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Abstract1

Vaccination is expected to reduce disease prevalence and to halt the spread of epidemics. But2

pathogen adaptation may erode the efficacy of vaccination and challenge our ability to control3

disease spread. Here we examine the influence of the speed of vaccination rollout on the overall4

risk of pathogen adaptation to vaccination. We extend the framework of evolutionary epidemiol-5

ogy theory to account for the different steps leading to adaptation to vaccines: (1) introduction6

of a vaccine-escape variant by mutation from an endemic wild-type pathogen, (2) invasion of7

this vaccine-escape variant in spite of the risk of early extinction, (3) spread and, eventually,8

fixation of the vaccine-escape variant in the pathogen population. We show that the risk of9

pathogen adaptation is maximal for an intermediate speed of vaccination rollout. On the one10

hand, slower rollout decreases pathogen adaptation because selection is too weak to avoid early11

extinction of the new variant. On the other hand, faster rollout decreases pathogen adaptation12

because it reduces the influx of adaptive mutations. Hence, vaccinating faster is recommended13

to decrease both the number of cases and the likelihood of pathogen adaptation. We also show14

that pathogen adaptation is driven by its basic reproduction ratio, the efficacy of the vaccine15

and the effects of the vaccine-escape mutations on pathogen life-history traits. Accounting for16

the interplay between epidemiology, selection and genetic drift, our work clarifies the influence17

of vaccination policies on different steps of pathogen adaptation and allows us to anticipate the18

effects of public-health interventions on pathogen evolution.19

Significance statement: Pathogen adaptation to host immunity challenges the efficacy of

vaccination against infectious diseases. Are there vaccination strategies that limit the emer-

gence and the spread of vaccine-escape variants? Our theoretical model clarifies the interplay

between the timing of vaccine escape mutation events and the transient epidemiological dy-

namics following the start of a vaccination campaign on pathogen adaptation. We show that

the risk of adaptation is maximized for intermediate vaccination coverage but can be reduced

by a combination of non pharmaceutical interventions and faster vaccination rollout.
20
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1 Introduction21

Vaccination offers unique opportunities to protect a large fraction of the host population and22

thus to control spreading epidemics. In principle, comprehensive vaccination coverage can lead to23

pathogen eradication. In practice, however, the coverage required for eradication is often impossible24

to reach with imperfect vaccines [22, 45]. Moreover, pathogen adaptation may erode the efficacy25

of vaccination. Even if adaptation to vaccines is less common than adaptation to drugs [20, 35, 36]26

the spread of vaccine-escape mutations may challenge our ability to halt the spread of epidemics.27

Understanding the dynamics of pathogen adaptation to vaccines is particularly relevant28

in the control of the ongoing SARS-CoV-2 pandemic. Yet, most theoretical studies that explore29

the evolution of pathogens after vaccination are based on the analysis of deterministic models and30

ignore the potential effects induced by the stochasticity of epidemiological dynamics. Demographic31

stochasticity, however, drives the intensity of genetic drift and can affect the establishment of32

new mutations and the long-term evolution of pathogens [55, 58, 54]. Several studies showed33

how the demographic stochasticity induced by finite host and pathogen population sizes alters34

selection on the life-history traits of pathogens [39, 32, 49]. These analytical predictions rely on the35

assumption that the rate of pathogen mutation is low, which allows us to decouple epidemiological36

and evolutionary time scales. Indeed, when the influx of new mutations is low, the new strain37

is always introduced after the resident pathogen population has reached its endemic equilibrium.38

Many pathogens, however, have relatively high mutation rates [57] and the fate of a pathogen39

mutant introduced away from the endemic equilibrium is likely to be affected by the dynamics40

of the pathogen populations. Moreover, the start of a vaccination campaign is expected to yield41

massive perturbations of the epidemiological dynamics and new mutations are likely to appear42

when the pathogen population is far from its endemic equilibrium.43

The aim of the present study is to develop a versatile theoretical framework to evaluate44

the consequences of vaccination on the risk of pathogen adaptation to vaccination. There are six45

main evolutionary-epidemiological outcomes after the start of vaccination which are summarized46

in Figure 1. Some of these outcomes are more favorable than others because they do not lead to47
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the invasion of a new variant (Figure 1a-c). In contrast, vaccination may result in the invasion of48

vaccine-escape variants (Figure 1e-f). In the following we use a combination of deterministic and49

branching process approximations to study the joint epidemiological and evolutionary dynamics50

of the pathogen population. This analysis reveals the importance of the speed of the vaccination51

rollout as well as of the life-history characteristics of the vaccine-escape variants on the probability52

of pathogen adaptation.53

2 Model54

We use a classical SIR epidemiological model with vital dynamics (i.e., host births and deaths) [31],55

where hosts can be susceptible, infected or recovered [37], and are either vaccinated or unvaccinated.56

A host may be infected by one of two strains: a resident wild-type, or a novel mutant (we assume57

co-infections are not possible).58

We consider a continuous-time Markov process tracking the number of individuals of each59

type of host (see Table 1 for a detailed description). Rates are interpreted as probabilities per60

unit time. We incorporate vital dynamics by assuming that all hosts have a base mortality rate61

of δ, while new susceptible hosts are recruited at rate νn. Here, n is a “system size”, or scaling62

parameter, that indicates the order of magnitude of the arena in which the epidemic occurs: the63

total host population varies stochastically in time, but remains of the order of n. We track the64

numbers of two classes of susceptible hosts, unvaccinated, u, or vaccinated, v, (Sn
u , S

n
v ), four classes65

of unvaccinated and vaccinated individuals, infected with the wild-type, w, (Inuw, I
n
vw) or with a66

mutant strain, m, (Inum, I
n
vm), and the number recovered, Rn. The total number susceptible is thus67

Sn = Sn
u + Sn

v , while the number of infected hosts is In =
∑

i∈{w,m} I
n
ui + Invi. We write Hn for the68

total number of hosts:69

Hn = Sn + In +Rn. (1)

Vaccination is assumed to take place at a constant rate υ for all susceptible hosts. The70

immunity triggered by vaccination is assumed to wane at rate ωv, and natural (i.e., infection-71
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induced) immunity is assumed to wane at rate ωr. Recovered individuals are assumed to be fully72

protected (no reinfections) because natural immunity is expected to be more effective than immunity73

triggered by vaccination (e.g., this is believed to be true for measles [8] and influenza [38, 12, 61]74

but not necessarily for SARS-CoV-2 [26]). We further assume that the virulence αi (the mortality75

rate induced by the infection), the transmission βi (the production rate of new infections), and the76

recovery γi (the rate at which the host clears the infection) are fully governed by the pathogen77

genotype (i = w or m). A fourth trait, ϵi ∈ [0, 1], governs the infectivity of pathogen genotype i on78

vaccinated hosts (infectivity of all genotypes is assumed to be equal to 1 on unvaccinated hosts). In79

other words, this final trait measures the ability of the pathogen to escape the immunity triggered80

by the vaccine. Note that these assumptions allow us to aggregate infected hosts irrespective81

of their vaccination status, which simplifies the analysis below. We assume frequency-dependent82

transmission where the number of contacts a host may have in the population is constant, but a83

proportion of those contacts may be infectious. Note, however, that other forms of transmission84

(e.g., density-dependent transmission [44]) are expected to yield qualitatively similar results. We85

summarize the states of the process and the jump rates at which individuals transition between86

states in Table 1 and in Figure 2.87

We use this model to examine the epidemiological and evolutionary dynamics following88

the start of a vaccination campaign. For the sake of simplicity, we focus our analysis on scenarios89

where the pathogen population has reached an endemic equilibrium before the start of vaccination.90

This is a strong assumption, but our aim in this study is to focus on a scenario where the initial91

epidemiological state of the system is fixed to understand the stochastic fate of vaccine escape92

mutations during the transient epidemiological dynamics of the pathogen population following the93

start of the vaccination campaign. This is a necessary first step before studying more complex94

scenarios where vaccination starts before the epidemic has reached an endemic equilibrium. The95

default parameter values used to explore numerically the dynamics of viral adaptation are consistent96

with a broad range of acute infections of humans (e.g., SARS-CoV, Influenza, Measles, see Table97

SI.1). In the Discussion, we explore the robustness of our results after relaxing some of our98

simplifying assumptions.99
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3 Results100

3.1 Two Approximations101

Following [48], our analysis makes use of two approximations to our Markov process model. The102

first, deterministic approximation, uses ordinary differential equations (ODEs) and is appropriate103

when all types of host are abundant, but fails to correctly capture the dynamics when one or more104

types is rare (e.g., at the time of introduction of the mutant strain). The second uses a birth-and-105

death process (see e.g., [6]) to approximate rare quantities and captures stochastic phenomena, like106

extinction.107

3.1.1 Deterministic Approximation108

For our first, deterministic approximation, we work with host densities defined by109

Xn
i = Sn

i /n, Y n
ij = Inij/n, and Zn = Rn/n. (2)

(i = u, v, j = w,m) and set110

Nn = Hn/n =
∑

i∈{u,v}

Xn
i +

∑
i∈{u,v}
j∈{w,m}

Y n
ij + Zn. (3)

As n becomes large, the changes in the densities due to jumps in the Markov chain become111

smaller and smaller. As n → ∞, the Xn
i , Y

n
ij , and Zn approach limits Xi, Yij , and Z. These limits112
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obey a system of ordinary differential equations:113

Ẋu = ν + ωvXv + ωrZ −
(
βw

Yuw + Yvw
N

+ βm
Yum + Yvm

N
+ δ + υ

)
Xu

Ẋv = υXu −
(
ϵwβw

Yuw + Yvw
N

+ ϵmβm
Yum + Yvm

N
+ δ + ωv

)
Xv

Ẏuw = βw(Yuw + Yvw)
Xu

N
− (δ + αw + γw)Yuw

Ẏum = βm(Yum + Yvm)
Xu

N
− (δ + αm + γm)Yum

Ẏvw = ϵwβw(Yuw + Yvw)
Xv

N
− (δ + αw + γw)Yvw

Ẏvm = ϵmβm(Yum + Yvm)
Xv

N
− (δ + αm + γm)Yvm

Ż = (γwYuw + γwYvw + γmYum + γmYvm)− (δ + ωr)Z,

(4)

This corresponds to replacing discrete individuals by continuous densities and interpreting the114

rates in Figure 2 as describing continuous flows rather than jumps (see Example B on p. 453 and115

Theorem 11.2.1 on p. 456 in [18] for the details and proofs of this approximation; [4] gives a readable116

summary with an epidemiological focus).117

It is also convenient to track the dynamics of the total density of hosts infected with the118

same strain i, Yi := Yui + Yvi, which yields:119

Ẏi =

((
βi
Xu

N
+ ϵiβi

Xv

N

)
− (δ + αi + γi)

)
︸ ︷︷ ︸

ri = growth rate of strain i

Yi (5)

The ability of the strain i to grow is given by the sign of the growth rate ri. Note that this120

growth rate depends on the four different traits of the pathogen: αi, βi, γi, ϵi. The growth rate also121

depends on the densities Xu(t) and Xv(t), which vary with t, the time since the start of vaccination122

(i.e., vaccination starts at t = 0). For simplicity, we assume that at time t = 0, the wild-type is at123

its endemic equilibrium (see (SI.1) in the Supplementary Information for details), and that there124

are no mutants (we relax this assumption in the Supplementary Information §5).125
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The coefficient of selection sm(t) on the mutant strain relative to the wild-type is:126

sm(t) = rm(t)− rw(t) = (βm − βw)
Xu(t)

N(t)
+ (ϵmβm − ϵwβw)

Xv(t)

N(t)
− (αm − αw + γm − γw) (6)

In other words, both the genetics (the phenotypic traits of strain i) and the environment (the127

epidemiological state of the host population) govern selection and strain dynamics.128

Pathogen eradication and vaccination threshold The ability of the strain i to grow can be129

measured by its effective per-generation reproduction ratio which is given by:130

Re
i (t) = Ri

(
Xu(t)

N(t)
+ ϵi

Xv(t)

N(t)

)
(7)

where Ri = βi

δ+αi+γi
, i = m,w. Hence, a reduction of the availability of susceptible hosts with131

vaccination may drive down the density of the wild-type pathogen when the production of new132

infected hosts (infection “birth”) does not compensate for the recovery and death of infected hosts133

(infection “death”), that is, when Re
w < 1. Ultimately, vaccination can even lead to the eradication134

of the wild-type pathogen (Figure 1a) either when the vaccine is sufficiently efficient (ϵwRw < 1)135

or when the vaccination coverage is sufficiently high [45, 22].136

Interestingly, if the aim is to eradicate an already established disease, bringing the repro-137

duction number of the wild-type strain at the disease free equilibrium below one, (i.e., R∅
w < 1 see138

(SI.3)), may not be sufficient to do so. Indeed, as pointed out by several earlier studies [41, 28],139

imperfect vaccination may yield backward bifurcation at the disease free equilibrium. In this case,140

the pathogen may persist even when vaccination brings R∅
w below one. Yet, the analysis of our141

model indicates that the condition for the emergence of backward bifurcation are very limited (see142

Supplementary Information §1.3) and in the following we use the condition R∅
w < 1 to identify143

the critical rate υc of the speed of vaccination rollout above which the wild-type pathogen can be144

driven to extinction (see Supplementary Information §1.3):145

υc =
(Rw − 1)(δ + ωv)

1−Rwϵw
(8)
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As expected, better vaccines (i.e., lower values of ϵw and ωv) yield lower threshold values146

for the speed of vaccination. Imperfect vaccines (i.e., higher values of ϵw and ωv), in contrast,147

are unlikely to allow eradication. Note that, if we wait sufficiently long, the population of the148

wild-type pathogen will be driven to extinction by stochastic fluctuations even when υ < υc [3, 29].149

Indeed, in a finite host population, sooner or later, the pathogen population is doomed to go extinct150

because of demographic stochasticity, but the extinction time when υ < υc will usually be very long,151

increasing exponentially with the system size n [59, 5, 47]. From now on, we neglect the possibility152

of extinction of the wild-type due to vaccination when υ < υc (which is a good approximation when153

n is large).154

The spread of a new pathogen variant may erode the efficacy of vaccination and, conse-155

quently, could affect the ability to control and, ultimately, to eradicate the pathogen. However,156

before the replacement of the wild-type by a vaccine-escape variant the pathogen population may157

go through three steps that may ultimately result (or not) in pathogen adaptation: (1) introduction158

of the vaccine-escape variant by mutation, (2) extinction (Figure 1c) or invasion (Figure 1d-f)159

of the vaccine-escape variant introduced by mutation, (3) fixation (Figure 1f) or not (Figure160

1d-e) of the invading vaccine-escape variant. Each of these steps is very sensitive to demographic161

stochasticity because the number of vaccine-escape variants is very small in the early phase of its162

emergence. This motivates our second approximation, below.163

3.1.2 Birth-and-Death Process Approximation164

Suppose that a mutant strain appears at time tint ≥ 0 in a single infected host, Inm(tint) = 1,165

that is, with density Y n
m(tint) = 1

n . Taking n → ∞, we get Ym(tint) = 0. Using this as an initial166

condition in (4), we find that Ym(t) ≡ 0 for all t ≥ tint. This does not mean that the mutant is167

absent, but is simply not yet sufficiently abundant to be visible at the coarse resolution of the ODE168

approximation, (4). In particular, while rare, the mutant strain does not have a detectable effect169

on the density of susceptible hosts.170

To account for the rare mutant, we use (4) to define a birth-and-death process, Ĩm(t), that171
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approximates the number of individuals infected with the mutant strain at times t ≥ tint, and172

allows us to estimate the probabilities of invasion (Section 3.2.2) and fixation (Section 5.1) of the173

mutant strain.174

Each death in the birth-and-death process corresponds to the removal of a susceptible,175

which occurs by host death or recovery at combined rate176

dm = δ + αm + γm. (9)

We approximate the rate of new infections,177

βm(S
n
u (t) + ϵmS

n
v (t))

Hn(t)
=

βm(X
n
u (t) + ϵmX

n
v (t))

Nn(t)
,

by replacing the stochastic quantitiesXn
u (t), X

n
v (t) andNn(t) by their deterministic approximations178

Xu(t), Xv(t) and N(t), giving the time-dependent birth rate179

bm(t) =
βm(Xu(t) + ϵmXv(t))

N(t)
. (10)

As we observed above, for the deterministic approximation, Ym(tint) = 0, and so we can compute180

Xu(t), Xv(t) and N(t) using (4) without the mutant strain, using initial conditions (SI.1). See [49,181

Supplementary Information §8.2] for a rigorous justification for this approximation.182

The so-called “merciless dichotomy” [33] tells us that, started with one individual, the183

birth-and-death process either goes extinct, or grows indefinitely. Thus, either the mutant strain184

vanishes, or the number infected with the mutant strain will eventually grow to be of the order of185

n individuals, after which we can use (4) to compute the densities of both wild-type and mutant186

strains.187
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3.2 The Steps of Pathogen Adaptation188

Using the two approximations above, we quantify the steps of pathogen evolution. First, we consider189

the appearance of a novel vaccine-resistant variant, which will either rapidly go extinct, or invade,190

causing an epidemic outbreak. Then, at the end of an epidemic, susceptible hosts are depleted,191

and there are few remaining infected with either wild-type and mutant strains, and both strains192

are at risk of extinction. If the variant outlives the wild-type, then the pathogen has adapted to193

the vaccine.194

3.2.1 Step 1: Introduction of the variant by mutation195

The first step of adaptation is driven by the production of new variants of the wild-type pathogen196

through mutation. The degree of adaptation to unvaccinated and vaccinated hosts may vary among197

those variants [16]. For instance, some vaccine-escape mutations may carry no fitness costs (or may198

even be adaptive) in unvaccinated hosts. These variants would be expected to invade and fix199

because they are strongly favoured by natural selection when the proportion of vaccinated hosts200

builds up. They will have a strong probability to avoid the risk of early extinction irrespective201

of the vaccination strategy. We thus focus on variants that carry fitness costs in immunologically202

näıve hosts (i.e., variants specialized on vaccinated hosts [16]). In principle, the introduction of203

the vaccine-escape mutation may occur before the rollout of vaccination. The distribution of these204

mutations is expected to follow a stationary distribution resulting from the action of recurrent205

mutations and negative selection (see Supplementary Information, §5). If the fitness cost in näıve206

hosts is high and/or if the mutation rate is low then these pre-existing mutants are expected to be207

rare. In the following, we neglect the presence of pre-existing mutants and we focus on a scenario208

where the first vaccine-escape mutant appears after the start of vaccination (but see Supplementary209

Information, §5 where we discuss the effect of standing genetic variation).210

At the onset of the vaccination campaign (i.e., t = 0) we assume that the system is at211

the endemic equilibrium (the equilibrium densities Xu(0), Yuw(0) and Yvw(0) are given in (SI.1)).212

We assume that an individual host infected with the wild-type produces vaccine-escape mutants213
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at a small, constant rate θu/n if unvaccinated and θv/n if vaccinated. While the rate of mutation214

is assumed to be constant through time, whether or not a mutant will escape extinction within215

a host may depend on the type of host. Indeed, a vaccine-escape mutation may have a higher216

probability to escape within-host extinction in vaccinated hosts. We account for this effect by217

making a distinction between θu and θv. If vaccine-escape mutations are more likely to escape218

extinction in vaccinated hosts we expect θv > θu. In other words, θv/θu − 1 is a measure of the219

within-host fitness advantage of the vaccine-escape mutant in vaccinated hosts (they are assumed220

to have the same within-host fitness in näıve hosts). We assume that θu and θv are small enough221

that within-host clonal interference among vaccinated-adapted variants is negligible. The total rate222

of production of mutants is thus equal to223

θu
n
Inuw(t) +

θv
n
Invw(t) ≈ θuYuw(t) + θvYvw(t). (11)

The arrival times of novel mutants are thus well approximated by a non-homogeneous Poisson224

process [14, p. 4] with rate225

λint(t) = θuYuw(t) + θvYvw(t). (12)

The probability that the arrival time Tint of the first vaccine-escape mutant is thus approximated226

by:227

Fint(t) = P{Tint ≤ t} = 1− e−
∫ t
0 λint(s) ds. (13)

In other words, the time Tint at which the vaccine-escape variant is first introduced by mutation228

depends on the dynamics of the incidence of the infections by the wild-type. Plots of Fint(t) for229

different values of rollout speed υ in Figure 3 show that a faster rollout of vaccination delays the230

introduction of the vaccine-escape mutant. This effect is particularly marked when ωr = 0 because231

life-long immunity is known to result in a massive transient drop of the incidence (the honey-moon232

period)[45, 19] which is expected to decrease the influx of new variants during this period (Figure233

SI.1). Figure 3 also shows how higher values of ωv can increase the influx of vaccine-escape234

variants. As discussed in the following section, the subsequent fate of vaccine-escape mutants235

depends strongly on the timing of their arrival.236
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3.2.2 Step 2: Variant invasion237

Immediately after its introduction, the dynamics of the vaccine-escape mutant may be approximated238

by a time-inhomogeneous birth-death process where the rate of birth (i.e., rate of new infections239

by the mutant) varies with the availability of susceptible hosts (see Section 3.1.2). The probability240

a mutant introduced at Tint = tint
1 successfully invades (see [34] and Supplementary Information,241

§2) is:242

Pinv(tint) =
1

1 +
∫∞
tint

dme
−

∫ s
t bm(u)−dm du ds

, (14)

with bm(t) and dm as defined above, (9), (10). In general, the integrals in (14) are impossible to243

compute exactly; in Methods, Section 5.2, we describe a fast numerical method.244

Plotting the probability of invasion against the time of introduction, t, in Figure 4 shows245

that the time at which the vaccine-escape mutant is introduced has a dramatic impact on the246

probability of escaping early extinction. If the mutant is introduced early, the density of susceptible247

vaccinated hosts remains very low and the selection for the vaccine-escape mutant is too small to248

prevent stochastic extinctions. The probability of invasion increases with selection, and thus with249

the density of vaccinated hosts, which tends to increase with time (see equation (6)).250

Taking t → ∞ allows us to consider the situation when the vaccine-escape mutant appears251

at the post-vaccination endemic equilibrium, i.e., when the densities of unvaccinated and vaccinated252

susceptible hosts are X⋆
u and X⋆

v , respectively (see Supplementary Information §1.3). At that point253

in time the effective per-generation reproduction ratio of genotype i (i.e., the expected number of254

secondary infections produced by pathogen genotype i) is (cf. (7)):255

R⋆
i = lim

t→∞
Re

i (t) = Ri

(
X⋆

u

N⋆
+ ϵi

X⋆
v

N⋆

)
(15)

By definition, at the endemic equilibrium set by the wild-type pathogen we have R⋆
w = 1. Hence,256

a necessary condition for the mutant to invade this equilibrium is R⋆
m > 1, i.e., the effective257

1To clarify, Tint is the random time at which a mutation arises; when we specify Tint = tint, we are conditioning
on the event in which the random quantity Tint takes the fixed value tint.
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reproduction number of the mutant has to be higher than that of the wild-type (see Supplementary258

Information, §1.3). However, this is not a sufficient condition: many mutants that satisfy this259

condition will rapidly go extinct due to demographic stochasticity. But in contrast to an early260

introduction of the mutant discussed above, the stochastic dynamics of the mutant is approximately261

a time-homogeneous branching process because the birth rate of the mutant approaches b⋆m =262

βm

(
X⋆

u
N⋆ + ϵm

X⋆
v

N⋆

)
. This birth rate is constant because the density of susceptible hosts remains263

constant at the endemic equilibrium. The probability of mutant invasion after introducing a single264

host infected by the mutant is thus (see Supplementary Information §3; Figure 4):265

P ⋆
inv = lim

t→∞
Pinv(t) = 1− R⋆

w

R⋆
m

= 1− 1

R⋆
m

. (16)

(note that we recover the strong-selection result of [49]). This expression shows that at this endemic266

equilibrium the fate of the mutant is fully governed by the per-generation reproduction ratio of the267

two strains, but does not depend on the specific values of the life-history traits of the mutant268

(provided the different vaccine-escape variants have the same value of R⋆
m).269

Interestingly, unlike P ⋆
inv, the probability Pinv(tint) that a mutant introduced at time Tint =270

tint successfully invades (14) is not governed solely by Ri, but rather depends on the life-history271

traits of the mutants. For instance, assume that two vaccine-escape mutants have the same values272

of Rm and ϵm but they have very different life-history strategies. The “slow” strain has low rates273

of transmission and virulence (in green in Figure 4) while the “fast” strain has high rates of274

transmission and virulence (in red in Figure 4). Figure 4 shows that the high mortality rate of275

hosts infected by the fast strain increases the risk of early extinction and lowers the probability of276

invasion relative to the slow strain. Hence, in the early stage of adaptation, pathogen life-history277

matters and favours slow strains with lower rates of transmission and virulence.278

3.2.3 Step 3: After variant invasion279

Successful invasion of the vaccine-escape mutant means that it escaped the “danger zone” when its280

density is so low that it is very likely to go extinct (Figure 1d-f). After this invasion we can describe281
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the dynamics of the polymorphic pathogen population using the deterministic approximation (4).282

Because the invasion of the mutant at the endemic equilibrium set by the wild-type requires283

thatR⋆
m > R⋆

w, we might expect from the analysis of the deterministic model that the mutant would284

always replace the wild-type pathogen. That is, the wild-type pathogen would go extinct before285

the mutant (Figure 1f). This is indeed the case when the phenotypes of the mutant and the286

wild-type are not very different because of the “invasion implies fixation” principle [23, 9, 51]. Yet,287

this principle may be violated if the phenotype of the vaccine-escape mutant is very different than288

the phenotype of the wild-type.289

First, the long-term coexistence of the two genotypes is possible (Figure 1e). The co-290

existence requires that each genotype is specialized on distinct types of host. The wildtype is291

specialised on unvaccinated hosts (i.e., Rw > Rm) and the mutant is specialised on the vacci-292

nated hosts (i.e., ϵm > ϵw). Intermediate rates of vaccination maintain a mix of vaccinated and293

unvaccinated host wich promotes coexistence between the two genotypes (Figure SI.2). Sec-294

ond, the vaccine-escape mutant may be driven to extinction before the wild-type if its life-history295

traits induce massive epidemiological perturbations after its successful invasion (Figure 1d). As296

pointed out by previous studies, more transmissible and aggressive pathogen strategies may yield297

larger epidemics because the speed of the epidemic is governed by the per-capita growth rate ri,298

not by the per-generation reproduction ratio Ri [19]. This explosive dynamics is driven by an299

over-exploitation of the host population and is immediately followed by a massive decline in the300

incidence of the vaccine-escape mutant. In a finite host population, this may result in the extinction301

of the vaccine-escape mutant before the wild-type [55]. We capture this outcome with a hybrid302

analytical-numerical approach that computes the probability Pfix(tint) that the wild-type will go303

extinct before a mutant introduced at time Tint = tint (see Methods, section 5.1). Figure 5 shows304

that two vaccine-escape mutants may have very different probabilities of fixation, even if they have305

the same per-generation reproduction ratio. The numerical computation of the probability of fix-306

ation agrees very well with individual-based stochastic simulations. The faster strain is unlikely307

to go to fixation because invasion is followed by a period where the birth rate drops to very low308

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


levels (far below the mortality rates, Figure SI.3). In other words, a more aggressive strategy will309

more rapidly degrade its environment, by depleting susceptible hosts, which is known to increase310

the probability of extinction [10]. Interestingly, this effect is only apparent when the time of intro-311

duction, Tint, is large. Indeed, when the mutant is introduced soon after the start of vaccination,312

its probability of invasion is already very low because its initial growth rate is negative (Figure313

SI.3a, b, c). When the mutant is introduced at intermediate times, the initial growth rate of the314

mutant is positive because some hosts are vaccinated (Figure SI.3d, e, f). If the vaccine-escape315

mutant is introduced later, the growth rate of the mutant is initially very high as many hosts are316

vaccinated (and thus susceptible to the vaccine-escape mutant) but this is rapidly followed by a317

drop in host density (especially pronounced with the faster strain) which prevents the long-term318

establishment of the faster strain (see Figure SI.3g, h, i).319

3.2.4 The overall risk of pathogen adaptation320

The overall probability that the pathogen will adapt to vaccination (i.e., that a vaccine-escape321

variant invades and eventually replaces or coexists with the wild-type) depends upon the probability322

that the mutation will arise (step 1) and the probability that this mutation will escape early323

extinction (step 2) and eventually go to fixation (step 3). It is particularly relevant to explore the324

effect of the speed of vaccination rollout on the overall probability that some vaccine-escape variant325

successfully invades at some time Tinv ≤ t after the start of the vaccination campaign (steps 1 and326

2, Figure 6). Note that several variants can arise and fail to invade before finally a lucky variant327

manages to invade. We can use the probability of invasion Pinv(t) of a variant introduced at time328

t to characterize the distribution, Finv(t), of the first time, Tinv, at which a mutant is introduced329

that successfully invades. Using (12) and (14), this is330

Finv(t) = P{Tinv ≤ t} = 1− e−
∫ t
0 λint(s)Pinv(s) ds. (17)

Compare (13) with (17) and note that the probability that no vaccine-escape mutant will
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ever arise is

P{Tint = ∞} = e−
∫∞
0 λint(s) ds.

In contrast, the probability that no vaccine-escape mutant will ever invade is the larger probability

P{Tinv = ∞} = e−
∫∞
0 λint(s)Pinv(s) ds.

Note that Pinv(t) converges as t → ∞ to P ⋆
inv = 1−1/R⋆

m which is nonzero, so that P{Tint = ∞} = 0

if and only if ∫ ∞

0
λint(s) ds = ∞,

which in turn is true if and only if P{Tinv = ∞} = 0. That is, the probability of adaptation is 1 if331

and only if λint(t) is not integrable. In other words, the probability of adaptation is 1 in the limit332

t → ∞ when the wild-type is not driven to extinction by vaccination (i.e., υ < υc) which implies333

that there is an uninterrupted flux of mutation producing vaccine-escape variants. One of these334

mutants will eventually escape extinction and invade. Yet, the time needed for a successful variant335

to appear may be very long (equation (17) and Figure 6).336

When υ > υc, vaccination is expected to eradicate the disease rapidly in our model (but337

see Supplementary Information §1.3). But an escape mutation may appear by mutation before338

eradication and rescue the pathogen population. This scenario fits squarely within the framework339

of classical “evolutionary rescue” modelling [43, 2, 7]. Yet, vaccination rollout is unlikely to be340

fast enough to eradicate the wildtype pathogen and, in this case, the probability of adaptation341

goes to 1 when t → ∞. Indeed, when υ < υc, a vaccine-escape variant will eventually appear by342

mutation and invade. But what is less clear is how fast this adaptation will take place. We can343

use equation (17) to explore the effect of the speed of adaptation on the probability of pathogen344

adaptation at time t after the start of vaccination (i.e., the speed of adaptation). Crucially, the345

speed of pathogen adaptation is maximized for intermediate values of the speed of vaccination346

rollout. This is due to the antagonistic consequences the speed of the rollout has upon these347

two steps of adaptation (compare Figures 3 and 4). Faster rollout reduces λint, the influx of348
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new mutations, but increases Pinv because higher vaccination coverage yield stronger selection for349

vaccine-escape mutations. Figure 6 illustrates how the speed of adaptation given in (17) results350

from the balance between the time-varying probability Fint(t) that a variant is introduced by351

mutation before time t and the probability Pinv(t) that this variant successfully invades (recall that352

P ⋆
inv is a good approximation of this probability of invasion, see (16)).353

4 Discussion354

Vaccination is a powerful tool to control the spread of infectious diseases, but some pathogens355

evolve to escape the immunity triggered by vaccines (e.g., influenza, SARS-CoV-2). Will pathogens356

continue to adapt to the different vaccines that are being used to halt their spread? Does the357

likelihood of this adaptation depend on the speed of the vaccination rollout? To answer these358

questions we must first understand the different steps that may eventually lead to adaptation to359

vaccination.360

Mutation is the fuel of evolution, and the first step of adaptation to vaccination is the361

mutational process that produces vaccine-escape variants. For instance, even if initial estimates362

of SARS-CoV-2 mutation rates were reassuringly low [52], the virus has managed to evolve higher363

rates of transmission [15, 62] and these adaptations are challenging control measures currently being364

used to slow down the ongoing pandemic. The ability of the new variants of SARS-CoV-2 to escape365

immunity is also worrying and indicates that viral adaption can weaken vaccine efficacy [63, 50].366

The rate at which these potential vaccine-escape mutations are introduced depends on the density367

of hosts infected by the wild-type virus. In this respect, a faster rollout of vaccination is expected368

to delay the arrival of these mutations (Figure 3). Some authors, however, have argued that369

vaccine-escape mutations may arise more frequently in infected hosts which are partially immunized370

[56, 13, 16]. Our model can be used to explore the consequences of this within-host evolution in371

vaccinated hosts (e.g., , taking θv > θu). A larger value of θv increases the overall rate of mutation372

(Figure 3) but this effect is modulated by the fraction of the host population that is vaccinated.373

Consequently, when θv > θu, the speed of vaccination rollout can have a non-monotonic effect on374
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the probability that a vaccine-escape mutation is introduced (see Figure SI.4). Indeed, when the375

rate of vaccination remains low, the enhancing effect of vaccination on the rate of introduction of376

new mutations can counteract the delaying effect of faster vaccination rollout discussed above. But377

the probability that a vaccine-escape mutation is introduced drops to very low levels when the rate378

of vaccination gets closer to the critical vaccination rate υc.379

The second step of adaptation starts as soon as the vaccine-escape mutant has been in-380

troduced in the pathogen population. Will this new variant go extinct rapidly or will it start to381

invade? The answer to this question depends on the time at which the mutant is introduced. If382

the mutant is introduced when the population is not at an endemic equilibrium, the fate of the383

mutant depends on a time-varying birth rate which is driven by the fluctuations of the density of384

susceptible hosts. In our model, early introductions are likely to result in rapid extinction because385

there are simply not enough vaccinated hosts to favour the mutant over the wild-type. Moreover,386

we found that earlier introductions are likely to favour slower life-history strategies which are less387

prone to early extinction. If the introduction takes place later, when the system has reached a new388

endemic equilibrium, the fate of the mutant is solely governed by the effective per-generation ratio389

R⋆
m and does not depend on the life-history traits of the mutant. Slow and fast variants have equal390

probability to invade if they have the same R⋆
m. Altogether, our results suggest that earlier arrival391

may not always facilitate invasion since the probability of invasion is limited by the time-varying392

epidemiological state of the host population.393

The third step of adaptation starts as soon as the hosts infected by the vaccine-escape394

mutant are abundant and the effect of demographic stochasticity on the dynamics of this mutation395

becomes negligible. Our analysis attempts to better characterize the dynamics of the mutant396

after invasion using a combination of deterministic and stochastic approximations. In principle,397

conditional on invasion, we can use the deterministic model (4) to describe the joint dynamics398

of the mutant and the wild-type. In particular, the speed at which the vaccine-escape mutant399

spreads in the pathogen population can be well approximated by the deterministic model. This400

may be particularly useful to address the impact of various vaccination strategies on the speed of401
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the spread of a vaccine-escape variant [21]. In the present work we show that life-history traits402

of the vaccine-escape mutant drive the speed of its spread. Indeed, as pointed out before, the403

deterministic transient dynamics depends on the per-capita growth rate of the mutant rm, not its404

per-generation reproduction ratio Rm [19]. Transient dynamics may favour a fast and aggressive405

variant (i.e., faster increase in frequency of this variant) because this life-history strategy may be406

more competitive away from the endemic equilibrium. Yet, this explosive strategy may be risky407

for the pathogen if it leads to epidemiological fluctuations that result in a massive drop in the408

number of infections. The consequences of such fluctuations on the extinction risk of the variant409

can be accounted for by a generalized birth-death process where the per-capita growth rate of410

the mutant varies with time. Epidemiological fluctuations lead to a degradation of the future411

environment (i.e., depletion of the density of susceptible hosts) which results in an increased risk412

of extinction [34, 10]. This effect has recently been analysed in a purely epidemiological model413

without vaccination [48]. In this simpler scenario, it is also relevant to make a distinction between414

early extinction (i.e., a fizzle in [48], Figure 1c]) and extinction after a successful invasion (i.e., an415

epidemic burnout in [48], Figure 1d) and it is possible to use a similar hybrid semi-deterministic416

approach to obtain accurate analytical approximations for both events.417

A comprehensive understanding of pathogen dynamics after vaccination relies on the use418

of a combination of theoretical tools to capture the interplay between stochastic and deterministic419

forces. Here, we use a hybrid numerical-analytical approach to account for the three successive steps420

that may eventually lead to the fixation of a vaccine-escape mutant. This theoretical framework421

is particularly suitable to explore the influence of different vaccination strategies on the risk of422

pathogen adaptation. In particular, we show that this risk drops to very low levels even when the423

speed of vaccination rollout is below the threshold value that may eventually lead to eradication424

(i.e., υ < υc ). In other words, faster vaccination rollout makes sense even when eradication is425

infeasible, because faster rollout decreases both the number of cases and the likelihood of pathogen426

evolution. This conclusion is akin to the general prediction that the rate of pathogen adaptation427

should be maximized for intermediate immune pressure or for medium doses of chemotherapy at the428

within-host level [27, 53, 40, 1, 30, 17, 2]. Most of these earlier studies focused on evolutionary rescue429
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scenarios where the wild-type is expected to be rapidly driven to extinction by human intervention.430

Our versatile theoretical framework, however, allows us to deal with a broader range of situations431

where the intervention is not expected to eradicate the wild-type pathogen. Accounting for the432

dynamics of the wild-type affects both the flux of mutation and the fate of these mutations. Note433

how our decomposition of the factors acting on the probability of adaptation (Figure 6) provides a434

validation of the verbal argument often used in earlier studies to explain the higher rate of pathogen435

adaptation for intermediate levels of vaccination coverage of drug concentration [27, 53, 40, 56].436

The framework we have developed can be readily extended to explore many other situa-437

tions. For instance, our model can be modified to explore the influence of temporal variations in the438

environment that could be driven by seasonality or by non-pharmaceutical interventions (NPIs).439

We explored a situation where the transmission rate of all variants is periodically reduced by a440

quantity 1 − c(t), where c(t) is a measure of the intensity of NPIs. These periodic interventions441

affect both the flux of mutations and the probability that these mutations invade. In particular,442

NPIs lower the probability of mutant introduction through the reduction in the density of hosts443

infected by the wild-type (Figure SI.4). As a consequence, the probability of adaptation is re-444

duced when vaccination is combined with periodic control measures. Hence, our approach helps to445

understand the interaction between vaccination and NPI discussed in earlier studies [54, 42].446

We have made several simplifying assumptions that need to be relaxed to confidently447

apply our findings to a broader range of pathogens such as the current SARS-CoV-2 pandemic (see448

section 5.6 in the Methods). First, one should study situations where the pathogen population449

has not reached an endemic equilibrium when vaccination starts to be applied. We carried out450

additional simulations showing that starting the vaccination rollout sooner (i.e., just after the start451

of the epidemic) tends to promote the probability of invasion of the escape mutant (Figure SI.5).452

Indeed, at the onset of the epidemic the density of susceptible hosts is higher (i.e., the birth rate453

of the infection is high relative to the endemic equilibrium) and the risk of early extinction of the454

mutant is reduced. Second, it is important to relax the assumption that natural immunity is perfect.455

We carried out additional simulations showing that when naturally immune hosts, like vaccinated456
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hosts, can be reinfected the probability of invasion of the escape mutant increases (Figure SI.6).457

This effect is particularly strong just after the start of vaccination. Indeed, if naturally immune458

hosts are equivalent to vaccinated hosts, selection to escape immunity is present even before the459

start of vaccination and one may thus expect the speed of adaptation to be much faster. Yet, the460

vaccination strategy can affect the rate of adaptation. In particular, we find that faster rates of461

vaccination always reduce the rate of adaptation via the reduction of the influx of escape mutants462

(Figure SI.7). Another important extension of our model would be to study the effect of a diversity463

of vaccines in the host population. We did not explore this effect in the present study but this464

diversity of immune profiles among vaccinated hosts could slow down pathogen adaptation if the465

escape of different vaccines requires distinct mutations [60, 11, 46].466

Finally, it is important to recall that we focus here on a simplified scenario where we467

analyse the evolutionary epidemiology of an isolated population. In real-life situations the arrival468

time may depend more on the immigration of new variants from abroad than on local vaccination469

policies. The influence of migration remains to be investigated in spatially structured models where470

vaccination may vary among populations [24].471

5 Methods472

In this section, we present how extinction, invasion and fixation probabilities may be obtained473

under strong-selection assumptions when a mutant strain appears in a host-pathogen system that474

is away from its endemic equilibrium. Our essential tools are the deterministic ordinary differential475

equations (Section 3.1.1) and birth-and-death process approximations, (Section 3.1.2). The former476

allows us to consider the situation when all strains are abundant, the latter when at least one477

strain is rare. We will limit ourselves to an informal treatment, presenting heuristic arguments and478

deferring rigorous proofs and sharp error bounds to a future treatment.479
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5.1 Approximating the Fixation Probability480

Suppose that the mutant strain introduced at time Tint = tint successfully invades; we next consider481

the probability Pfix(tint) that the mutant will outcompete the wild-type and go to fixation. Fixation482

of the mutant occurs if it is still present when the wild-type strain disappears. If we let Tm
ext and483

Tw
ext be the extinction times of mutant and wild-type strains, the probability of mutant fixation is484

thus P{Tw
ext < Tm

ext} which we may decompose as485

∫ ∞

tint

P{Tm
ext > t}P{Tw

ext ∈ [t, t+ dt)} = −
∫ ∞

tint

P{Tm
ext > t} d

du
P{Tw

ext > t} dt

= −
∫ ∞

tint

P{Inm(t) > 0} d

dt

(
1− P{Inw(t) = 0}

)
dt

=

∫ ∞

tint

P{Inm(t) > 0} d

dt
P{Inw(t) = 0}dt.

(18)

We obtain estimates of P{Inw(t) > 0} and P{Inm(t) > 0} (t > tint) by now approximating486

both mutant and wild-type strains by birth-death-processes Ĩm(t) and Ĩw(t) (see Section 3.1.2).487

The birth rates for the two types, i = w,m, are given by488

bi(t) =
βi(Xu(t) + ϵiXv(t))

N(t)
(19)

and the death rates are489

di = δ + αi + γi. (20)

for i ∈ {w,m}.490

As previously, we are approximating the frequency of unvaccinated and vaccinated hosts491

by their deterministic approximations492

Xn
u (t)

Nn(t)
≈ Xu(t)

N(t)
and

Xn
v (t)

Nn(t)
≈ Xv(t)

N(t)
.

and compute the latter using the ordinary differential equations (4). Unlike previously, when we493

assumed that the mutant was rare, and took Ym(t) ≡ 0, we are now allowing the possibility that494

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2024. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


the mutant is abundant, and cannot neglect the effect of the mutant strain on Xv and Xu. In495

particular, we need to take care in choosing the initial conditions of (4) to account for the fact496

that we consider the time of appearance of the first mutant that successfully invades and so are497

conditioning on the non-extinction of the mutant strain, and to account for the inherent variability498

in the time required to invade; this results in a random initial condition for the deterministic499

dynamics (see Supplementary Information §4 for details). In practice, we find that the randomness500

has negligible effect, but we must still take the conditioning into account. To do so, we first use (4)501

with Ym(0) = 0 (so Ym(t) ≡ 0 for t > 0) and initial conditions (SI.1) to compute the epidemiological502

dynamics of the wild-type from time 0 up until the the introduction of the mutant at time tint.503

Then, at time tint, we restart (4) with new initial conditions: we use the values Xu(tint), Xv(tint),504

N(tint) and Yw(tint) computed assuming Ym(0) = 0, and take505

Ym(tint) =
1

Pinv(tint)n
(21)

(see Supplementary Information §4 for details). Crucially, the initial density of the mutant depends506

on the probability of successful invasion of the mutant Pinv(tint) obtained above (14).507

Provided we use (4) with the appropriate initial conditions as previously, the birth rates508

of both the wild-type and mutant strains are approximately deterministic, and from [34], we have:509

P{Ini (t) > 0} ≈ P{Ĩi(t) > 0} (22)

Under the branching assumption, the lines of descent of distinct infected individuals are indepen-510

dent, hence the probability that strain i vanishes by time t is the product of the probabilities that511

each line of descent vanishes,512

P{Ĩi(t) > 0} = 1− (1− Ui(t|tint))I
n
i (tint) ≈ 1− (1− Ui(t|tint))nYi(tint), (23)
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where513

Ui(t|tint) =
1

1 +
∫ t
tint

die
−

∫ s
tint

bi(u)−di du ds
(24)

is the probability that an individual infected with strain i ∈ {w,m} present at time tint has de-514

scendants alive at time t > tint and we approximate the initial number of individuals infected with515

strain i using the frequencies obtained using (4) and (21):516

Ini (tint) = nY n
i (tint) ≈ nYi(tint). (25)

Below in Section 5.2.3, we give a fast numerical method for computing Ui(t|tint).517

5.2 Auxiliary Functions518

In the following we present a simple, yet versatile, hybrid (i.e., semi-deterministic and semi-519

numerical) framework which allows us to approximate the probabilities associated with different520

steps of adaptation (mutation, invasion, fixation) by adding auxiliary equations describing stochas-521

tic phenomena to the deterministic ordinary differential equations describing the global population522

dynamics.523

5.2.1 Introduction of the variant by mutation (step 1)524

Recall Fint(t) = 1 − e−
∫ t
0 λint(s) ds, (13), where λint(t) = θuYuw(t) + θvYvw(t), (12). Rather than525

computing the integral – which would require that we compute λint(s) (and thus Yuw(s) and Yvw(s))526

for every s < t, we observe that the cumulative hazard Λint(t) =
∫ t
0 λint(s) ds can be computed by527

combining (4) with initial conditions (SI.1) and the auxilliary differential equation528

Λ̇int = λint (26)

with initial condition Λint(0) = 0. The use of this auxiliary equation reduces computational effort529

by obtaining Λint(t) simultaneously with Yuw(t) and Yvw(t) (as opposed to computing the latter530

two and then integrating).531
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5.2.2 Invasion of the variant (step 2)532

In practice, the probability of mutant invasion (14) involves integrals that cannot be explicitly533

computed, and we must compute it numerically. To do so, we make use of of one of the steps534

involved in computing Pinv(tint) in [34]. There, it is shown that535

Pinv(tint) = Um(∞|tint) = lim
t→∞

Um(t|tint),

where536

Um(t|tint) = P{Ĩm(t) > 0|Ĩm(tint) = 1} (27)

is obtained via a pair of auxiliary functions537

U̇m = −dmUmVm (28a)

V̇m = (dm − bm(t))Vm − dmV
2
m, (28b)

with initial conditions538

Um(tint|tint) = Vm(tint|tint) = 1

(N.B., U̇m and V̇m denote the derivatives with respect to t). We compute bm(t), which depends on539

Xu(t), Xv(t) and N(t) (see (10)), via (4). In practice, we cannot compute Um(∞|t); to obtain an540

approximation we approximate it by Um(t|tint) for the first t sufficiently large that541

|Um(t+∆t|tint)− Um(t|tint)|

is less than our desired threshold of error, where ∆t is the step size in our numerical scheme.542
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5.2.3 Fixation of the variant (step 3)543

In practice, we need two pairs of auxiliary equations, i ∈ {w,m}, to track the probabilities that544

some descendant of a wild-type or mutant individual that was present at tint is still alive at time t:545

Ui(t|tint) = P{Ĩi(t) > 0|Ĩi = 1} (29)

Exactly as in (28) above, these satisfy546

U̇i = −diUiVi (30a)

V̇i = (di − bi(t))Vi − diV
2
i , (30b)

with547

Ui(tint|tint) = Vi(tint|tint) = 1,

for i ∈ {u, v}.548

To compute the probability of fixation, we first consider the probability that fixation occurs549

prior to time t, which is derived in exactly the same manner as (18).550

P{fixation prior to t} =

∫ t

tint

P{Inm(s) > 0} d

ds
P{Inw(s) = 0} ds.

Proceeding as in Section 5.1, approximating the probabilities P{Inm(s) > 0} and P{Inw(s) = 0} by551

P{Ĩm(s) > 0} and P{Ĩw(s) = 0} and initial number of hosts infected with the wild-type using the552

deterministic density, Inw(tint) ≈ nYw(tint), using the branching property (23) this is approximately553

Ufix(t|tint) =
∫ t

tint

(
1−

(
1− Um(s|tint)

)nYw(tint)
)

×
(
nYw(tint)

(
− U̇w(s|tint)

)(
1− Uw(s|tint)

)nYw(tint)−1
)
ds. (31)
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Differentiating yields the following auxiliary equation for Ufix(t):554

U̇fix = nYw(tint)(δ + αw + γw)UwVw (1− Uw)
nYw(tint)−1 Um, (32)

with initial condition Ufix(tint|tint) = 0. We estimate the fixation probability as555

Pfix(tinv) = lim
t→∞

Ufix(t|tint), (33)

approximating the limit at infinity as we did for Pinv(tint) in Section 5.2.2 above.556

5.2.4 The overall risk of pathogen adaptation557

We numerically compute the cumulative density function Finv(t) = P{Tinv ≤ t} of the first arrival558

time Tinv of a vaccine-escape mutant that successfully invades (17) analogously to Fint (Section559

5.2.1), using the auxiliary equation560

Λ̇inv = λintPinv (34)

with initial condition Λinv(0) = 0, computing Yuw(t) and Yvw(t) – and thus λint(t) – using (4) with561

initial conditions (SI.1).562

5.3 Stochastic simulations563

We carried out stochastic simulations to check the validity of our results. We developed an564

individual-based simulation program for the Markov process described in Table 1 and using the565

parameter values given in Table SI.1. In order to match the assumption used in our analysis we566

start the simulation when the system is at its endemic equilibrium before vaccination. Then we in-567

troduce a single host infected with the mutant pathogen at a time tint after the start of vaccination568

and we let the simulation run until one of the pathogen variants (the wild-type or the mutant) goes569

extinct. If the wild-type goes extinct first we record this run as a “mutant fixation event”. We ran570

1000 replicates for each set of parameters and we plot the proportion of runs that led to mutant571

fixation in Figure 5. We also used our simulations to confirm our prediction on the speed of viral572

adaptation in Figure 6. In this scenario we allowed the vaccine-escape variant to be introduced573
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by mutation from the wild-type genotype. We carried out 1000 simulations and monitored (i) the574

frequency of the escape mutant at different points in time after the start of vaccination (Figure 6a)575

(ii) the number of introduction events by mutation and (Figure 6b). We also used this simulation576

approach to go beyond the scenarios used in our analysis to check the robustness of some of our577

results.578

Data accessibility: The simulation code used to carry out stochastic simulations has579

been deposited on zenodo 10.5281/zenodo.12655541.580
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Figure 1: Graphical representation of the different evolutionary epidemiology out-
comes after vaccination. The density of the wild-type pathogen is indicated in light blue and
the dynamics of the mutant in orange. Each panel describes the temporal dynamics of the epi-
demics after the start of vaccination: (a) eradication of the wild-type pathogen, (b) new endemic
equilibrium of the wild-type population after damped oscillations (with no introduction of the
vaccine-escape mutant), (c) early extinction of the vaccine-escape mutant after its introduction by
mutation, (d) invasion of the vaccine-escape mutant followed by the its extinction, (e) invasion of
the vaccine-escape mutant and long-term coexistence with the wild-type in a new endemic equilib-
rium after damped oscillations, (f) invasion and fixation of the vaccine-escape mutant (extinction
of the wild-type). The vertical dashed line (black) indicates the start of vaccination. For sim-
plicity we consider that vaccination starts after the wild-type population has reached an endemic
equilibrium. The horizontal dashed line indicates the “stochastic threshold” above which one may
consider that the deterministic model provides a very good approximation of the dynamics and
we can neglect the effect of demographic stochasticity. Invasion occurs when the vaccine-escape
variant manages to go beyond the “stochastic threshold” (panels d, e and f). Adaptation occurs
when the vaccine-escape variant is maintained in the population (panels e and f). Fixation occurs
when the vaccine-escape variant manages to outcompete the wild-type (panel f).
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Figure 2: A schematic representation of the model. Näıve and uninfected hosts (Sn
u hosts)

are introduced at a rate ν and are vaccinated at rate υ. Immunization induced by the vaccine wanes
at rate ωv. Uninfected hosts (Sn

u and Sn
v ) die at a rate δ while infected hosts (Inui and Invi) die at a

rate di = δ + αi, where i refers to the virus genotype: the wild-type (i = w) or the vaccine-escape
mutant (i = m). The rate of infection of näıve hosts by the genotype i is hi = βi(I

n
ui + Invi)/H

n,
where βi is the transmission rate of the genotype i. Vaccination reduces the force of infection and ϵi
refers to the ability of the genotype i to escape the immunity triggered by vaccination (we assume
ϵm > ϵw). A host infected by pathogen genotype i recovers from the infection at rate γi and yields
naturally immune hosts (Rn hosts) that cannot be reinfected by both the wild-type and the escape
mutant. Natural immunity is assumed to wane at rate ωr. The total host population density is

Hn = Sn
u + Sn

v +
∑

i∈{w,m}

(Inui + Invi) +Rn.
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Figure 3: Faster vaccine rollout delays the arrival time of the first escape mutant.
We plot the probability, Fint(t), that the first escape mutant arrives prior to time t for different
speeds of vaccination rollout: υ = 0.05 (top), 0.15 (middle) and 0.24 (bottom). We contrast a
scenario where θv = θu (dashed line), and θv = 10× θu (full line). Other parameter values: θu = 1,
ν = δ = 3 10−4, ωv = ωr = 0.05, αw = 0.02, βw = 10, γw = 2, ϵw = 0.05, Rw = 4.95. For these
parameter values the critical rate of vaccination υc above which the wild-type pathogen is driven
to extinction is υc ≈ 0.264 (see equation (8)).
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Figure 4: Probability of invasion of the vaccine-escape mutant increases with Tint. We
plot the probability invasion Pinv(tint) of a slow (green) and a fast (red) vaccine-escape mutant for
different speeds of vaccination rollout: υ = 0.05 (top), 0.15 (middle) and 0.24 (bottom). The slow
mutant: αm = 0.02, βm = 7, γm = 2, ϵm = 1,Rm = 3.46. The fast mutant: αm = 4.0606, βm =
21, γm = 2, ϵm = 1,Rm = 3.46. The probability of invasion P ⋆

inv in the limit tint → ∞ (see
equation (16)) is indicated with the dashed black line. Other parameter values as in Figure 3:
ν = δ = 3 10−4, ωv = ωr = 0.05, αw = 0.02, βw = 10, γw = 2, ϵw = 0.05, Rw = 4.95.
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Figure 5: Probability of fixation of the vaccine-escape mutant may be low when Tint

is large. We plot the probability of fixation of (A) a slow (green) and (B) a fast (red) vaccine-
escape mutant for an intermediate speed of vaccination rollout: υ = 0.15. The slow mutant:
αm = 0.02, βm = 7, γm = 2, ϵm = 1,Rm = 3.46. The fast mutant: αm = 4.0606, βm = 21, γm =
2, ϵm = 1,Rm = 3.46. The full colored lines give the probability of fixation Pfix(tinv) computed
numerically (see Methods section 5.4) and the dots give the results of individual-based simulations
(see Methods section 5.6) for different values of n which affect the pathogen population size and the
intensity of demographic stochasticity. We plot the probability of invasion Pinv(t) (see Figure 4)
with dashed colored line and its asymptotic value P ⋆

inv with a dotted black line. Other parameter
values as in Figure 3: ν = δ = 3 10−4, ωv = ωr = 0.05, p = 0, αw = 0.02, βw = 10, γw = 2,
ϵw = 0.05, Rw = 4.95.
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Figure 6: The probability of adaptation is maximised for intermediate speed of vac-
cination rollout. In (A) We plot the probability of adaptation Finv(t) (black lines) against the
speed of vaccination rollout at different points in time. In (B) we plot the probability Fint(t) of the
introduction of at least one mutant before different points in time t (blue lines) and the probability
P ⋆
inv (purple line) which gives a good approximation of the probability of successful invasion of an

escape-mutant. The dashed purple line gives the probability of invasion of the escape-mutant in the
absence of the wild-type. The dots give the results of individual-based simulations (see Methods
section 5.6). The vaccine-escape mutant is assumed to have the following phenotype (slow mutant
in Figure 4 and 5): αm = 0.02, βm = 7, γm = 2, ϵm = 1,Rm = 3.46. Other parameter values:
ν = δ = 3 10−4, n = 106, ωv = ωr = 0.05, αw = 0.02, βw = 10, γw = 2, ϵw = 0.05, Rw = 4.95. The
light gray area on the right-hand-side indicates the speed above which the wild-type pathogen is
expected to be driven to extinction (υ > υc ≈ 0.264, see equation (8)).
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Table 1: We model the epidemic via a Continuous Time Markov Chain (CTMC) with discrete
states (Sn

u , S
n
v , I

n
uw, I

n
um, I

n
vw, I

n
vm, R

n). Jumps (∆Sn
u ,∆Sn

v ,∆Inuw,∆Inum,∆Invw,∆Invm,∆Rn) occur at
state dependent rates (i.e., with probability proportional to ∆t in a short interval [t, t +∆t). We
implement this Markov chain using the Gillespie algorithm [25] to obtain the simulated fixation
probabilities in Figure 5 and 6.

Event
Jump

Rate
(∆Sn

u ,∆Sn
v ,∆Inuw,∆Inum,∆Invw,∆Invm,∆Rn)

Birth (1, 0, 0, 0, 0, 0, 0) nν

Vaccination (−1, 1, 0, 0, 0, 0, 0) υSn
u

Loss of immunity
(1,−1, 0, 0, 0, 0, 0) ωvS

n
v

(1, 0, 0, 0, 0, 0,−1) ωrR
n

Infection

(−1, 0, 1, 0, 0, 0, 0) βw
Inuw+Invw

H Sn
u

(−1, 0, 0, 1, 0, 0, 0) βm
Ium+Ivm

H Sn
u

(0,−1, 0, 0, 1, 0, 0) ϵwβw
Iuw+Ivw

H Sn
v

(0,−1, 0, 0, 0, 1, 0) ϵmβm
Ium+Ivm

H Sn
v

Recovery

(0, 0,−1, 0, 0, 0, 1) γwI
n
uw

(0, 0, 0,−1, 0, 0, 1) γmI
n
um

(0, 0, 0, 0,−1, 0, 1) γwI
n
vw

(0, 0, 0, 0, 0,−1, 1) γmI
n
vm

Death

(−1, 0, 0, 0, 0, 0, 0) δSn
u

(0,−1, 0, 0, 0, 0, 0) δSn
v

(0, 0,−1, 0, 0, 0, 0) (δ + αw)I
n
uw

(0, 0, 0,−1, 0, 0, 0) (δ + αm)I
n
um

(0, 0, 0, 0− 1, 0, 0) (δ + αw)I
n
vw

(0, 0, 0, 0, 0,−1, 0) (δ + αm)I
n
vm

(0, 0, 0, 0, 0, 0,−1) δRn
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