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Abstract57

Recently, image-based diagnostic technology has made encouraging and astonishing development.58

Modern medical care and imaging technology are increasingly inseparable. However, the current59

diagnosis pattern of Signal-to-Image-to-Knowledge inevitably leads to information distortion and60

noise introduction in the procedure of image reconstruction (Signal-to-Image). Artificial61

intelligence (AI) technologies that can mine knowledge from vast amounts of data offer62

opportunities to disrupt established workflows. In this prospective study, for the first time, we63

developed an AI-based Signal-to-Knowledge diagnostic scheme for lung nodule classification64

directly from the CT rawdata (the signal). We found that the rawdata achieved almost comparable65

performance with CT indicating that we can diagnose diseases without reconstructing images.66

Meanwhile, the introduction of rawdata could greatly promote the performance of CT,67

demonstrating that rawdata contains some diagnostic information that CT does not have. Our68

results break new ground and demonstrate the potential for direct Signal-to-Knowledge domain69

analysis.70

71

Introduction72

The discovery of X-rays in 1895 ushered in a new era in the use of imaging for medical diagnostic73

purposes. Since then, the non-invasive medical imaging technology subverts the palpation and cut-74

and-see scheme [1]. The technological advances in medical imaging have been astounding over75

the past 120 years, and modern medical care is increasingly inseparable from imaging technology.76

Medical imaging is essential for humans, to allow clinicians to observe from the images and77

diagnose diseases. This process can be defined as a path of image-to-knowledge. However,78

recently, it is found that the human ability has become a bottleneck in this path hindering the79

accurate diagnosis and treatment of diseases [2][3].80

The emergence of Artificial Intelligence (AI) technology partially solves the problem of the81

limited ability of humans in the diagnosis process [4][5][6][7]. AI could automatically mine the82

radiographic patterns that related to the occurrence and progression of diseases from the imaging83

data, and it has been shown to match and even surpass human abilities in many clinical84

applications [8][9][10][11][12]. The essential reason why AI could surpass humans may be that AI85

treats images as data rather than the visual image and extracts huge amounts of features for86
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analysis [13][14]. However, the medical image is compressed or filtered data to fit the human eye,87

which may be insufficient or imperfect for diagnosis. Take computed tomography (CT) for88

example, the CT system first collects rawdata (signal) from the patient, then the reconstruction89

method converts rawdata to images (signal-to-image) [15]. Therefore, both AI-based and human-90

based diagnosis are processes of signal-to-image-to-knowledge. Medical images suffer from91

information distortion in both acquisition and reconstruction processes. The current high sampling92

frequency greatly compresses the influence of factors such as motion artifacts in the acquisition93

process, so the main reason for the loss of resolution is concentrated in the operations such as94

interpolation and sub-optimal statistical weighting in the reconstruction process [16]. Meanwhile,95

the unprocessed data size of rawdata is about 10 to 20 times larger than that of CT images (2GB96

compare with 180MB). The huge amount of information inside the rawdata is not optimally mined97

in current signal-to-image-to-knowledge process, and how to analysis rawdata is of great scientific98

interest.99

Skipping the image process and going directly from signal to knowledge, will hopefully bring100

new breakthroughs in disease diagnosis. Inspired by this idea, several previous studies have talked101

about the potential value of analysis of rawdata [17][18][19] , directly from signal to knowledge.102

De Man Q et.al. conducted a simulation experiment to detect and estimate the vessel centerline103

from rawdata in the sinogram domain [19]. They achieved encouraging initial results showing the104

feasibility of rawdata analysis for clinical CT analysis tasks. We have also reported our simulation105

results about lung cancer at American Association for Cancer Research (AACR) conference [20].106

However, there is no study about signal-to-knowledge analysis in real clinical tasks of patients.107

In this prospective study, for the first time, we developed an AI-based signal-to-knowledge108

diagnostic scheme for lung nodule classification directly from the CT rawdata (The flowchart was109

shown in Fig. 1). The value of rawdata alone (Discussion), as well as its added value to CT, are110

studied on 276 patients. We found that the rawdata achieved almost comparable performance with111

CT indicating that we can diagnose diseases without reconstructed images. Meanwhile, the112

introduction of rawdata could greatly promote the performance of CT, demonstrating that rawdata113

contains some diagnostic information that CT does not have. This research breaks the routinely114

used circle of image-based diagnosis, which may open up a new pathway of signal-to-knowledge115

for disease diagnosis.116
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117

Results118

Clinical characteristics119

The clinical characteristics was summarized in Table S1. A total of 276 patients were included and120

the number of patients in the training cohort, validation cohort and test cohort were 166, 55 and 55,121

respectively. Fifty percent (n = 138) patients were female and the mean of age in the entire dataset122

was 58.48 years. Furthermore, there were 21 (8%) small cell carcinoma, 35 (13%) squamous cell123

carcinomas and 149 (54%) adenocarcinomas. With respect to lesion location, most patients were124

identified as right upper lobe (n = 89, 32%), followed by left lower lobe (n = 67, 24%) and left125

upper lobe (n = 64, 23%) in all patients. For lung cancer diagnosis, most patients (n = 225, 82%)126

were evaluated as malignancy.127

128

Performance of CT model and rawdata gain model129

This experiment explores the performance improvement that the residual fusion model (Methods)130

based on both rawdata and CT images can bring to the model based on CT images only. For131

further explore the repeatability and stability of this gain, we tested four different CT models132

(Abbreviation for CTM1~CTM4; Methods) and adopted three backbone network architectures for133

rawdata feature extraction, namely Densenet121 (DN) [21], Resnet18 (RE) [22] and Resnext18134

(RX) [23]. For each CT model (CTM), three rawdata gain models (RGM) based on different135

backbone feature extraction networks were constructed. The performance of each RGM was136

compared with the original CTM. The receiver operating characteristic curves (ROC) and its area137

under the curve (AUC) of four CTMs and the corresponding RGMs based on difference backbone138

networks is shown in Fig. 2.139

For each CTM, the residual fusion models based on different backbone networks can obtain140

better classification performance on training, validation and test cohorts. For CTM1 model, the141

fusion model that produced the maximum performance improvement for the training cohort is142

RGM-RX1, and its AUC improvement can reach 0.051 (from 0.757 to 0.808). The fusion model143

that produced the maximum performance improvement for the validation cohort is RGM-RE1 and144

RGM-RX1, and its AUC improvement can reach 0.033 (from 0.756 to 0.789). The fusion model145

that produced the maximum performance improvement for the test cohort is RGM-RE1, and its146
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AUC improvement can reach 0.046 (from 0.807 to 0.853). For CTM2 model, the fusion model147

that produced the maximum performance improvement for the training cohort is RGM-RX2, and148

its AUC improvement can reach 0.109 (from 0.745 to 0.854). The fusion model that produced the149

maximum performance improvement for the validation cohort is RGM-DM2, and its AUC150

improvement can reach 0.124 (from 0.698 to 0.822). The fusion model that produced the151

maximum performance improvement for the test cohort is RGM-DM2, and its AUC improvement152

can reach 0.022 (from 0.760 to 0.782). For CTM3 model, the fusion model that produced the153

maximum performance improvement for the training cohort is RGM-RX3, and its AUC154

improvement can reach 0.083 (from 0.765 to 0.848). The fusion model that produced the155

maximum performance improvement for the validation cohort is RGM-RX3, and its AUC156

improvement can reach 0.093 (from 0.760 to 0.853). The fusion model that produced the157

maximum performance improvement for the test cohort is RGM-RE3, and its AUC improvement158

can reach 0.027 (from 0.773 to 0.800). For CTM4 model, the fusion model that produced the159

maximum performance improvement for the training cohort is RGM-RX4, and its AUC160

improvement can reach 0.035 (from 0.832 to 0.867). The fusion model that produced the161

maximum performance improvement for the validation cohort is RGM-DM4, and its AUC162

improvement can reach 0.026 (from 0.756 to 0.782). The fusion model that produced the163

maximum performance improvement for the test cohort is RGM-RE4, and its AUC improvement164

can reach 0.034 (from 0.833 to 0.867). Overall, using Resnext18 as the backbone network of165

rawdata feature extraction can obtain the maximum average performance improvement on the166

three cohorts.167

168

Image feature distribution of the RGMs and gain stability analysis169

We performed t-SNE dimensionality reduction on all deep learning features obtained by different170

feature extraction networks and counted the true positives, false positives, true negatives and false171

negatives of each patient (Table 1). Besides, we assigned different colors and markers to visualize172

them in the same coordinate system (Fig. 3). It can be observed from the Fig. 3 that the results of173

the various RGMs within each CTM are relatively similar, even though they use different feature174

extraction networks. Table 1 also shows the same situation. The gain of the RGMS inside each175

CTM is approaching the same trend, such as improving malignant or benign detectable rates.176
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Meanwhile, RGM-RE1, RGM-DN2, RGM-RE2, RGM-DN3, RGM-DN4, RGM-RE4, and RGM-177

RX4 could achieve a significant increase in the detectable rate of one category at the expense of a178

small number of the other category detectable rates.179

Therefore, we calculated the optimization rate and error rate of each RGM for the CTM, and180

also calculated the proportion of at least 2 model optimizations to all optimization samples, which181

can reflect the stability of rawdata’s gain. All results were summarized in Table S2.182

The results show that the analysis method incorporating the rawdata has a high optimization183

rate for the CTM 1~3 and is greater than the error rate, which is also reflected in the improvement184

of AUC. In addition, although different feature extraction networks were used to analysis the185

rawdata, the proportion of at least two networks that can be optimized in each CTM is about 80%.186

Finally, we found that 7 samples were mispredicted within 4 CTMs. For these 7 samples, the187

income of rawdata can correct the prediction results of the 6 CTMs, and the corrected model exists188

in each CTM. In summary, the gain of the rawdata for the CTM is very stable.189

190

Visual statistics and analysis of the RGMs191

To better explain the prediction process of RGM, we visualized the region of most interest in the192

RGM by using Gradient-weighted Class Activation Mapping (Grad-CAM). The predictive results193

of RGM were most dependent on the information of the RGM-discovered suspicious areas. Fig. 4194

illustrated the lesion masks and corresponding attention maps from different views of the rawdata.195

From Fig. 4, we can see that the RGMs can always focus on areas of lesion for prediction196

although the input data includes some non-lesion areas. We also calculated the average attention197

score of each voxel in lesion and non-lesion in rawdata (Method), and the result showed that the198

attention score of the lesion area was 1-2 times as high as the non-lesion area.199

200

Stratified analysis of different malignant subgroups201

The results of the subgroup analysis for age, sex and lesion size were shown in the Table S3 and202

Table 2.203

In the subgroup with age of <= 60, RGM-RX 4 and CTM 4 achieved the similar highest204

model performance, with AUC of 0.837 (0.746-0.924) and 0.831 (0.749-0.904), respectively; In205
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the subgroup with age of > 60, RGM-RX 4 achieved the highest model performance with an AUC206

of 0.845 (0.713-0.949), which outperformed the best CTM (CTM4 with an AUC of 0.790). In the207

male subgroup, CTM4 and RGM-RX 4 performed best, with a similar AUC of 0.804 (0.706-0.882)208

and 0.810 (0.707-0.897), respectively; In the female subgroup, RGM-RX 3 achieved the highest209

performance with an AUC of 0.885 (0.818-0.945), far exceeding the best CTM (CTM4 with an210

AUC of 0.823 (0.720-0.920)). In the subgroup with lesion size <=23mm, RGM-RX 3 achieved the211

highest model performance with an AUC of 0.847 (0.781-0.916), far exceeding the best CTM212

(CTM4 with an AUC of 0.806); In the subgroup of lesion size >23mm, CTM 4 and RGM-RE 4213

showed the similar highest model performance, with AUC of 0.819 (0.719-0.906) and 0.833214

(0.703-0.925), respectively. As for the lesion location subgroups, in addition to the similar215

performance of CTM 4 and RGM-RX 4 in the subgroup of superior lobe of left lung, RGM216

outperformed the CTM, with AUC of 0.840 vs. 0.812 in the subgroup of inferior lobe of left lung,217

0.849 vs. 0.807 in the subgroup of superior lobe of right lung, and 0.872 vs. 0.843 in the subgroup218

of inferior lobe of right lung.219

220

Discussion221

In this prospective study, for the first time, we validated the potential value of rawdata in real222

clinical practice. Interestingly, the rawdata analysis showed comparable performance with CT223

images, which indicates that leveraging non-image information holds promise as an alternative to224

image-based methods. Moreover, the add value of rawdata to CT images was also confirmed in225

this study, which means that the combination of non-image and image data will further promote226

the advance of disease diagnosis. This study proposed and validated a feasible method for227

diagnosis without image reconstruction, and it has the potential to change existing imaging-based228

diagnosis and treatment strategies.229

The classification of benign and malignant pulmonary nodules is a matter of great clinical230

concern[24][25][26]. This study explores the feasibility of rawdata analysis in classifying231

indeterminate lung nodules greater than 2 cm in size. The results indicated that rawdata can well232

discriminate malignant nodules from benign nodules. Meanwhile, the AUCs of the rawdata in the233

training cohort, validation cohort and test cohort are 0.768 (95%CI: 0.681~0.851), 0.760 (95%CI:234

0.558~0.922) and 0.782 (95%CI: 0.592~0.924), respectively (Extended Data Fig. 1), and there is235
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no statistical difference between the performances of rawdata and CT, which means that the236

classification of lung nodules may not need image reconstruction and clinician participation.237

Think further, the rawdata model could be applied to the majority of grassroots hospitals, who238

have mainstream CT systems but lack technical personnel and clinicians.239

Our study showed that the introduction of rawdata to CT had an overall improvement over240

different CTMs, no matter which backbone network was used. This indicates that rawdata has241

unique information which may be lost during the reconstruction processing. Moreover, the242

compared with CTM, RGMs showed better stability on the training cohort, validation cohort, and243

test cohort. The combination of both non-image and image data could make the model robust. In244

addition, we also performed intra-CT and inter-CT analyses. For intra-CTM, fused rawdata245

prediction has a higher optimization rate than the error rate which shows a similar gain trend, and246

about 80% of the optimized patients appear in at least 2 feature extraction networks. For inter-247

CTMs, eighty-five percent of the patients that all CTMs predicted incorrectly have optimizable248

RGMs within each CTM. The results also proved that the gain of rawdata is stable across different249

convolutional networks and different CTM approaches. Therefore, exploring the drawbacks of250

post-reconstructed CT image analysis and developing models for direct diagnosis from rawdata251

are the keys to future research. The results of the subgroup analysis showed that the RGMs252

performed better than the CTM in most subgroups, especially in the subgroup of older, female,253

and smaller lesion size, indicating that the rawdata could provide more valuable information that254

brings model gains in subgroups, while this information may have been lost in the process of CT255

reconstruction.256

Our study has some limitations. First, this study involved a small number of patients and the257

proportion of positive and negative samples is unbalanced. Further study on large-scale258

multicenter datasets should be performed. Second, only patients with single nodule are included in259

this study, further validation of our method on patients with multiple nodules should be further260

studied. Third, although the rawdata had a comparable performance with CT, it still had a certain261

gap with the best CT diagnosis. There is an urgent need to develop novel AI methods specifically262

for rawdata.263

Meanwhile, strong computing power is a problem that cannot be ignored when calculating264

rawdata. It is not realistic to read the complete high-frequency scanning data directly to the265
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computing device. Designing appropriate pre -processing algorithms and building deep networks266

in combination with characteristics of rawdata are the potential breakthrough points in the future.267

Finally, the CT scan scheme is designed for image reconstruction and it may be not suitable for268

rawdata analysis. Therefore, novel scan strategies, e.g., scanning for specific diagnostic purposes,269

should be developed to maximize the gain of rawdata.270

In conclusion, for the first time, we validated the potential value of rawdata in real clinical271

practice. The rawdata analysis showed comparable performance with CT images, which indicates272

that leveraging non-image information holds promise as an alternative to image-based methods.273

Moreover, the added value of rawdata to CT images was also confirmed in this study, which274

means that the combination of non-image and image will further promote the advance of disease275

diagnosis. This study proposed and validated a new feasible direction for diagnosis without image276

reconstruction, and it may facilitate the development of fully automated scanning and diagnostic277

processes.278

279

Methods280

Patients281

In this prospective study, 626 consecutive patients who had a chest CT scan in the First Hospital282

of Jilin University from November 2019 to May 2021 were recruited. Eligible patients were283

included according to the following inclusion criteria: (i) patients who had a pulmonary lesion284

more than 2 cm with contrast enhanced chest CT scan, (ii) rawdata obtained from CT machine285

after the imaging examination, (iii)pathological diagnosis of pulmonary lesion with two weeks286

interval from CT scan. Patients were excluded on the basis of the following: (i) previous systemic287

antineoplastic treatments, (ii) CT images with poor image quality or unreadable scan. After288

exclusion, a total of 276 patients were included for modeling experiments.289

The methods were performed in accordance with Standards for Reporting Diagnostic290

accuracy studies (STARD) and approved by the Ethics Committee of the First Hospital of Jilin291

University (AF-IRB-032-05).292

293

Collection of CT image and rawdata294

Both the CT images and rawdata were consecutively collected from the First Hospital of Ji Lin295
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University and were acquired with a NeuViz Prime CT system (Neusoft Medical Systems Co.,296

Ltd., Shenyang, China). The system parameters of CT scanner included source-to-isocenter297

distance of 570 mm, source-to-detector distance of 1040mm, and scanning FOV of 500 mm. The298

imaging protocol included contrast-enhanced CT of the chest with variable imaging parameters.299

Contrast-enhanced CT scans were performed at a spiral scan mode using 324 mA tube current,300

100 kVp tube voltage, 0.5 s ration time, and 0.9 spiral pitch. CT rawdata were reconstructed using301

a kernel F20 at slice thickness of 1.0 mm with image pixel range from 0.59 mm to 0.98 mm and302

image matrix of 512 by 512. In addition, we also acquired the initial height and initial view angle303

of the CT detector each time the patient underwent a scan. Finally, CT images and rawdata from304

each scanner were randomly stratified into one of three cohorts in a 6:2:2 ratio: a training cohort, a305

validation cohort and a test cohort. All in all, Table S4 describes CT scanner information, system306

parameters and imaging parameters.307

308

lesion segmentations in CT images309

The segmentations of primary lesion were manually delineated across all the sections in the axial310

view using annotation tool in ISD (IntelliSpace Discovery, Philips, German). The regions of311

interest were annotated and reviewed by four radiologists with 8 to 25 years’ chest CT experience.312

All radiologists were blinded to any clinical or histopathologic information. The annotation was313

labeled as five common categories according lesions’ pulmonary lobe.314

315

Realization of typical CT models316

There are many studies on benign-malignant lung nodule classification on chest CT. We selected317

four typical papers from the major journals, including IEEE Transactions on medical imaging,318

Medical image analysis, and Nature medicine, which refer to multi-scale ensemble method319

(CTM1) [27], global and local information fusion method (CTM2) [26], loss function-based320

method (CTM3) [28], and multi-view fusion (CTM4) method [29]. We further performed321

experiments on four typical models with our dataset, and all the realization details are described in322

Supplementary 1.323

324

Extraction of lesion region from raw data325
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After acquiring 4 CTMs, we proceeded to perform rawdata gain experiments. The first step of the326

experiment is to select projection surface containing lesions in the rawdata. The rawdata of CT327

scans contains three dimensions: 1) the index dimension representing the acquisition order; 2) the328

projection surface which is the detector receives the x-ray attenuation, where the channel and row329

directions are defined as x and y, respectively. All lesion segmentation regions of rawdata were330

derived from the binarized segmentation of CT image after being represented in a unified331

coordinate system. The complete derivation can be condensed into three steps: orientation,332

querying and mapping.333

1) Orientation.334

On the derivation of localization, we took the segmented regions in the CT image as the335

research object, and the localization calculation mainly includes cross-sectional localization and336

height localization. For cross-sectional positioning, we set the center point between the CT source337

and detector as the coordinate origin (which is also the rotation center of the CT gantry), parallel338

to the cross-section of the CT image. Next, the motion trajectory can be characterized by the scan339

index t , the rotation radius r and the angle  . In order to obtain the above parameters, we first340

read the origin coordinates ( originx , originy and originz ) , and the offset values ( offsetx and offsety )341

can be calculated through voxel spacing and image size ( sizex and sizey ).342

offset origin spacing size
1
2

x x x x  343

offset origin spacing size
1
2

y y y y  344

Next, with the help of the offset values and the voxel coordinates CTx and CTy in the CT345

image, the distance from the coordinate origin ( lengthx and lengthy ) can be calculated as:346

length spacing CT size offset
1
2

x x x x x     
 

347

length spacing CT size offset
1
2

y y y y y     
 

348

Otherwise, the radius r , and the starting angle 0 can be obtained.349
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2 2r x y 350

length
0

length

arctan
y
x

 351

Meanwhile, by introducing the scanning period of the machine, we got the angle change 352

with the following relationship:353

 length 0cosy r t     354

 length 0sinx r t     355

For height positioning, we directly obtained the initial height starth of the voxel through the356

coordinate z , slice thickness and origin of the voxel point in CT images.357

2) Querying.358

Our purpose in this step is to determine the interval of index dimension t in which tumor359

voxel appears in the raw data. Since there is a cone beam in the projection, we first calculated the360

change function areah of the voxel, where d is the distance from the voxel to the X-ray focal spot361

on the x-axis; l is the distance from the focal spot to the detector. The number of detector rows is362

yn ; the channel spacing along y-axis is
yn .363

length
1
2

d l x 364

area
1 1

2 y yh n n d
l
     
 

365

Next, we determined the index ( t ) range of the voxel in the rawdata by the following366

inequality, where 0h is the initial height at which the detector start to scan; h is the height367

change in a scan.368

0 start areah h t h h    369

0 start areah h t h h   370

To reduce computational complexity, we first extracted the highest and lowest masks in the371

segmentation images, and calculated the start and end indices of two voxels. Then, we initially372

located the range of index dimensions. Within this interval, we computed the mapping result of373
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voxels within the layer.374

3) Mapping.375

Through the above calculation, we have obtained the index interval corresponding to the376

voxel, then the voxel appearing in index is obtained by calculating the projection data of the index377

layer by layer. The coordinates of each voxel on the projection surface are defined as rawx and378

rawy , respectively. rawy is related to the height th , areah at the t index and the number of detector379

rows
yn in the detector, so we determined its height difference relative to the detector by the380

following formula, and then calculated its coordinates in the projection.381

 yt
voxel

area

1

2

nh
y

h


 382

Since the x-axis of the projection plane is equiangularly sampled, rawx can be acquired383

through the angle at the t index t , the view angle d of the detector, and the number of channels384

in the detector xn .385

 xt
voxel

d

12
2

n
x





 386

After obtaining the segmentation files of lesions in the raw data, we saved the raw data387

segment through the initial index interval, and used this as the training data for this gain388

experiment. It should be added that there are different directions in the actual retrieval of raw data389

(From head to foot or foot to head). We used the same spatial relationship to modify the inequality390

for different directions and then located the lesion.391

392

Construction of RGM based on CT images393

To explore whether the rawdata contained unique information, we built residual fusion models394

through the rawdata and fused it with CTMs’ output to determine whether the rawdata could bring395

benefits. First, we built three feature extraction networks using the rawdata. Based on the memory396

need of calculation, we sampled the index dimension of rawdata fragments containing lesions to397

one-eighth, and the same size was resampling based on the average value by equal interval398

sampling. For the Channel dimension, we directly removed the data outside the reconstruction399
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area from both sides, and resampling with the row dimension into half of the size. For model400

building, we did not modify Densenet121 [21], Resnet18 [22] and Resnext18 [23] in 3D with the401

purpose of directing the direct gain of nude data as much as possible. The training settings and402

parameters are detailed in Supplementary 2.403

The core of the residual fusion model is to obtain the correction of the CT model output, and404

the origin of the idea is that the learning residual is easier which is mentioned in Resnet. The405

probabilities of predicting the patients as positive by the CTMs were fused with the predicted406

probabilities of the rawdata models. This fusion is performed during the training process.407

Specifically, the probability of predicting one patient as positive was calculated as:408

positive positive positiveOutput Raw CT 409

The probability of predicting one patient as negative was calculated as:410

 negative negative positive1Output Raw CT  411

After the output fusion of the CTM and rawdata model, the loss function was used to412

calculate the loss and optimize the model. The three feature extraction networks built with rawdata413

were fused with the four representative CTMs described above to obtain four raw gain models414

respectively, which were: raw gain model-Densenet121 (RGM-DN 1/2/3/4), raw gain model-415

Resnet18 (RGM-RE 1/2/3/4), raw gain model-Resnext18 (RGM-RX 1/2/3/4). Therefore, we416

obtain 12 raw gain models. Then the RGMs were compared with the CTMs to evaluate the417

benefits of the rawdata.418

419

The calculation of the average attention score420

For calculating the average attention score of each voxel, we first used the segmentation data of421

lesion in rawdata to obtain non-lesion area by unary complement. Next, we dotted and summed422

the segmentation data of lesion and non-lesion areas with the attention matrix. Finally, the average423

attention score was obtained by dividing the total amount of attention in the two areas by the424

number of voxels in the segmented regions, respectively. It should be noted that we also425

normalized the average attention score of the lesion area and the non-lesion area in each rawdata,426

so as to obtain a more intuitive comparison result.427

428
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Data availability429

The image features and output values associated with the CTMs and the RGMs are stored on430

GitHub (https://github.com/CASIAMI/rawdata_gain). The original data that support the findings431

of this study are available from the corresponding author upon reasonable request.432

433

Code availability434

Source code for related CT and raw data methods can be found from GitHub435

(https://github.com/CASIAMI/rawdata_gain).436

437
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Figures and Tables538

539

Figure 1. Flow chart of rawdata gain experiment.540

541
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542

Figure 2. CT model and raw data gain results. (A) shows the ROC curves of each CTM and543

residual fusion model based on different backbone feature extraction networks; (B) Bar graph of544

reaction AUC gain. DM, Densenet121; RE, Resnet18, RX, Renext18.545
546
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547
Figure 3. Feature distribution of the RGMs and the heatmap of prediction results. (A) shows548

the feature distribution in the RGM, and different marks and colors reflect different authenticity549

and prediction categories. (B) shows the prediction results of all real categories, CTMs and RGMs.550

551
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552

Figure 4. Lesion trajectory in rawdata and the Grad-Cam graphs of the RGMs.553

554
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555
Extended Data Fig. 1. The ROC curve of the model built by rawdata only.556

557
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Table 1 Detailed result statistics of raw data for CT models558

Model
True

positive
proportion

False
negative
proportion

False
positive

proportion

True
negative
proportion

True
positive
rate

True
negative
rate

CTM1 0.616 0.199 0.069 0.116 0.756 0.627
RGM-DN1 0.699 0.116 0.091 0.094 0.858 0.508
RGM-RE1 0.543 0.272 0.043 0.141 0.666 0.766
RGM-RX1 0.761 0.054 0.120 0.065 0.934 0.351
CTM2 0.678 0.138 0.101 0.083 0.831 0.451

RGM-DN2 0.656 0.159 0.076 0.109 0.805 0.589
RGM-RE2 0.594 0.221 0.051 0.134 0.729 0.724
RGM-RX2 0.605 0.210 0.058 0.127 0.742 0.686
CTM3 0.460 0.355 0.022 0.163 0.564 0.881

RGM-DN3 0.529 0.286 0.025 0.159 0.649 0.864
RGM-RE3 0.656 0.159 0.072 0.112 0.805 0.609
RGM-RX3 0.685 0.130 0.080 0.105 0.840 0.568
CTM4 0.634 0.181 0.043 0.141 0.778 0.766

RGM-DN4 0.652 0.163 0.047 0.138 0.800 0.746
RGM-RE4 0.681 0.134 0.051 0.134 0.836 0.724
RGM-RX4 0.696 0.120 0.043 0.141 0.853 0.766

559
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Table 2. The performance of 12 raw gain models in subgroup analysis. S560

AUC
95%CI

RGM-
DN 1

RGM-
RE 1

RGM-
RX 1

RGM-
DN 2

RGM-
RE 2

RGM-
RX 2

RGM-
DN 3

RGM-
RE 3

RGM-
RX 3

RGM-
DN 4

RGM-
RE 4

RGM-
RX 4

Age

<=60
0.731
(0.647-
0.825)

0.760
(0.667-
0.844)

0.756
(0.667-
0.837)

0.764
(0.668-
0.845)

0.790
(0.709-
0.874)

0.786
(0.705-
0.867)

0.800
(0.719-
0.870)

0.825
(0.743-
0.895)

0.824
(0.750-
0.894)

0.829
(0.749-
0.903)

0.836
(0.746-
0.915)

0.837
(0.746-
0.924)

>60
0.801
(0.680-
0.908)

0.781
(0.664-
0.894)

0.804
(0.700-
0.900)

0.740
(0.610-
0.859)

0.792
(0.678-
0.901)

0.815
(0.699-
0.932)

0.744
(0.636-
0.833)

0.767
(0.648-
0.863)

0.799
(0.673-
0.914)

0.808
(0.661-
0.926)

0.835
(0.690-
0.945)

0.845
(0.713-
0.949)

Sex

Male
0.693
(0.584-
0.794)

0.698
(0.591-
0.793)

0.697
(0.601-
0.792)

0.737
(0.626-
0.826)

0.725
(0.608-
0.837)

0.714
(0.600-
0.824)

0.702
(0.605-
0.791)

0.736
(0.634-
0.834)

0.717
(0.617-
0.822)

0.793
(0.695-
0.877)

0.791
(0.686-
0.889)

0.810
(0.707-
0.897)

Female
0.808
(0.716-
0.898)

0.825
(0.728-
0.901)

0.835
(0.749-
0.901)

0.786
(0.695-
0.871)

0.842
(0.749-
0.916)

0.859
(0.777-
0.927)

0.852
(0.780-
0.921)

0.863
(0.784-
0.920)

0.885
(0.818-
0.945)

0.849
(0.741-
0.944)

0.873
(0.764-
0.958)

0.863
(0.739-
0.954)

Tumor
Size

<=23mm
0.771
(0.677-
0.849)

0.786
(0.689-
0.869)

0.815
(0.732-
0.893)

0.775
(0.685-
0.863)

0.821
(0.743-
0.894)

0.828
(0.752-
0.901)

0.800
(0.722-
0.869)

0.823
(0.736-
0.888)

0.847
(0.781-
0.916)

0.821
(0.729-
0.906)

0.836
(0.744-
0.925)

0.839
(0.731-
0.926)

>23mm
0.737
(0.603-
0.847)

0.746
(0.627-
0.854)

0.709
(0.582-
0.815)

0.748
(0.639-
0.847)

0.753
(0.634-
0.864)

0.754
(0.641-
0.859)

0.759
(0.657-
0.850)

0.782
(0.684-
0.874)

0.775
(0.666-
0.868)

0.822
(0.712-
0.924)

0.833
(0.703-
0.925)

0.831
(0.729-
0.928)
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Tumor
Location

superior
left

0.679
(0.520-
0.836)

0.667
(0.464-
0.836)

0.743
(0.616-
0.881)

0.638
(0.469-
0.812)

0.683
(0.480-
0.847)

0.737
(0.517-
0.899)

0.824
(0.702-
0.925)

0.812
(0.701-
0.916)

0.810
(0.680-
0.914)

0.861
(0.754-
0.953)

0.885
(0.773-
0.964)

0.909
(0.829-
0.979)

inferior
left

0.796
(0.638-
0.915)

0.789
(0.652-
0.921)

0.769
(0.600-
0.896)

0.741
(0.584-
0.881)

0.759
(0.607-
0.905)

0.771
(0.599-
0.911)

0.775
(0.633-
0.894)

0.793
(0.656-
0.907)

0.812
(0.650-
0.934)

0.813
(0.651-
0.953)

0.840
(0.688-
0.969)

0.833
(0.661-
0.961)

superior
right

0.739
(0.618-
0.855)

0.814
(0.698-
0.912)

0.785
(0.673-
0.876)

0.810
(0.704-
0.900)

0.843
(0.740-
0.930)

0.811
(0.685-
0.901)

0.756
(0.633-
0.864)

0.802
(0.675-
0.909)

0.815
(0.675-
0.899)

0.843
(0.730-
0.936)

0.848
(0.741-
0.934)

0.849
(0.729-
0.939)

Inferior
right

0.821
(0.638-
0.957)

0.809
(0.655-
0.957)

0.795
(0.617-
0.937)

0.872
(0.744-
0.970)

0.849
(0.701-
0.970)

0.849
(0.700-
0.970)

0.786
(0.617-
0.923)

0.835
(0.705-
0.961)

0.812
(0.616-
0.959)

0.721
(0.430-
0.942)

0.764
(0.470-
0.981)

0.775
(0.524-
0.962)

561

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.22278299doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1. Clinical characteristic statistics562

Characteristics Training
cohort
(N=166)

Validation
cohort
(N=55)

P
value
*

Test
cohort
(N=55)

P
value
**

Age 58.80 ± 10.16 58.48 ± 10.07 0.06 59.38 ± 8.25 0.06
Sex 0.17 0.84

Female 80 (0.48) 33 (0.60) 25 (0.45)
Male 86 (0.52) 22 (0.40) 30 (0.55)

Tumor height 28.29 ± 17.22 27.76 ± 16.91 0.20 27.35 ± 14.50 0.20
Pathology subtype 0.90 0.26

Adenocarcinoma 84 (0.71) 26 (0.67) 39 (0.83)
Squamous carcinoma 22 (0.18) 8 (0.21) 5 (0.11)
Small cell carcinoma 13 (0.11) 5 (0.13) 3 (0.06)

Left upper Lobe 0.15 0.25
No 121 (0.73) 46 (0.84) 45 (0.82)
Yes 45 (0.27) 9 (0.16) 10 (0.18)

Left lower Lobe 0.88 0.54
No 124 (0.75) 41 (0.75) 44 (0.80)
Yes 42 (0.25) 14 (0.25) 11 (0.20)

Right upper Lobe 0.88 0.04
No 118 (0.71) 39 (0.71) 30 (0.55)
Yes 48 (0.29) 16 (0.29) 25 (0.45)

Right middle lobe 0.56 0.53
No 154 (0.93) 49 (0.89) 53 (0.96)
Yes 12 (0.07) 6 (0.11) 2 (0.04)

Right lower Lobe 0.83 0.77
No 137 (0.83) 44 (0.80) 47 (0.85)
Yes 29 (0.17) 11 (0.20) 8 (0.15)

Category 0.91 0.91
Malignancy 135 (0.81) 45 (0.82) 45 (0.82)

Benign 31 (0.19) 10 (0.18) 10 (0.18)
Noted that other categories of malignant tumors were not included in the statistics as sparse
categories. * The p Value is the test result of the training cohort and the validation cohort; ** the p
Value is the test result of the training cohort and the test cohort.

563

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.22278299doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2 Detailed gain statistics of raw data for CT models564

ID of CT
model

Optimization rate of
error sample

Error rate of correct
sample

Ratio of at least 2 gain
model optimizations

CTM1 0.771 (81/105) 0.329 (57/173) 0.827 (67/81)

CTM2 0.676 (46/68) 0.286 (60/210) 0.848 (39/46)

CTM3 0.724 (76/105) 0.208 (36/173) 0.789 (60/76)

CTM4 0.406 (26/64) 0.079 (17/214) 0.846 (22/26)
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Table S3. The performance of four CT models in subgroup analysis.566

AUC
95%CI CTM 1 CTM 2 CTM 3 CTM 4

Age
<=60 0.790

(0.707-0.861)
0.739

(0.626-0.831)
0.801

(0.729-0.866)
0.831

(0.749-0.904)

>60 0.705
(0.546-0.823)

0.725
(0.592-0.849)

0.701
(0.599-0.799)

0.790
(0.672-0.899)

Sex
Male 0.765

(0.680-0.848)
0.748

(0.641-0.866)
0.721

(0.626-0.803)
0.804

(0.706-0.882)

Female 0.752
(0.638-0.858)

0.729
(0.626-0.827)

0.803
(0.703-0.888)

0.823
(0.720-0.920)

Tumor
Size

<=23mm 0.760
(0.647-0.843)

0.696
(0.569-0.809)

0.753
(0.664-0.833)

0.806
(0.699-0.888)

>23mm 0.764
(0.670-0.852)

0.798
(0.697-0.890)

0.774
(0.684-0.862)

0.819
(0.719-0.906)

Tumor
Location

superior
left

0.802
(0.671-0.901)

0.671
(0.463-0.880)

0.873
(0.749-0.961)

0.921
(0.843-0.980)

inferior
left

0.698
(0.526-0.852)

0.732
(0.557-0.868)

0.698
(0.562-0.840)

0.812
(0.675-0.934)

superior
right

0.759
(0.615-0.878)

0.732
(0.578-0.852)

0.731
(0.603-0.844)

0.807
(0.683-0.912)

Inferior
right

0.781
(0.630-0.906)

0.843
(0.712-0.950)

0.769
(0.617-0.901)

0.695
(0.443-0.928)
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Table S4. Scanner information, system parameters and imaging parameters for the Chest CT568

examinations569

Manufacturer Scanner System parameters
Contrast-enhanced CT

imaging parameters

Neusoft Medical

Systems Co.,

Ltd., Shenyang,

China

NeuViz

Prime

Source-to-detector

distance, 1040 mm;

Source-to-isocenter

distance, 570 mm;

Scanning FOV, 500 mm;

Scanning frequency,

2320 times/round;

Detector channel, 672 pcs;

Detector row, 64 pcs;

Detector channel spacing,

0.625 mm.

Tube current, 324mA;

Tube voltage, 100kV;

Rotation time, 0.5 s;

Spiral pitch, 0.9;

Image matrix, 512x512;

Pixel spacing, 0.59~0.94 mm

Slice thickness, 1mm;

Kernel, F20;

Image time relative to onset of

contrast material injection, pre-

contrast 60s~70s.
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Supplement 1. Implementation and optimization details of typical CT models571

572

Considering the differences in experimental design between our study and the typical models, we573

need to make appropriate modifications to make the typical models have the best performances on574

our dataset. The difference is mainly reflected in data volume and data imbalance. The amount of575

data in previous articles ranged from 1018 to more than 20,000, much larger than that in this576

experiment (276). Therefore, we applied small data learning related techniques (including pre-577

trained model and sharing network weight) for four typical CT models. Hence, in our study, a pre-578

trained 3D-resnet18 was used for 3D input, which was pre-trained using eight medical datasets579

[30], a pre-trained 2D-resnet50 was used for 2D input. To train the subnets effectively using our580

small dataset, only the last layer (layer 4) and full connected network were trained in this study. In581

addition, for data imbalance, we used resampling strategy during training.582

Specific to each of these models, we describe them in detail below. CTM1 was a multi-scale583

ensemble model, which ensembled three subnets whose networks were all the same, except for the584

input size. The input data were cropped from CT images using three different sizes, 32×32×32,585

48×48×48, and 64×64×64 pixels. The outputs of three subnets were weighted to obtain the final586

ensemble results, and a grid search was used to tune the weight values. In addition, AUC loss587

proposed in original paper was used for dealing with data imbalance. CTM2 combined the588

features of both the entire CT volume and the region of interest cropped from CT volume, so that589

all predictions relied on both nodule-level local information and global context from the entire CT590

volume. In addition, CTM2 was trained with focal loss to mitigate the data imbalance. CTM3591

designed a deep network with a margin ranking loss to enhance the discrimination capability on592

ambiguous nodule cases. In our study, 3D input was used to preserve the spatial information of593

pulmonary nodule. CTM4 was a multi-view deep network, which ensembled the outputs of nine594

2D-view subnets to characterize the 3D nodule. Each subnet combined three types of image595

patches, and each patch was input into a pre-trained ResNet-50 network. In this study, all networks596

shared weights. Finally, nine subnets were used jointly to classify nodules with an average597

weighting scheme. For model training, the batch size was set as 32. The cross-entropy loss was598

used as the loss function, and the SGD optimizer was applied. The start learning rates were set as599

0.001, and the models were trained for 100 epochs.600
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Supplement 2. Model training and statistical analysis methods601

602

For model building, the batch size was set as 64. The Cross-Entropy loss was used as the loss603

function, and the Adam optimizer was applied. The start learning rates were set as 1 × 10−5 , 1 ×604

10−6 separately, and the learning rate decay was set as 0.001. Meanwhile, we also added weight605

attenuation. The weight decay was set as 0.01, 0.05, and 0.1 separately. The model was trained for606

50 epoches and select the best parameters with the lowest loss of validation cohort. The three607

RGMs built based on the three structures were all trained with the above setting.608

For statistical analysis, discrete variables and continuous variables are calculated in the chi-609

squared test and Man-Whitney U test, respectively. All models are implemented in Python 3.7.3610

(https://www.python.org/) with Numpy (version ≥ 1.16.4), SciPy (version ≥ 1.3.0), Matplotlib611

(version ≥ 3.1.1), Scikit-Learn (version ≥ 1.10.1), Statsmodels (version ≥ 0.12.2) and Pandas612

(version ≥ 0.25.0). All models were trained in python package named Pytorch (version ≥ 1.10.1;613

https://pytorch.org/) with 4 Graphics Processing Units of NVIDIA TITAN RTX (24G).614
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