415 

subjects analyses,  these measures were significantly different for 5 and 3 individual non-amputee 416 

participants, respectively. Pupil dilation and LF/HF ration were both significant for the across-subjects 417 

analyses, but showed significant differences for only 2 and 1 individual non-amputee participants, 418 

respectively.  The ERP was not significant for any individual non-amputee participant, consistent with the 419 

lack of significantly different results in across-subjects analyses. In contrast, for the amputee participant, 420 

the ERP was the only measure to be significantly different between the easy and hard tasks. The NASA 421 

TLX was administered only a single time for each participant, so inferential statistical analyses were not  422 
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 possible on a per-subject basis. However, all amputee and non-amputee participants rated the small target 423 

task as harder. 424 

 Discussion 425 

 This is the first prosthesis study that directly compares the efficacy and utility of several different 426 

objective, quantified cognitive workload measures that span physiological, behavioral, and subjective 427 

domains. Our objective was to determine the best technologies for user-focused prosthesis evaluations 428 

that will push laboratory developments toward clinical realities. We found the DRT to be the easiest to 429 

use and most sensitive to cognitive load across and within subjects. On the basis of their utility and their 430 

ability to differentiate among task difficulties, we next recommend ECG, pupillometry, and EEG/ERPs, 431 

in that order.  432 

Table 1. Within-subject reliability of the cognitive workload measures 

Measure 

Probability (p)  Absolute Effect Size (Cohen’s D) 

Median (Q1, Q3)† 
Number of 

Participants, 
p < 0.05 

Amputee 
Participant  Median (Q1, Q3) Amputee 

Participant 

DRT 0.001 (<0.001, 0.023) 8 0.371  0.382 (0.266, 0.578) 0.103 

EEG: 
Alpha 
Power 

0.138 (0.005, 0.429) 5 0.700  0.436 (0.211, 0.993) 0.156 

EEG: 
Theta 
Power 

0.248 (0.044, 0.410) 3 0.220  0.365 (0.280, 0.563) 0.527 

ERP 0.368 (0.221, 0.724) 0 0.001  0.300 (0.155, 0.514) 1.722 

Task-
Evoked 
Pupil 

Response 

0.096 (0.043, 0.207) 2†† 0.460  0.498 (0.358, 0.744) 0.276 

ECG: 
LF/HF 
Ratio 

0.319 (0.149, 0.585) 1 0.320  0.298 (0.189, 0.556) 0.270 

† N = 10 non-amputee participants, except as otherwise indicated 
††out of 7 non-amputee participants (3 non-amputee participants had insufficient data for within-subject analysis) 
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 The comparative evaluations herein can inform the field’s use of cognitive workload measures in 433 

subsequent studies. Such studies could explore users’ responses to aspects of motor control, such as 434 

comparing decoders, finding a desirable number of degrees-of-freedom, or showing potential benefits of 435 

an active wrist. On the sensory side, one could explore the cognitive implications of sensorized and non-436 

sensorized prostheses, compare feedback modalities (electrical vs. vibrotactile) or compare stimulation 437 

algorithms.  438 

 Designing experiments that could accommodate the recording requirements of the various 439 

measures used in this study was challenging because design choices could preferentially benefit a 440 

particular measure. We strived to provide suitable environments for all the measures and an experimental 441 

design that would enable effective collection of all the cognitive workload measures used. In the end, 442 

however, we were seeking for measures that are robust to environmental and experimental changes. We 443 

discuss the results, strengths, and limitations of the individual measures in the following subsections. 444 

DRT 445 

 We found that the DRT resulted in the most significant differentiation between the easy and hard 446 

tasks and was the most reliable for within-subject analysis. Overall, we recommend the DRT as a very 447 

reliable measure of cognitive workload that requires minimal setup and technical expertise. The DRT 448 

required minimal piloting and experimental manipulations before moving forward with recorded 449 

experiments. The DRT has several desirable characteristics as a cognitive workload measure: it is 450 

portable, requires minimal setup and its results are easily interpreted. This study demonstrates the first 451 

application of the DRT to a prosthesis task.  452 

 The DRT is limited by requiring physical button presses; however, many tasks for quantifying 453 

prosthesis performance are completed with one hand. Additionally, the response button could be modified 454 

for two-handed tasks (e.g., placed at the foot). The strengths and limitations of the DRT are discussed 455 

further in (Stojmenova and Sodnik, 2018). There are some aspects of behavioral measures that are not as 456 
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attractive as physiological measures; however, the sensitivity and robustness of the DRT overcame our 457 

bias for physiological measures.  458 

ECG 459 

 The LF/HF ratio reliably detected differences in task difficulty. We recommend ECG, specifically 460 

the LF/HF ratio, as a viable physiological measure of cognitive workload that works for short-duration 461 

tasks. Although ECG worked well across subjects, for within-subject reliability, a greater number of trials 462 

is likely required. ECG is a relatively simple signal to obtain. The vast number of heart rate and heart-rate 463 

variability metrics (see (Charles and Nixon, 2019) for a review containing several ECG measures of 464 

cognitive workload) created a large parameter space to explore. Deciding on an ECG measure required a 465 

fair amount of piloting before use in experiments for the present study. Once selected, the LF/HF ratio 466 

remained robust. ECG measures of cognitive workload require relatively long recordings (>3-4 minutes), 467 

longer than many standardized prosthesis tasks, which can make task selection difficult.  468 

 In a study measuring cognitive load with a sensorized prosthesis, heart rate was found to decrease 469 

when participants had audiovisual feedback vs. visual feedback alone (Gonzalez et al., 2012). However, 470 

in the same study, heart-rate variability had no significant effect for any of the three conditions tested.  471 

Pupillometry 472 

 The task-evoked pupillary response successfully differentiated between the easy and hard tasks. 473 

With some reservation, we recommend pupillometry as a viable method of measuring cognitive workload 474 

during prosthesis use if the task can be modified for trial-averaged pupil responses. With no widely 475 

accepted continuous measure of cognitive workload, the task had to be time-locked to perform trial 476 

averaging. For the virtual target task, time-locking is straightforward; however, this is not the case with 477 

many physical prosthesis tasks. Additionally, pupillometry requires controlled luminance, which adds 478 

more complexity to experiment setup. Although pupillometry provided a robust response in the end, we 479 

had to pilot the experiments extensively and carefully design our analyses to uncover the effect. 480 

Pupillometry actually resulted in the largest effect size on an individual basis, but was not as consistent 481 
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across subjects. Setting up pupillometry was relatively simple; the head-mounted pupillometry system 482 

used was nonintrusive, and robust to head movements. 483 

 Two other studies have used pupillometry as a measure of cognitive workload during a prosthesis 484 

control comparison. One study showed that the number of pupillary increases was significantly different 485 

for direct and classifier prosthesis control (White et al., 2017). The other study showed that average pupil 486 

size was significantly different for a similar comparison (Zahabi et al., 2019).  487 

EEG & ERP 488 

 EEG and ERPs were lacking in sensitivity and diagnostic ability. Although we find the measures 489 

attractive, these barriers make it difficult to recommend using EEG & ERPs as reliable, easy-to-use 490 

measures of cognitive workload. Frontal theta power, a measure of cognitive control (i.e., when a task 491 

cannot be completed with an automatic, subconscious strategy) was close to a statistical trend across 492 

subjects, but parietal alpha power and the P3 ERP were far from any across-subject statistical trend. 493 

Alpha power was significantly different within-subject for five of ten participants, but the shift in power 494 

was inconsistent, resulting in no across-subject trend. The P3 response was surprisingly consistent for the 495 

amputee participant, highlighting the concept that different measures may work well for some persons but 496 

not others. EEG and ERPs are appealing as they are direct measures of neural activity; however, 497 

recording EEG and ERPs requires specialized training, time-consuming setup, and relatively expensive 498 

equipment. 499 

 In a similar virtual prosthesis task (Deeny et al., 2014), the P300 ERP differed between passively 500 

viewing the task and a hard condition, but there was no statistical difference between actively completing 501 

the task under easy or hard conditions. In a physical task evaluating a sensory feedback system, alpha 502 

power significantly differed between different feedback modalities (Gonzalez et al., 2012).  503 

NASA TLX 504 

 We found that the NASA TLX worked well with the target matching task, as can be reasonably 505 

expected when the task difficulty is quite obviously manipulated (i.e., it is very obvious to expect a small 506 
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target to be more difficult than a large target). We recommend the TLX as a cognitive workload measure 507 

because of its simplicity, short duration, and widespread use.  Because it is completed after a task is over 508 

and depends entirely on subjective self-report, the TLX suffers from recall bias (Zahabi et al., 2019), task-509 

order dependency (McKendricka and Cherry, 2018) and other possible subjective biases. These effects 510 

can generally be mitigated through proper experimental design and participant instruction. However, 511 

some argue the TLX measures task difficulty more than it measures perceived mental workload 512 

(McKendricka and Cherry, 2018). 513 

 Many prosthesis studies have employed the NASA TLX for comparing movement decoders 514 

(Deeny et al., 2014; White et al., 2017; Osborn et al., 2021; Paskett et al., 2021) and sensory feedback 515 

(Gonzalez et al., 2012; Markovic et al., 2018, 2020; Thomas et al., 2021). The TLX generally provides a 516 

reliable response to changes in task difficulty. 517 

Conclusion 518 

 This study utilizes several physiological, behavioral, and subjective cognitive workload measures 519 

during a prosthesis task with known difficulty manipulations. Through collecting multiple measures 520 

during the same task, the study enables researchers to comparatively evaluate the effectiveness and utility 521 

of the various measures. Directly comparing several cognitive workload measures will aid 522 

neuroprosthesis researchers in applying cognitive workload to their own studies. Overall, we recommend 523 

the DRT, ECG, pupillometry, and EEG/ERPs, in that order, along with the traditional NASA TLX. 524 

EEG/ERP measures typically were not reliably informative across subjects, although some EEG measures 525 

worked will for a subset of individuals. Incorporating cognitive workload measures, and general user 526 

experience, to neuroprosthesis studies provides a path for better, more intuitive neuroprostheses which 527 

can more readily be translated to clinical realities.  528 
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