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Abstract 

Background 

Wearable inertial sensors enable objective, long-term monitoring of motor activities in the 

children’s habitual environment after rehabilitation. However, sophisticated algorithms are 

needed to derive clinically relevant outcome measures. Therefore, we developed three 

independent algorithms based on the needs of pediatric rehabilitation. The first algorithm 

estimates the duration of lying, sitting, and standing positions and the number of sit-to-

stand transitions with data of a trunk and a thigh sensor. The second algorithm detects 

active wheeling periods and distinguishes it from passive wheeling with data of a wrist and a 

wheelchair sensor. The third algorithm detects walking periods, discriminates between free 

and assisted walking, and estimates the covered altitude change during stair climbing with 

data of a single ankle sensor and a sensor placed on walking aids. 

Research question 

This study aimed to determine the accuracy of each algorithm in children undergoing 

rehabilitation. 

Methods 

Thirty-one children and adolescents with various medical diagnoses and levels of mobility 

impairments performed a semi-structured activity circuit. They wore inertial sensors on both 

wrists, the sternum, and the thigh and shank of the less-affected side. Video recordings, 

which were labeled by two independent researchers, served as reference criteria to 

determine the algorithms' performance. 
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Results 

The activity classification accuracy was 97% for the posture detection algorithm, 96% for the 

wheeling detection algorithm, and 93% for the walking detection algorithm. 

Significance 

This study presents three novel algorithms that provide a comprehensive and clinically 

relevant view of the children's motor activities. These algorithms are described reproducibly 

and can be applied to other inertial sensor technologies. Moreover, they were validated in 

children with mobility impairments and can be used in clinical practice and clinical trials to 

determine the children's motor performance in their habitual environment. To enable the 

evaluation of future algorithms, we published the labeled dataset. 
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Background 

Pediatric rehabilitation aims to foster functional independence in everyday life activities of 

children with congenital and acquired illnesses and injuries. For most families with children 

undergoing rehabilitation, improvements in self-care and mobility activities are prioritized 

[1]. Thereby, most rehabilitation goals are set about changing and maintaining body 

positions or walking and moving [2]. Hence, assessments covering these domains are 

essential to tailor therapy to the families’ needs and monitor the children’s progress over 

time. 

 

In clinical practice, assessments are usually conducted in a standardized environment. 

Therefore, their outcomes reflect the children's highest probable level of functioning within 

this setting (i.e., motor capacity) [3]. However, it has been shown that capacity only partially 

explains how the children perform in their habitual environment after rehabilitation (i.e., 

motor performance) [4,5]. Consequently, there is a need to measure performance directly 

by bringing assessments into daily life. 

 

Recent advances in wearable sensor technologies overcome the limitation mentioned above 

by enabling objective and long-term monitoring of motor activities in a patient’s habitual 

environment [6]. Recent studies validated such sensor technologies and their underlying 

data processing algorithms in children with mobility impairments [7–10]. However, these 

algorithms do not provide a comprehensive view of the patients' activities, and they lack an 

estimation of clinically relevant outcome measures. Moreover, they were only validated in 

children with cerebral palsy and spina bifida, representing approximately one third of all 
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children undergoing rehabilitation [2]. Hence, the validity in children with other mobility 

impairments is still unknown. 

 

Here, we present a novel algorithm that was developed based on the findings of two 

preceding studies assessing the clinical needs of pediatric rehabilitation. The first study was 

an international survey with pediatric healthcare professionals, and the second study 

investigated the frequency of rehabilitation goals at our center [2]. The results revealed the 

demand to have three sub-algorithms that require different sensor-setups and can be used 

independently: The first sub-algorithm estimates the duration of lying, sitting, and standing 

positions and the number of sit-to-stand transitions with data of a trunk and a thigh sensor. 

The second sub-algorithm detects active wheeling periods and distinguishes them from 

passive wheeling with data of a wrist and a wheelchair sensor. The third sub-algorithm 

detects walking periods, discriminates between free and assisted walking, and estimates the 

covered altitude change during stair climbing with data of a single ankle sensor and a sensor 

placed on walking aids. The aim of this study was to validate the three sub-algorithms in 

children undergoing rehabilitation. Specifically, we investigated the algorithm's activity 

classification accuracy and determined the measurement error of the outcome measures. 

Method 

Participants & recruitment 

A convenience sample of 31 children and adolescents was recruited at the Swiss Children’s 

Rehab of the University Children’s Hospital Zurich, Switzerland. These children were able to 

walk or use a manual wheelchair for household distances. Furthermore, they were between 

4 and 20 years old, had cognitive abilities to follow instructions, had no wounds or other 
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medical conditions that prevented sensor placement, and provided informed consent to 

participate in the study. The local ethics committee approved this study (BASEC Nr.: 2019-

00487). 

Procedure & equipment 

Participants were equipped with five ZurichMOVE sensor modules, containing a 3-axis 

accelerometer, a 3-axis gyroscope, and an altimeter [11]. The sensors were placed on both 

wrists, the sternum, and the thigh and ankle of the less-affected side with corresponding 

hook-and-loop straps (Figure 1). Additional sensors were placed on walking aids and the 

spokes of the wheelchair if applicable. Time synchronization between the sensors was 

achieved by a master-slave configuration using Bluetooth Low Energy. 

 

All participants performed a semi-structured activity circuit at the rehabilitation center. They 

watched a movie on a tablet in their bedroom, played a self-selected game (e.g., card games, 

puzzles, etc.) in the living room, drank a glass of water in the restaurant, cycled in the gym 

hall, and played what they wanted to on the outdoor playground (e.g., catching and 

throwing balls, swinging, etc.). Participants were encouraged to walk, wheel, climb stairs, 

and take the elevator between these facilities, depending on their functional abilities. No 

instructions were given on how to do these activities so that the children moved as they 

would in real life. To increase comparability with everyday life, the circuit covered activities 

of the target population that could be recognized by the algorithm and such that could not, 

to challenge its performance. 

Video recordings from an external perspective served as reference criteria to determine the 

algorithm's performance. The sampling rates of all devices were set to 50 Hz, and 

timestamps were synchronized with the children clapping their hands in front of the camera. 
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Data processing 

The three sub-algorithms are comprehensively described in supplementary file 1 and briefly 

summarized here: 

1. The posture detection algorithm identifies lying, sitting, and standing positions with 

the orientation of the trunk and thigh sensors. It is assumed that both sensors are in 

a vertical orientation during standing and in a horizontal orientation during lying. In a 

sitting position, the thigh is usually oriented horizontally while the trunk remains 

vertical. The cut-point between the sensor's horizontal and vertical orientation were 

trained with the current dataset and a leave-one-subject-out approach. This 

approach reflects the algorithm's performance when applying it to a new subject 

without having training data of that subject as it would be the case in upcoming 

studies.  

Outcome measures: the algorithm derives the time spent in each position and the 

number of sit-to-stand transitions. 

2. The wheeling detection algorithm discriminates between wheeling and 

non-wheeling periods with data of the wheelchair sensor and distinguishes between 

active and passive wheeling with the wrist sensor of the less-affected hand. The 

algorithm applies several thresholds to the angular rate of the wheel to detect 

wheeling periods [12]. Then, the wheeling periods are segmented into 5.12 s 

windows and an overlap of 75%. And finally, the orientation of the less-affected hand 

is used to classify active and passive wheeling. The cut-point was again trained with 

the current dataset and a leave-one-subject-out approach. 

Outcome measures: the algorithm derives the total duration of active and passive 

wheeling separately. 
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3. The walking detection algorithm uses walking-specific characteristics of the ankle's 

gyroscope signal to discriminate between walking and non-walking periods. The 

acceleration signal of the sensor on the walking aid is used to distinguish between 

free and assisted walking. Moreover, the algorithm detects stair climbing periods 

with the altimeter of the ankle sensor. Whenever a child walks four consecutive steps 

and covers an altitude change between 7 and 49 cm per step, this period is 

considered stair climbing. Positive altitude changes are classified as ascending and 

negative ones as descending. 

Outcome measures: the algorithm derives the free and assisted walking duration and 

estimates the covered altitude change during stair climbing periods. 

The sub-algorithms 1 & 3 were applied to data from all participants, while the wheeling 

detection algorithm was only applied to data from participants using a wheelchair. 

 

Two researchers labeled the video recordings independently as lying, sitting, standing, and 

unknown (not visible). Sitting was sub-labeled as sitting, kneeling, being carried, active 

wheeling, passive wheeling, cycling, swinging, and sliding. Standing was sub-labeled as 

standing, free walking, assisted walking, going upstairs, going downstairs, and jumping. 

Disagreements lasting more than one second were discussed retrospectively. In the case of 

consensus, the labels were corrected. Otherwise, the labels were retained. We published the 

labeled dataset and added a detailed definition of the individual activities [13]. 

Statistical analysis 

The algorithm's activity detection accuracy was calculated by the proportion of correctly 

predicted data samples over all predictions. We further calculated the sensitivity and 

precision for each activity separately: 
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with TP = true positive predictions, FN = false negative predictions, and FP = false positive 

predictions. Unknown periods (0.4%), as well as periods with disagreement in the video 

labels (4.2%) and periods in which the sensors were not placed correctly (1.9%), were 

ignored in this analysis. An accuracy, sensitivity, and precision of >90% was considered 

excellent, 80% to 90% good, 70% to 80% moderate, and less than 70% weak [10]. 

 

Moreover, the agreement of the algorithm's outcome measures with those of the reference 

system was determined with three different metrics. First, the measurement error was 

estimated as the difference between the algorithm's measures and those derived from the 

video labels (reference values). The smaller difference to one of the two reference values 

was used. The measurement error was determined for each participant separately. The 

measurement error represents agreement within the activity circuit. Second, the relative 

measurement error was determined by dividing the measurement error by the mean of the 

reference values. Relative measurement error reflects the agreement of long-term 

measurements. Third, the Spearman's rank correlation coefficient was calculated. These 

coefficients demonstrate the algorithm's ability to discriminate between participants despite 

measurement error. 

Results 

Twelve girls and 19 boys (11.8 ± 3.2 years) with various medical diagnoses and mobility 

impairments completed the study protocol. Their level of gross motor function, diagnosis, 

and use of mobility aids is shown in Figure 2A. The activity circuit lasted 46 min on average, 

and the performed activities depended on the participants' capabilities. An overview of the 
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dataset is illustrated in Figure 2B, and the resulting sample sizes of each activity are in line 

with previous studies [7–10]. Nineteen participants were able to walk with or without 

walking aids, eleven were wheelchair-dependent, and one participant moved around on a 

bicycle. Seven of those who were able to walk also used a wheelchair for longer distances. 

 

The between-researcher agreement of the video labels was 96%. The majority of 

disagreement occurred due to uncertainty about discriminating lying and sitting when 

participants were seated in the bed with a backward-tilted backrest and discriminating 

standing and walking in participants making small and discontinuous steps. 

 

The accuracy, sensitivity, and precision of the three sub-algorithms are presented in three 

corresponding confusion matrices in Figure 3. The posture detection algorithm revealed 

excellent performance. Sensitivities and precisions to detect lying, sitting, and standing were 

greater than 93%. In case of misclassification, the three postures were confused with each 

other but not with other activities, except for cycling. Roughly one-third of the cycling time 

was misclassified as standing. The wheeling detection algorithm revealed good to excellent 

performance, while the classification of active wheeling was more sensitive and precise than 

the classification of passive wheeling. Wheeling was confused with sitting and assisted 

walking but not with other activities. The walking detection per se revealed a sensitivity and 

precision of almost 90%, and the remaining 10% were mainly confused with standing. 

However, the discrimination between level walking and stair climbing was erroneous, 

resulting in a weak performance to detect stair climbing and decreased sensitivity and 

precision to detect level walking periods. Still, the distinction between free and assisted 

walking as well as between going up- and downstairs was almost perfect. 
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The measurement errors of the outcome measures are depicted in Table 1. The algorithm 

estimated the duration of lying, sitting, standing, active wheeling, and walking with an error 

of less than 10% (interquartile range of relative difference between the algorithm's 

measures and the reference values). The remaining performance measures revealed larger 

measurement errors. Systematic differences (median relative difference between the 

algorithm's measures and the reference values) were smaller than 10%, except for standing 

up and stair climbing measures, which were systematically underestimated by the algorithm. 

The correlation coefficients ranged between .77 for the number of sit-to-stand transitions 

and .99 for the duration of sitting and standing periods. 

Discussion 

This study introduces and validates a novel algorithm to derive clinically relevant 

performance measures based on wearable inertial sensor data of children with mobility 

impairments. The algorithm performed excellent in detecting lying, sitting, and standing; 

good to excellent in detecting general walking periods as well as active and passive wheeling 

periods; and weak in discriminating between level walking and stair climbing. 

 

The algorithm confused lying with sitting mainly when the children were lying while resting 

on their elbows and thus, having a relatively upright trunk orientation. Conversely, false 

positive lying detections occurred predominantly when the children were sitting and leaning 

forward (e.g., to pick up an object from the floor or lock the wheels of the wheelchair). 

These confusions can easily be explained since the algorithm relies on the orientation of the 

trunk to classify lying and sitting positions. Furthermore, we expect that these confusions 

hardly affect the overall lying and sitting duration of long-term measurements. 
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Cycling was often classified as standing rather than sitting, which can also be explained by 

the algorithm using the orientation of the thigh to discriminate between sitting and standing 

positions. In children with a lot of daily cycling activities, this would lead to overestimating 

weight-bearing activities, especially in wheelchair-dependent children. We suggest 

developing an algorithm that detects cycling periods specifically or using a protocol 

reporting daily cycling activities to overcome this limitation. 

 

During the circuit, it happened that the trunk and thigh sensors slipped downward, and we 

replaced the sensors as soon as we realized it. These periods were detected in the video 

recordings and ignored in the data analysis since we intended to validate the algorithm and 

not the slip resistance of the straps. However, this can also happen in daily life and would 

lead to erroneous data. Therefore, sensors should be placed solidly on the children, and the 

families should be instructed to verify the sensor positions regularly. 

 

If at all, sitting and assisted walking were misclassified as wheeling and decreased the 

precision of the wheeling detection algorithm. Wheeling periods in the video recordings 

were identified independent of the covered distance and underlying velocity, since this 

cannot be observed accurately. In contrast, the algorithm only detected wheeling periods in 

which the wheel exceeded an angular rate of 10°/s and a turn of 80° [12]. This discrepancy 

could explain the confusion between sitting and wheeling. The confusion between assisted 

walking and wheeling occurred in a single participant. He was walking while we pushed his 

wheelchair alongside. This can happen in daily life as well, especially during transitions 
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between wheeling and walking periods. However, we believe that these periods can be 

neglected compared to the duration of wheeling and walking in long-term measurements. 

 

Periods of going up- and downstairs were detected with a weak precision of 30% and 46%. 

Free walking was often confused with stair climbing. In the reference system, we did not 

discriminate between level and slope walking, even though some children walked outdoors 

on slopes corresponding to three flights of stairs. Reducing the analysis to indoor periods 

revealed a higher precision of 44% and 60%. Still, stair climbing was often confused with 

walking and standing. More severely impaired children took adjusting steps when ascending 

and descending stairs and did small breaks on each step. The algorithm failed to detect these 

stair climbing patterns, and four consecutive steps are required to detect stair climbing with 

the current algorithm. Despite classification inaccuracy, the algorithm can still discriminate 

between participants with low and high stair climbing activity, indicated by correlation 

coefficients of 0.89 and 0.97. 

 

A comparison of the results with previous literature is difficult due to the heterogeneity in 

study designs. There are dissimilarities in the study population, the measurement devices, 

the performed activity protocols, and the number and type of detected activities by the 

algorithms. Still, our novel algorithm outperforms previous algorithms validated in children 

with mobility impairments [7–10]. This is remarkable for three main reasons. First, our study 

population has a larger variety in medical diagnoses and levels of impairments, which 

challenges the algorithm to find a solution that fits all. It has been shown that subgroup-

specific algorithms or fully-personalized approaches reveal higher accuracies than those 

covering the whole population [14]. Second, none of the studies mentioned above included 
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stair climbing as an activity of interest, and excluding stair climbing from our analysis would 

further increase the accuracy of our algorithm since stair climbing detection revealed the 

least accurate results in our study. And third, we determined the algorithm's performance 

with the whole dataset, while the other studies excluded or ignored transitions between 

activities [7–9] or disregarded activities lasting less than five seconds [10]. We argue that 

transitions and short-lasting activities are challenging to detect, and they should be included 

in the analysis to reflect real-life data to increase the external validity of the study results. 

 

Moreover, our study protocol included activities not classified by the algorithm to challenge 

activity detection and reflect everyday life activities, which is another strength of our study 

protocol. However, it has to be shown whether the amount of performed activities in our 

dataset reflects daily activities of children with mobility impairments, and it remains 

questionable if the results of this study can be transferred to long-term measurements in 

daily life. Hence, we encourage the research community to develop methodologies to 

validate wearable sensor technology and their underlying algorithms in the children's real 

world and not just during semi-structured activity circuits, even though the latter is 

recommended as a standard for such validity studies [15]. 

Conclusion 

This study introduces three sub-algorithms that determine clinically meaningful outcome 

measures based on wearable inertial sensor data in the daily life of children with mobility 

impairments. The first algorithm determines the duration of lying, sitting, and standing as 

well as the number of sit-to-stand transitions with two sensors placed on the trunk and the 

thigh. The second algorithm measures the duration of active and passive wheeling periods 

with a wrist sensor and a sensor placed on the spokes of the wheelchair. And the third 
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algorithm determines the duration of free and assisted walking as well as the altitude 

change covered during stair climbing periods with an ankle sensor and a sensor placed on 

walking aids. The sub-algorithms are well described, can be reproduced, and applied to 

other inertial sensor technologies. Moreover, they were validated in children with mobility 

impairments and can be used in clinical practice and clinical trials to determine the children's 

motor performance in their habitual environment. Besides, we published the labeled dataset 

enabling the evaluation of future algorithms.  
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Figure 1 Placement of the five body-worn sensors at both wrists, the sternum, and the thigh 

and ankle of the less-affected side. 
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Figure 2 Illustration of the participants' characteristics (A) and the collected dataset (B). 
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Figure 3 Confusion matrices of the three sub-algorithms. 
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Table 1 Measurement errors of the outcome measures 
 

outcome measures reference values measurement error relative 
measurement error 

Spearman 
correlation 

 median IQR median IQR median IQR ! 

duration of lying periods 4.4 min 1.7 min 0.0 min 0.1 min 0% 3% 0.93 

duration of sitting periods 27.8 min 25.2 min -0.1 min 0.8 min 0% 5% 0.98 

duration of standing periods 14.0 min 20.1 min 0.0 min 0.8 min 0% 6% 0.99 

number of sit-to-stand transitions 5 3 -1 2 -20% 32% 0.77 

duration of active wheeling 9.9 min 4.8 min 0.0 min 0.5 min 0% 5% 0.91 

duration of passive wheeling 2.1 min 3.0 min 0.0 min 0.3 min 2% 19% 0.84 

duration of all walking periods  10.7 min 5.2 min 0.1 min 0.9 min 0% 8% 0.94 

  duration of free walking periods  8.7 min 9.8 min 0.0 min 1.5 min -3% 41% 0.91 

   duration of assisted walking periods  7.0 min 9.0 min 0.2 min 2.2 min 4% 26% 0.93 

   altitude change during going upstairs*  6.6 m 8.2 m -0.7 m 2.4 m -23% 52% 0.89 

   altitude change during going downstairs* 6.6 m 8.2 m -1.0 m 0.8 m -27% 32% 0.97 
 
*this analysis was limited to indoor activities since it was impossible to determine the altitude change during slope walking periods occurring only 
outdoors. Indoors, the heights of each flight of stairs were known and the covered flights of stairs were counted in the video recordings. 
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