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Abstract1

Vaccination is expected to reduce disease prevalence and to halt the spread of epidemics. But2

pathogen adaptation may erode the efficacy of vaccination and challenge our ability to con-3

trol disease spread. Here we examine the influence of the speed of vaccination rollout on the4

overall risk of pathogen adaptation to vaccination. We extend the framework of evolutionary5

epidemiology theory to account for the different steps leading to adaptation to vaccines: (1)6

introduction of a vaccine-escape variant by mutation from the wild-type pathogen, (2) invasion7

of this vaccine-escape variant in spite of the risk of early extinction, (3) spread and, eventu-8

ally, fixation of the vaccine-escape variant in the pathogen population. We show that the risk9

of pathogen adaptation is maximal for intermediate speed of vaccination rollout. On the one10

hand, slower rollout decreases pathogen adaptation because selection is too weak to avoid early11

extinction of the new variant. On the other hand, faster rollout decreases pathogen adaptation12

because it reduces the influx of adaptive mutations. Hence, vaccinating faster is recommended13

to decrease both the number of cases and the likelihood of pathogen adaptation. We also show14

that pathogen adaptation is driven by its basic reproduction ratio, the efficacy of the vaccine15

and the effects of the vaccine-escape mutations on pathogen life-history traits. Accounting for16

the interplay between epidemiology, selection and genetic drift, our work clarifies the influence17

of vaccination policies on different steps of pathogen adaptation and allows us to anticipate the18

effects of public-health interventions on pathogen evolution.19

Significance statement: Pathogen adaptation to host immunity challenges the efficacy

of vaccination against infectious diseases. Are there vaccination strategies that limit the

emergence and the spread of vaccine-escape variants? Our theoretical model clarifies the

interplay between the timing of vaccine escape mutation events and the transient epidemi-

ological dynamics following the start of a vaccination campaign on pathogen adaptation.

We show that the risk of adaptation is maximized for intermediate vaccination coverage but

can be reduced by a combination of non pharmaceutical interventions and maximizing the

speed of the vaccination rollout. These recommendations have important implications for

the choice of vaccination strategies against the ongoing SARS-CoV-2 pandemic.
20
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1 Introduction21

Vaccination offers unique opportunities to protect a large fraction of the host population and22

thus to control spreading epidemics. In principle, large vaccination coverage can lead to pathogen23

eradication. In practice, however, the coverage required for eradication is often impossible to24

reach with imperfect vaccines [16, 34]. Moreover, pathogen adaptation may erode the efficacy of25

vaccination. Even if adaptation to vaccines is less common than adaptation to drugs [14, 25, 26]26

the spread of vaccine-escape mutations may challenge our ability to halt the spread of epidemics.27

Understanding the dynamics of pathogen adaptation to vaccines is particularly relevant in the28

control of the ongoing SARS-CoV-2 pandemic. Yet, most theoretical studies that explore the29

evolution of pathogens after vaccination are based on the analysis of deterministic models and30

ignore the potential effects induced by the stochasticity of epidemiological dynamics. Demographic31

stochasticity, however, drives the intensity of genetic drift and can affect the establishment of new32

mutations and the long-term evolution of pathogens [41, 43, 40]. Several studies showed how the33

demographic stochasticity induced by finite host and pathogen population sizes alters selection on34

the life-history traits of pathogens [28, 22, 36]. These analytical predictions rely on the assumption35

that mutation rate is low, which allows us to decouple epidemiological and evolutionary time scales.36

Indeed, when mutation rate is low, the new strain is always introduced after the resident pathogen37

population has reached its endemic equilibrium. Many pathogens, however, have relatively large38

mutation rates [42] and the fate of a pathogen mutant introduced away from the endemic equilibrium39

is likely to be affected by the dynamics of the pathogen populations. Besides, the start of a40

vaccination campaign is expected to yield massive perturbations of the epidemiological dynamics41

and new mutations are likely to appear when the pathogen population is far from its endemic42

equilibrium.43

The aim of the present study is to develop a versatile theoretical framework to evaluate the44

consequences of vaccination on the risk of pathogen adaptation to vaccination. There are six45

main evolutionary epidemiology outcomes after the start of vaccination which are summarized in46

Figure 1. Some of these outcomes are more favorable than others because they do not lead to47

the invasion of a new variant (Figure 1a-c). In contrast, vaccination may lead to the invasion of48

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


vaccine-escape variants (Figure 1e-f). In the following we use a combination of deterministic and49

branching process approximations to study the joint epidemiological and evolutionary dynamics50

of the pathogen population. This analysis reveals the importance of the speed of the vaccination51

rollout as well as of the life-history characteristics of the vaccine-escape variants on the probability52

of pathogen adaptation.53

2 Model54

We use a classical SIR epidemiological model with demography, where hosts can either be suscepti-55

ble, infected or recovered [3] . The discrete number of each of these types of hosts is denoted by Sn,56

In and Rn, respectively. Because we are interested in the effect of demographic stochasticity the57

model is derived from a microscopic description of all the events that may occur in a finite—but not58

fixed—host population of (varying) total size Nn = Sn + In +Rn. We consider a continuous-time59

Markov process tracking the number of individuals of each type of host (see SI Section 1 for a60

detailed description). The susceptible hosts immigrate at rate λn, where n is a “system size”, or61

scaling parameter, that indicates the order of magnitude of the arena in which the epidemic occurs.62

Hence the total host population varies stochastically in time, but remains of the order of n.63

Vaccination may either take place with probability p when a new susceptible host enters the64

population (e.g., vaccination of newborns) or at a constant rate ν for all other susceptible hosts65

(e.g., vaccination of adults). The immunity triggered by vaccination is assumed to wane at rate66

ω. A host may be unvaccinated, U , or vaccinated, V , and may either be uninfected or infected67

with the wild type, w, or a mutant strain, m (we assume coinfections are not possible). We thus68

have to track the numbers of two classes of susceptible hosts (SnU , S
n
V ) and four classes of infected69

individuals (InUw, I
n
Um, I

n
V w, I

n
V m). We assume that the virulence αi (the mortality rate induced by70

the infection), the transmission βi (the production rate of new infections), and the recovery γi (the71

rate at which the host clears the infection) are fully governed by the pathogen genotype (i = w or72

m). A fourth trait ei ∈ [0, 1] governs the infectivity of pathogen genotype i on vaccinated hosts73

(infectivity of all genotypes is assumed to be equal to 1 on unvaccinated hosts). In other words, this74

final trait measures the ability of the pathogen to escape the immunity triggered by the vaccine.75
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For simplicity we assume that recovered hosts have lifelong immunity and thus reinfection is not76

possible. We assume frequency-dependent transmission where the number of contacts a host may77

have in the population is constant but a proportion of those contacts may be infectious. Note,78

however, that other forms of transmission (e.g. density-dependent transmission [33]) are expected79

to yield qualitatively similar results. We summarize the states of the process and the jump rates80

at which individuals transition between states in Table S1 and in Figure 2.81

We use this model to examine the epidemiological and evolutionary dynamics following the82

start of the vaccination campaign. In the following, for the sake of simplicity, we focus on scenarios83

where we assume the pathogen population has reached an endemic equilibrium before the start of84

vaccination (but we consider alternative scenarios in the Discussion).85

3 Results86

3.1 Deterministic Approximation87

As a first step in our analysis, we use a deterministic approximation for large values of n [29] and88

we work with host densities defined as Si = Sni /n, Iij = Inij/n, N = Nn/n. This corresponds89

to replacing discrete individuals by densities and interpreting the rates in Figure 2 as describing90

continuous flows rather than jumps. This yields a system of ordinary differential equations:91

ṠU = λ(1− p) + ωSV −
(
βw
IUw + IV w

N
+ βm

IUm + IV m
N

+ δ + ν

)
SU

ṠV = λp+ νSU −
(
ewβw

IUw + IV w
N

+ emβm
IUm + IV m

N
+ δ + ω

)
SV

İUw = βw(IUw + IV w)
SU
N
− (δ + αw + γw)IUw

İUm = βm(IUm + IV m)
SU
N
− (δ + αm + γm)IUm

İV w = ewβw(IUw + IV w)
SV
N
− (δ + αw + γw)IV w

İV m = emβm(IUm + IV m)
SV
N
− (δ + αm + γm)IV m

Ṅ = λ− δN − αw(IUw + IV w)− αm(IUm + IV m),

(1)
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92

It is also convenient to track the dynamics of the total density of hosts infected with the same93

strain i, Ii := IUi + IV i, which yields:94

İi =

((
βi
SU
N

+ eiβi
SV
N

)
− (δ + αi + γi)

)
︸ ︷︷ ︸

ri = growth rate of strain i

Ii (2)

The ability of the strains to grow is given by the sign of the growth rate ri. Note that this growth95

rate depends on the four different traits of the pathogen: αi, βi, γi, ei. But this growth rate depends96

also on the densities SU and SV , which vary with t, the time since the start of vaccination (i.e.,97

vaccination starts at t = 0). The coefficient of selection sm on the mutant strain relative to the98

wild type is:99

sm = rm − rw = (βm − βw)
SU
N

+ (emβm − ewβw)
SV
N
− (αm − αw + γm − γw) (3)

In other words, both the genetics (the traits of strain i) and the environment (the epidemiological100

state of the host population) govern selection and strain dynamics.101

3.2 Pathogen eradication and vaccination threshold102

The ability of the wild-type pathogen population to grow can be measured by its effective per-103

generation reproduction ratio which is given by:104

Rew = Rw

(
SU
N

+ ei
SV
N

)
(4)

where Ri = βi
δ+αi+γi

. Hence, a reduction of the availability of susceptible hosts with vaccination105

may drive down the density of the wild-type pathogen when the production of new infected hosts106

(infection “birth”) does not compensate for the recovery and death of infected hosts (infection107

“death”), that is when Rew < 1. Ultimately, vaccination can even lead to the eradication of the108

wild-type pathogen (Figure 1a) either when the vaccine is sufficiently efficient (ewRw > 1) or109

when the vaccination coverage is sufficiently high [34, 16]. The deterministic model (1) can be used110
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to identify the threshold νc of the speed of vaccination rollout above which the wild-type pathogen111

can be driven to extinction (see Methods and SI Section 1):112

νc =
Rw(δ(1− (1− ew)p) + ω)− (δ + ω)

1−Rwew
(5)

As expected, better vaccines (i.e., lower values of ew and ω) yield lower threshold values for the113

speed of vaccination. Imperfect vaccines (i.e., higher values of ew and ω), in contrast, are un-114

likely to allow eradication. Note that, if we wait sufficiently long, the population of the wild-type115

pathogen will be driven to extinction in a stochastic way even when ν < νc. Indeed, in a finite116

host population, sooner or later, the pathogen population is doomed to become extinct because of117

demographic stochasticity, but the extinction time when ν < νc will usually be very long, increas-118

ing exponentially with the system size n. From now on, we are going to neglect the possibility of119

extinction of the wild type due to vaccination when ν < νc (which is a good approximation when120

n is large) but will return to it in the discussion.121

122

The spread of a new pathogen variant may erode the efficacy of vaccination and, consequently,123

could affect the ability to control and, ultimately, to eradicate the pathogen. But before the124

replacement of the wild type by a vaccine-escape variant the pathogen population may go through125

three steps that may result (or not) in pathogen adaptation: (1) introduction of the vaccine-escape126

variant by mutation, (2) extinction (Figure 1c) or invasion ((Figure 1d-e)) of the vaccine-escape127

variant, (3) fixation (Figure 1e) or not of the vaccine-adapted variant. Each of these steps is very128

sensitive to stochasticity because the number of vaccine-escape variants is very small in the early129

phase of its emergence.130

3.3 Step 1: Introduction of the variant by mutation131

The first step of adaptation is driven by the production of new variants by the wild-type pathogen132

through mutation. The level of adaptation to unvaccinated and vaccinated hosts may vary among133

those variants [10]. Vaccine-escape mutations that do not carry any fitness costs (or may even134

be adaptive) in unvaccinated hosts are expected to invade and fix relatively easily irrespective of135
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the vaccination strategy. We thus focus on variants that carry fitness costs in immunologically136

näıve hosts (i.e., variants specialized on vaccinated hosts [10]). In principle, the introduction of137

the vaccine-escape mutation may occur before the rollout of vaccination. The distribution of these138

mutations is expected to follow a stationary distribution resulting from the action of recurrent139

mutations and negative selection (see Methods). If these fitness costs are high and/or if the mutation140

rate is low these pre-existing mutants are expected to be rare. In the following, we neglect the141

presence or pre-existing mutants and we focus on a scenario where the first vaccine-escape mutant142

appears after the start of vaccination (but see Methods, section 5.5).143

At the onset of the vaccination campaign (i.e., t = 0) we assume that the system is at the144

endemic equilibrium (i.e., the equilibrium densities S0
U , I0Uw and I0V w are given in (11) in the145

Methods). We assume that an individual host infected with the wild type produces vaccine-escape146

mutants at a small, constant rate θU/n if unvaccinated and θV /n if vaccinated. In addition, we147

assume that θU and θV are small enough that within-host clonal interference is unlikely, and that148

θV ≥ θU to account for the fact that within-host selection may favor mutants in vaccinated hosts.149

The total production of mutants is thus equal to θU
n I

n
Uw(t) + θV

n I
n
V w(t) ≈ θUIUw(t) + θV IV w(t),150

so that the probability density fm(t) of the arrival time t = tm of the vaccine-escape mutant is151

approximated by:152

fm(t) = (θUIUw(t) + θV IV w(t)) e−
∫ t
0 (θU IUw(s)+θV IV w(s)) ds. (6)

In other words, the time tm at which the vaccine-escape variant is introduced by mutation153

depends on the dynamics of the incidence of the infections by the wild type. Plots of fm for154

different values of rollout speed ν in Figure 3 show that a faster rollout of vaccination delays the155

introduction of the vaccine-escape mutant. Indeed, a faster rollout is known to result in a drop156

of the incidence (the honey-moon period) [34, 13] which is expected to decrease the influx of new157

variants during this period. Figure 3 also shows how higher values of θV can increase the influx of158

vaccine-escape variants. As discussed in the following section, the subsequent fate of vaccine-escape159

mutants depends strongly on the timing of their arrival.160
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3.4 Step 2: Variant invasion161

Immediately after its introduction, the dynamics of the vaccine-escape mutant may be approximated162

by a time-inhomogeneous birth-death process where the rate of birth (i.e., rate of new infections163

by the mutant) varies with the availability of susceptible hosts (see Methods, section 5.3). The164

probability that a single mutant with time-varying birth rate bm(t) = βm

(
SU (t)
N(t) + emSV (t)

N(t)

)
and165

constant death rate dm = δ + αm + γm, introduced at time tm, successfully invades (see [24] and166

SI, Section 2) is:167

P tmm =
1

1 +
∫∞
tm
dme

−
∫ t
tm

bm(s)−dm ds dt
(7)

Plotting the probability of invasion vs. tm in Figure 4 shows that the time at which the vaccine-168

escape mutant is introduced has a dramatic impact on the probability of escaping early extinction.169

If the mutant is introduced early, the density SV (t) of susceptible vaccinated hosts remains very170

low and the selection for the vaccine-escape mutant is too small to prevent stochastic extinctions.171

The probability of invasion increases with selection, and thus with the density of vaccinated hosts,172

which tends to increase with time (see equation (3)).173

Taking tm → ∞ allows us to tackle the situation when the vaccine-escape mutant appears at174

the endemic equilibrium, i.e., when the densities of unvaccinated and vaccinated susceptible hosts175

are S?U and S?V , respectively. At that point in time the effective per-generation reproduction ratio176

of genotype i (i.e. the expected number of secondary infections produced by pathogen genotype i)177

is:178

R?i = Ri

(
S?U
N?

+ ei
S?V
N?

)
(8)

By definition, at the endemic equilibrium set by the wild-type pathogen we have R?w = Rew = 1.179

Hence, a necessary condition for the mutant to invade this equilibrium is R?m > 1, i.e., the effective180

reproduction number of the mutant has to be higher than that of the wild type (see SI, Section 1).181

However, this is not a sufficient condition: many mutants that satisfy this condition will rapidly182

go extinct due to demographic stochasticity. But in contrast to an early introduction of the mu-183

tant discussed above, the stochastic dynamics of the mutant is approximately a time-homogeneous184

branching process because the birth rate of the mutant approaches b?m = βi

(
S?
U
N? + ei

S?
V
N?

)
. This185
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birth rate is constant because the density of susceptible hosts remains constant at the endemic186

equilibrium. The probability of mutant invasion after introducing a single host infected by the187

mutant is thus (see SI Section 1; Figure 4):188

P ?m = lim
tm→∞

P tmm = 1− R?w
R?m

= 1− 1

R?m
(9)

Note that we recover the strong-selection result of [36]. This expression shows that at this endemic189

equilibrium the fate of the mutant is fully governed by the per-generation reproduction ratio of190

the two strains, but does not depend on the specific values of the life-history traits of the mutant191

(provided the different vaccine-escape variants have the same value of R?m).192

Interestingly, unlike P ?m, the probability P tmm of mutant invasion at time tm given in (7) is not193

governed solely by Ri, but rather depends on the life-history traits of the mutants. For instance,194

assume that two vaccine-escape mutants have the same values of Rm and em but they have very195

different life-history strategies. The “slow” strain has low rates of transmission and virulence (in196

green in Figure 4) while the “fast” strain has high rates of transmission and virulence (in red197

in Figure 4). Figure 4 shows that the high mortality rate of hosts infected by the fast strain198

increases the risk of early extinction and lowers the probability of invasion relative to the slow199

strain. Hence, in the early stage of adaptation, pathogen life-history matters and favours slow200

strains with lower rates of transmission and virulence.201

3.5 Step 3: After variant invasion202

Successful invasion of the vaccine-escape mutant means that it escaped the “danger zone” when its203

density is so low that it is very likely to go extinct (Figure 1d-f). After this invasion we can describe204

the dynamics of the polymorphic pathogen population using the deterministic approximation (1).205

Because the invasion of the mutant at the endemic equilibrium set by the wild type requires206

that R?m > R?w, we may expect from the analysis of the deterministic model that the mutant would207

always replace the wild-type pathogen. That is, the wild-type pathogen would go extinct before208

the mutant (Figure 1f). This is indeed the case when the phenotypes of the mutant and the wild209

type are not very different because of the “invasion implies fixation” principle [17, 5, 37]. Yet, this210
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principle may be violated if the phenotype of the vaccine-escape mutant is very different than the211

phenotype of the wild type.212

First, if the two genotypes (w and m) are sufficiently specialized on the two hosts, the long-term213

coexistence of the two genotypes is possible (Figure 1e). Second, the vaccine-escape mutant may214

be driven to extinction before the wild type if its life-history traits induce massive epidemiological215

perturbations after its successful invasion (Figure 1d). As pointed out by previous studies, more216

transmissible and aggressive pathogen strategies may yield larger epidemics because the speed of217

the epidemic is governed by the per-capita growth rate ri, not the per-generation reproduction218

ratio Ri [13]. This explosive dynamics is followed by a decline which results in a very low incidence219

of the vaccine-escape mutant. In a finite host population, this may result in the extinction of the220

vaccine-escape mutant before the wild type [41]. We capture this outcome with a hybrid analytical-221

numerical approach that computes the probability P tmfix that the wild type will go extinct before222

the mutant (see Methods, section 5.4). Figure 5 shows that two vaccine-escape mutants may have223

very different probabilities of fixation, even if they have the same per-generation reproduction ratio.224

The numerical computation of the probability of fixation agrees very well with individual-based225

stochastic simulations (Figure S1). The faster strain is unlikely to go to fixation because invasion226

is followed by a period where the birth rate drops to very low levels (far below the mortality227

rates, Figure S2). In other words, a more aggressive strategy will more rapidly degrade its228

environment, by depleting susceptible hosts, which is known to increase the probability of extinction229

[6]. Interestingly, this effect is only apparent when the time of introduction tm is large. Indeed,230

when the mutant is introduced soon after the start of vaccination, its probability of invasion is231

already very low because its initial growth rate is negative (Figure S2a, b, c). When the mutant232

is introduced at intermediate times, the initial growth rate of the mutant is positive because some233

hosts are vaccinated (Figure S2d, e, f). If the vaccine-escape mutant is introduced later, the234

growth rate of the mutant is initially very high as many hosts are vaccinated (and thus susceptible235

to the vaccine-escape mutant) but this is rapidly followed by a drop in host density (especially236

pronounced with the faster strain) which prevents the long-term establishment of the faster strain237

(see Figure S2g, h, i).238

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.6 The overall risk of pathogen adaptation239

The overall probability that the pathogen will adapt to vaccination (i.e. that a vaccine-escape240

variant will replace the wild-type) depends upon the probability that the mutation will arise (step241

1) and the probability that this mutation will escape early extinction (step 2) and eventually go to242

fixation (step 3). It is particularly relevant to explore the effect of the speed of vaccination rollout243

on the overall probability that some vaccine-adapted variant invades before a time t after the start244

of the vaccination campaign (steps 1 and 2, Figure 6):245

Atm = 1− e−
∫ t
0 (θU IUw(s)+θV IV w(s))P s

m ds. (10)

As expected, when ν < νc this probability of adaptation goes to 1 when t → ∞. Indeed,246

when vaccination cannot eradicate the wild type, a vaccine-adapted variant will eventually appear247

by mutation and invade. When ν > νc, we recover a classical evolutionary rescue scenario where248

the arrival and the spread of a vaccine-adapted variant may stop the eradication [32, 2, 4]. Since249

vaccination is unlikely to lead to eradication we focus here on a scenario where ν < νc and we250

use equation (10) to analyse the effect of the speed of adaptation on the probability of pathogen251

adaptation at a time t after the start of vaccination. Crucially, the risk of pathogen adaptation is252

maximized for intermediate values of the speed of vaccination rollout. This is due to the antagonistic253

consequences the speed of the rollout has upon these two steps of adaptation (compare Figures 3254

and 4). Faster rollout reduces the influx of new mutations, but increases selection for vaccine-escape255

mutations. Notice how the risk of adaptation drops with the speed of the rollout of vaccination256

before the critical speed, ν < νc, that may ultimately lead to eradication. When the speed of257

vaccination is just below νc, vaccination coverage is not high enough to allow eradication, but it is258

high enough to reduce massively the probability of adaptation through the reduction of the influx of259

new mutations. As expected, variants with different life-history may have different probabilities of260

adaptation. Indeed, as pointed out in the previous section, faster variants have a lower probability261

of invasion when the variant is introduced at the beginning of the vaccination campaign (Figure262

4). This effect is relatively small but it is expected to be magnified by the subsequent risk of263
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extinction following invasion (Figure 5).264

4 Discussion265

Vaccination is a powerful tool to control the spread of infectious diseases, but some pathogens may266

evolve the ability to escape the immunity triggered by vaccines. Will SARS-CoV-2 adapt to the267

different vaccines that are currently being used to halt the ongoing pandemic? Does the likelihood268

of this adaptation depend on the speed of the vaccination rollout? To answer this question we must269

first understand the different steps that may eventually lead to adaptation to vaccination.270

Mutation is the fuel of evolution, and the first step of adaptation to vaccination is the mutational271

process that produces vaccine-escape variants. Even if inital estimates of SARS-CoV-2 mutation272

rates were reassuringly low [38], the virus has managed to evolve higher rates of transmission [9, 45]273

and these adaptations are challenging current control measures used to slow down the ongoing274

pandemic. The ability of the SARS-CoV-2 virus to escape the immunity triggered by some of the275

vaccines is worrying and suggests that viral adaption may weaken vaccine efficacy [46]. The rate276

at which these potential vaccine-escape mutations are introduced depends on the density of hosts277

infected by the wild-type virus. In this respect, a faster rollout of vaccination is expected to delay278

the arrival of these mutations (Figure 3).279

Some authors have argued that the emergence of vaccine-escape mutations may be more likely280

in infected hosts which are partially immunized [12, 8, 10]. Our model can be used to explore281

the consequences of this within-host evolution in vaccinated hosts (e.g., taking θV > θU ). A282

larger value of θV increases the overall rate of mutation (Figure 3) but this effect is modulated283

by the fraction of the host population that is vaccinated. Consequently, when θV > θU , the284

speed of vaccination rollout can have a non-monotonic effect on the probability that a vaccine-285

escape mutation is introduced (see Figure S3). Indeed, when the rate of vaccination remains low,286

the enhancing effect of vaccination on the rate of mutation can counteract the delaying effect of287

faster vaccination rollout discussed above. But the probability that a vaccine-escape mutation is288

introduced drops to very low levels when the rate of vaccination becomes overwhelmingly high.289

The second step of adaptation starts as soon as the vaccine-escape mutant has been introduced290
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in the pathogen population. Will this new variant go extinct rapidly or will it start to invade? The291

answer to this question depends on the time at which the mutant is introduced. If the mutant is292

introduced when the population is not at an endemic equilibrium, the fate of the mutant depends293

on a time-varying birth rate which is driven by the fluctuations of the density of susceptible hosts.294

Earlier introductions are likely to result in rapid extinction because there are simply not enough295

vaccinated hosts to favour the mutant over the wild type. Moreover, we found that earlier introduc-296

tions are likely to favour slower life-history strategies which are less prone to early extinction. If the297

introduction takes place later, when the system has reached a new endemic equilibrium, the fate298

of the mutant is solely governed by the effective per-generation ratio R?m and does not depend on299

the life-history traits of the mutant. Slow and fast variants have equal probability to invade if they300

have the same R?m. Altogether, our results suggest that earlier arrival may not always facilitate301

invasion since the probability of invasion is limited by the time-varying epidemiological state of the302

host population.303

The third step of adaptation starts as soon as the hosts infected by the vaccine-escape mutant304

are abundant and the effect of demographic stochasticity on the dynamics of this mutation becomes305

negligible. Our analysis attempts to better characterize the dynamics of the mutant after invasion306

using a combination of deterministic and analytical approximations. In principle, conditional on307

invasion, we can use the deterministic model (1) to describe the joint dynamics of the mutant and308

the wild type. In particular, the speed at which the vaccine-escape mutant spreads in the pathogen309

population can be well approximated by the deterministic model. This may be particularly useful to310

address the impact of various vaccination strategies on the speed of the spread of a vaccine-adapted311

variant [15]. In the present work we show that life-history traits of the vaccine-escape mutant drive312

the speed of its spread. Indeed, as pointed out before, the deterministic transient dynamics depends313

on the per-capita growth rate of the mutant rm, not its per-generation reproduction ratio Rm [13].314

Transient dynamics may favour a fast and aggressive variant because this life-history strategy may315

be more competitive away from the endemic equilibrium. Yet, this explosive strategy may be risky316

for the pathogen if it leads to epidemiological fluctuations that result in a massive drop in the317

number of infections. The consequences of such fluctuations on the extinction risk of the variant318

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


can be accounted for by a generalized birth-death process where the per-capita growth rate of319

the mutant varies with time. Epidemiological fluctuations lead to a degradation of the future320

environment (i.e., depletion of the density of susceptible hosts) which results in an increased risk321

of extinction [24, 6].322

A comprehensive understanding of pathogen dynamics after vaccination relies on the use of323

a combination of theoretical tools to capture the interplay between stochastic and deterministic324

forces. Here, we use a hybrid numerical-analytical approach to account for the three successive steps325

that may eventually lead to the fixation of a vaccine-escape mutant. This theoretical framework326

is particularly suitable to explore the influence of different vaccination strategies on the risk of327

pathogen adaptation. In particular, we show that this risk drops to very low levels even when the328

speed of vaccination rollout is below the threshold value that may eventually lead to eradication (i.e.,329

ν < νc ). In other words, faster vaccination rollout makes sense even when eradication is unfeasible,330

because faster rollout decreases both the number of cases and the likelihood of pathogen evolution.331

This conclusion is akin to the general prediction that the rate of pathogen adaptation should be332

maximized for intermediate immune pressure or for medium doses of chemotherapy at the within-333

host level [20, 39, 19, 1, 21, 11, 2]. Most of these earlier studies focused on evolutionary rescue334

scenarios where the wild type is expected to be rapidly driven to extinction by human intervention.335

Our versatile theoretical framework, however, allows us to deal with a broad range of situations336

where the intervention is not expected to eradicate the pathogen. Accounting for the dynamics of337

the wild type affects both the flux of mutation and the fate of these mutations.338

The framework we have developed can be readily extended to explore may other situations.339

For instance, our model can be modified to explore the influence of temporal variations in the340

environment that could be driven by seasonality or by non-pharmaceutical interventions (NPIs).341

We explored a situation where the transmission rate of all variants is periodically reduced by a342

quantity 1 − c(t), where c(t) is a measure of the intensity of NPIs. These periodic interventions343

affect both the flux of mutations and the probability that these mutations invade ( Figures S3344

and S4). Notably, NPIs lower the probability of mutant introduction through the reduction in345

the density of hosts infected by the wild type. As a consequence, the probability of adaptation346
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is reduced when vaccination is combined with periodic control measures (Figure 6). Hence, our347

approach helps to understand the interaction between vaccination and NPI discussed in earlier348

studies [40, 31]. It would also be interesting to relax several simplifying assumptions we are using349

in the current version of the model. First, we could study situations where the pathogen population350

has not reached an endemic equilibrium when selection (e.g., vaccination or chemotherapy) starts351

to be applied. Second, it would be interesting to relax other assumptions made here, such as352

frequency-dependent transmission or life-long immunity after recovery. Accounting for natural353

recovery would require yet another class of imperfectly immune hosts. Similarly, another interesting354

extension of our model would be to study the effect of a diversity of vaccines in the host population.355

This diversity of immune profiles could slow down pathogen adaptation if the escape of different356

vaccines requires distinct mutations [44, 7, 35]. Finally, it is important to recall that we focus here357

on a simplified scenario where we analyse the evolutionary epidemiology of an isolated population.358

In real-life situations the arrival time may depend more on the immigration of new variants from359

abroad than on local vaccination policies. The influence of migration remains to be investigated in360

spatially structured models where vaccination may vary among populations [18].361

5 Methods362

In this section, we present how extinction, invasion and fixation probabilities may be obtained363

under strong-selection assumptions when a mutant strain appears in a host-pathogen system that364

is away from its endemic equilibrium. Our essential tools are the deterministic ordinary differential365

equations (1) and birth-and-death approximations, which we discuss below. The former allows us to366

consider the situation when all strains are abundant, the latter when at least one strain is rare. We367

will limit ourselves to an informal treatment, presenting heuristic arguments and deferring rigorous368

proofs and sharp error bounds to a future treatment. In the following we present a simple, yet369

versatile, hybrid (i.e., semi-deterministic) framework which allows us to approximate the probabili-370

ties associated with different steps of adaptation (mutation, invasion, fixation) via adding auxiliary371

equations describing stochastic phenomena, to the deterministic ordinary differential equations372

describing the global population dynamics.373
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5.1 Before the introduction of a variant374

We assume that vaccination starts after the monomorphic population of the wild-type pathogen375

has reached its endemic equilibrium,376

S0
U =

λ(δ + γw)

δ(βw − αw)

S0
V = 0

I0Uw =
λ(Rw − 1)

βw − αw

I0V w = 0

N0 =
λRw(δ + γw)

δ(βw − αw)

(11)

We then use the following ordinary differential equations to track the deterministic dynamics377

of the wild-type pathogen using the endemic equilibrium before vaccination (11) as the initial378

condition:379

ṠU = λ(1− p) + ωSV −
(
βw
IUw + IV w

N
+ δ + ν

)
SU

ṠV = λp+ νSU −
(
ewβw

IUw + IV w
N

+ δ + ω

)
SV

İUw = βw(IUw + IV w)
SU
N
− (δ + αw + γw)IUw

İV w = ewβw(IUw + IV w)
SV
N
− (δ + αw + γw)IV w

Ṅ = λ− δN − αw(IUw + IV w).

(12)

Letting Iw = IUw + IV w, we get from (12):

İw = βw(SU + ewSV )
Iw
N
− (δ + αw + γw)Iw.

A new endemic equilibrium will thus be approached after vaccination if and only if the growth rate

rw = βw(SU + ewSV )/N − (δ + αw + γw) is positive, or equivalently if the effective per-generation

reproduction ratio

Rew = Rw

(
SU
N

+ ew
SV
N

)
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is larger than 1, when SU and SV are taking their stationary values S̃U and S̃V in the absence of380

infection. Computing these values (see SI, Section 1) shows that Rew > 1 if and only if ewRw > 1381

or ν > νc, where382

νc =
Rw(δ(1− (1− ew)p) + ω)− (δ + ω)

1−Rwew
(13)

Thus we see that if ewRw < 1 and the speed of the vaccination rollout is higher than the critical383

value νc the wild type will be driven to extinction deterministically.384

For values of the vaccination rollout ν smaller than this threshold νc, or when ewRw > 1, the wild-385

type may also become extinct because of demographic stochasticity. We can neglect this possibility386

because the timescale of stochastic extinction from abundances of the order of n is much larger387

than those of the processes under consideration.388

5.2 Introduction of the variant by mutation (step 1)389

As indicated above, we use a time-inhomogeneous Poisson point process to model the influx of390

new mutations. The per capita rate of mutation is assumed to be constant through time but391

whether or not a mutant will escape extinction within a host may depend on the type of host.392

Indeed, a vaccine-escape mutation may have a higher probability to escape within-host extinction in393

vaccinated hosts. We account for this effect by making a distinction between θU and θV . If vaccine-394

escape mutations are more likely to escape extinction in vaccinated hosts we expect θV > θU . In395

other words, θV /θU − 1 is a measure of the within-host fitness advantage of the vaccine-escape396

mutant in vaccinated hosts (they are assumed to have the same within-host fitness in näıve hosts).397

We can compute the probability that some of the vaccine-escape mutations are present as398

standing variation before the start of vaccination. When the resident population has reached its399

endemic equilibrium (S0
U , 0, I

0
Uw, 0, N

0), the number of mutants is approximated by a birth-and-400

death process with immigration, with birth rate b0m = βm
S0
U
N0 and death rate dm = δ + αm + γm,401

and the “immigration” is actually mutations arising in the resident population, which occur at rate402

µm = θUI
0
Uw. Because we assume that in a fully näıve host population vaccine-escape mutations403

carry a fitness cost relative to the resident strain, we have b0m < dm. The number of mutants404

thus approximately follows a subcritical birth-and-death process with immigration, which is known405
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to converge in distribution as t → ∞ to a negative binomial stationary distribution [30]. The406

probability that there are k infected individuals hosting the mutant pathogen at time t = 0 is thus:407

pk =

(
k + r − 1

k

)
(1−R0

m)r(R0
m)k (14)

where r = µm/b
0
m and R0

m = b0m/dm. Hence the the expected number of vaccine-escape mutants408

already present at the start of vaccination is409

µm
dm − bm

. (15)

This result is analogous to the classical result that the expected frequency of deleterious mutations410

is of the form µ/s where µ is the rate of mutation towards deleterious mutants and s is the fitness411

cost of those deleterious mutants.412

We can also compute the probability that no mutant is present at the start of vaccination:413

p0 = (1−R0
m)r (16)

When either R0
m or r is small, p0 ≈ 1, and we can neglect the presence of preexisting mutants.414

Otherwise, we need to account for the possibility that one or more mutants are present at time415

t = 0, which we discuss in Section 5.5 below.416

We now assume that there is zero mutant present at the start of vaccination. We are interested417

in the law of the first time tm at which a mutant appears. Because θUIUw(t) + θV IV w(t) is the flux418

of vaccine-escape mutants from the wild-type population, by the exponential formula for Poisson419

point processes, we have [27]:420

P{tm > t} = e−
∫ t
0 (θU IUw(s)+θV IV w(s))ds. (17)

We can numerically compute the probability density function fm of the first arrival time tm of a421

vaccine-escape mutant using422

fm(t) = Ḟm(t)e−Fm(t), (18)
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where Fm(t) is given by the auxiliary equation423

Ḟm = θUIUw(t) + θV IV w(t) (19)

with initial condition Fm(0) = 0, while we compute IUw(t) and IV w(t) using (12). The use of this424

auxiliary equation reduces computational effort by obtaining Fm(t) simultaneously with IUw(t) and425

IV w(t) (as opposed to computing the latter and then integrating).426

5.3 Invasion of the variant (step 2)427

Suppose that a mutant strain appears at time tm ≥ 0 in a single infected host, that is, with density428

Im(0) = 1
n , (which is effectively zero as n becomes large). Then, (2) yields Im(tm) ≡ 0 for all t,429

whereas the dynamics of the system follows (12). This differential equation approximation does430

not mean that the mutant is absent, but simply not sufficient in numbers to be visible at the coarse431

resolution and short time scale upon which (12) is applicable.432

Then we combine (12) with a birth-and-death process approximation, Ĩm(t), to the number433

of individuals infected with the mutant strain at time t after the mutant arrival time tm, Inm(t).434

We approximate the rate of new infections,
βm(Sn

U (t)+emSn
V (t))

Nn(t) by replacing the stochastic quantities435

SnU (t), SnV (t) and Nn(t) by their deterministic approximations, giving the time-dependent birth436

rate437

bm(t) =
βm(SU (t) + emSV (t))

N(t)

where SU (t), SV (t) and N(t) are determined via the deterministic system (12). Each death in the438

birth-and-death process corresponds to the removal of a susceptible, which occurs by host death or439

recovery at combined rate dm = δ + αm + γm. See §8.2 in the Supplementary Information of [36]440

for a rigorous justification.441

The so-called “merciless dichotomy” [23] tells us that the time-inhomogeneous birth-and-death442

process started with one individual at time tm either goes extinct, or grows without bound (i.e.443
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invades) with probability (see [24] and SI, Section 2)444

P tmm =
1

1 +
∫∞
tm
dme

−
∫ t
tm

bm(s)−dm ds dt

Thus, either the mutant strain vanishes, or the number infected with the mutant strain will even-445

tually be of the order of n individuals, after which we can use (1) to compute the densities of both446

wild-type and mutant strains.447

In practice, we can compute the probability of mutant invasion when the mutant is introduced

at time tm using P tmm = U tmm (∞) where U tmm (∞) is obtained via the pair of auxiliary functions U tmm

and V tm
m [24] defined as follows: U tmm (t) = P{Ĩm(t) 6= 0} and V tm

m (t) = P{Ĩm(t) = 1 | Ĩm(t) 6= 0},

We then have

U̇ tmm = −dmU tmm V tm
m (20)

V̇ tm
m = (dm − bm(t))V tm

m − dm(V tm
m )2, (21)

where U tmm (tm) = V tm
m (tm) = 1 and we compute bm(t), SU (t), SV (t) and N(t), via (12). In practice,448

we cannot compute U tmm (∞); to obtain an approximation we evaluate U tmm (t) for sufficiently large449

t that |U tmm (t+ ∆t)− U tmm (t)| is less than our desired threshold of error.450

Note that several variants can arise and fail to invade before finally a lucky variant manages to451

invade. We can use the probability of invasion P tm of a variant introduced at time t to characterize452

the distribution of the first time ti at which a mutant is introduced that successfully invades. By453

the thinning property of Poisson point processes, we have [27]:454

P{ti > t} = e−
∫ t
0 (θU IUw(s)+θV IV w(s))P s

mds (22)

where θUIUw(t) + θV IV w(t) is the flux of vaccine-escape mutants from the wild-type population.455

We compute numerically the probability density function gm of the first arrival time ti of a vaccine-456

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


escape mutant that successfully invades using457

gm(t) = Ġm(t)e−Gm(t), (23)

where Gm(t) is given by the auxiliary equation458

Ġm(t) = (θUIUw(t) + θV IV w(t))P tm (24)

with initial condition Gm(0) = 0 and computing IUw(t) and IV w(t) using (12).459

Compare (22) with (17) and note that the probability that no vaccine-escape mutant will ever

arise is

P{tm =∞} = e−
∫∞
0 (θU IUw(t)+θV IV w(t))dt.

In contrast, the probability that no vaccine-escape mutant will ever invade is the larger probability

P{ti =∞} = e−
∫∞
0 (θU IUw(t)+θV IV w(t))P t

mdt.

Note that P tm converges as t→∞ to P ?m = 1− 1/R?m which is nonzero, so that

P{tm =∞} = 0⇔
∫ ∞
0

(θUIUw(t) + θV IV w(t))dt =∞⇔ P{ti =∞} = 0,

that is, the probability of adaptation is 1 if and only if t 7→ (θUIUw(t)+θV IV w(t)) is not integrable.460

In other words, the probability of adaptation is 1 in the limit t → ∞ when the wild type is not461

driven to extinction by vaccination (i.e. ν < νc) which implies that there is an uninterrupted flux of462

mutation producing vaccine-escape variants. One of these mutants will eventually escape extinction463

and invade. Yet, the time needed for a successful variant to appear may be very long and we focus464

in the main text on Atm the probability of adaptation before time t (equation (10) and Figure 6).465
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5.4 Fixation of the variant (step 3)466

Suppose now that the mutant strain successfully invades; we next consider the probability Pfix467

that the mutant will outcompete the wild type and go to fixation. Fixation of the mutant occurs if468

it is still present when the wild-type strain disappears. If we let Tm and Tw be the extinction times469

of mutant and wild-type strains, the probability of mutant fixation is thus P{Tw < Tm} which we470

may decompose as471

∫ ∞
tm

P{Tm > t}P{Tw ∈ dt} = −
∫ ∞
tm

P{Tm > t} d
dt
P{Tw > t} dt

= −
∫ ∞
tm

P{Inm(t) > 0} d
dt

(1− P{Inw(t) = 0}) dt

=

∫ ∞
tm

P{Inm(t) > 0} d
dt
P{Inw(t) = 0} dt.

(25)

We again obtain estimates of P{Inw(t) > 0} and P{Inm(t) > 0} using the fact that conditional472

on SU (t), SV (t) and N(t), (Ĩw(t), Ĩm(t)) follows a time-inhomogeneous, two-type birth-and-death473

process, where the birth rates for the two types, i = w,m, are given by474

bi(t) =
βi(SU (t) + eiSV (t))

N(t)

and the death rates are di = δ+αi + γi. The birth rates vary with time due to the epidemiological475

perturbations following the start of vaccination and in particular, to the feedback of mutant invasion476

on SV and SU . To quantify these epidemiological perturbations, we now approximate the density477

of susceptibles and total host density by the values of SU (t), SV (t) and N(t) obtained from the full478

deterministic system (1), which accounts for the presence of the mutant by replacing Im with its479

expected value.480

We need to take care in choosing the initial conditions of (1) to account for the fact that we481

consider the time of appearance of the first mutant that successfully invades and so are conditioning482

on the non-extinction of the mutant strain, and for the inherent variability in the time required to483

invade; this results in a random initial condition for the deterministic dynamics (see Supplementary484

Information §4 for details). In practice, we find that the randomness has negligible effect, but485
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we must still take the conditioning into account. To do so, we first use (12) to compute the486

epidemiological dynamics of the wild type before the introduction of the mutant at time tm. Then,487

at time tm, we use (1) where SU (tm), SV (tm), N(tm) and Iw(tm) are obtained from (12) and take488

Im(tm) = 1
(1−P tm

m )n
(see Supplementary Information §4). Crucially, the initial density of the mutant489

depends on the probability of successful invasion of the mutant P tmm obtained above.490

Provided we use (1) with the appropriate initial conditions as previously, the birth rates of both491

the wild-type and mutant strains are approximately deterministic, and from [24], we have:492

P{Ini (t) > 0} ≈ P{Ĩi(t) > 0} = 1− (1− U tmi (t))I
n
i (tm), (26)

where493

U tmi (t) =
1

1 +
∫ t
tm
die
−

∫ u
tm

bi(s)−di ds du
(27)

is the probability that an individual infected with strain i (i = m,w) present at tm has descendants494

alive at time t. Under the branching assumption, the lines of descent of distinct infected individuals495

are independent, hence the probability that strain i vanishes by time t is the product of the496

probabilities that each line of descent vanishes, (1− U tmi (t))I
n
i (tm).497

In practice, we need two pairs of auxiliary equations to track the probability of extinction of

both the wild type and the mutant

U̇ tmw = −dwU tmw V tm
w (28)

V̇ tm
w = (dw − bw(t))V tm

w − dw(V tm
w )2 (29)

U̇ tmm = −dmU tmm V tm
m (30)

V̇ tm
m = (dm − bm(t))V tm

m − dm(V tm
m )2, (31)

with U tmw (tm) = V tm
w (tm) = U tmm (tm) = V tm

m (tm) = 1. To compute the probability of fixation, we498

first consider the probability of fixation prior to time t, which is derived in exactly the same manner499

as (25).500

U tm(t) =

∫ t

tm

P{Inm(s) > 0} d
dt
P{Inw(s) = 0} ds,
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Using (26) to approximate the probabilities P{Inm(s) > 0} and P{Inw(s) = 0}, we get501

U tm(t) =

∫ t

tm

[1− (1− U tmm (s))I
n
m(tm)][Inw(tm)(−U̇ tmw )(1− U tmw (s))I

n
w(tm)−1]ds.

Differentiating this and taking Inw(tm) = nIw(tm) and Inm(tm) = 1 yields the following auxiliary502

equation for U tm(t):503

U̇ tm = nIw(tm)(δ + αw + γw)U tmw V tm
w

(
1− U tmw

)nIw(tm)−1
U tmm , (32)

with initial condition U tm(tm) = 0. We estimate the fixation probability as P tmfix = U tm(∞) as504

above.505

5.5 Invasion and Fixation with Standing Variation506

We now come back to the probability of adaptation from standing variation at time t = 0, using the507

probability pk that there are k mutants present at time t = 0 and the estimates for the probabilities508

of invasion and fixation P tmm and P tmfix, of a single mutant arriving at time tm, taking tm = 0. Recall509

that pk is negative binomial with success probability R0
m = b0m/dm and r = µm/b

0
m failures. Under510

the branching process approximation, the chain of infections started by each mutation will go511

extinct independently with probability 1− P 0
m. The probability of invasion is then the probability512

that at least one line survives, 1 − (1 − P 0
m)k. Summing this over all possible values of k gives us513

the invasion probability from standing variation,514

∞∑
k=1

pk

(
1− (1− P 0

m)k
)

= 1− p0 −
∞∑
k=1

pk(1− P 0
m)k = 1−

∞∑
k=0

pk(1− P 0
m)k.

Recalling that the probability generating function for the number of mutants at time t = 0 is515

∞∑
k=0

pkz
k =

(
1−R0

m

1−R0
mz

)r
,

which converges provided |z| < 1
R0

m
, we see that the probability of invasion from standard variation516

is 1−
(

1−R0
m

1−R0
m(1−P 0

m)

)r
.517
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Similarly, if there are k mutations at time t = 0, (26) gives us that P{Inm(t) > 0|Im(0) = k} ≈

1 − (1 − U0
m(t))k, so proceeding as above, we find that the probability that the mutant is still

present at time t, assuming that at least one individual was present at time t = 0 is approximately

1−
(

1−R0
m

1−R0
m(1−U0

m(t))

)r
. Substituting this for P{Inm(t) > 0} in (25) and differentiating as above gives

us an auxiliary equation analogous to (32) for U0(t), the probability that the mutant fixes starting

from standing variation:

U̇0 = P{Inm(s) > 0} d
dt
P{Inw(s) = 0}

= nIw(0)(δ + αw + γw)U0
wV

0
w

(
1− U0

w

)nIw(0)−1
(

1−
(

1−R0
m

1−R0
m(1− U0

m)

)r)
.

As previously, we obtain P 0
fix = U̇0(∞) by choosing t sufficiently large that U̇0(t) equilibrates.518

5.6 Stochastic simulations519

We carried out stochastic simulations to check the validity of our results (see Figure S1). We used520

an individual-based simulation program for the Markov process described in Table S1. We start521

the simulation when the system is at its endemic equilibrium before vaccination given by equation522

(11) in section 5.1. Then we introduce a single host infected with the mutant pathogen at a time523

tm after the start of vaccination and we let the simulation run until one of the pathogen variants524

(the wild-type or the mutant) goes extinct. If the wild-type goes extinct first we record this run as525

a “mutant fixation event”. We ran 1000 replicates for each set of parameters and Figure S1 plots526

the proportion of runs that led to mutant fixation. Simulation code is available upon request and527

will be deposited on zenodo after acceptance of the manuscript.528
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Figure 1: Graphical representation of the different evolutionary epidemiology out-
comes after vaccination. The density of the wild-type pathogen is indicated in light blue and the
dynamics of the mutant in orange. Each panel describes the temporal dynamics of the epidemics af-
ter the start of vaccination: (a) eradication of the wild-type pathogen, (b) new endemic equilibrium
of the wild-type population after damped oscillations (with no introduction of the vaccine-adapted
mutant), (c) early extinction of the vaccine-adapted mutant after its introduction by mutation, (d)
invasion of the vaccine-adapted mutant followed by the its extinction, (e) invasion of the vaccine-
adapted mutant and long-term coexistence with the wild type in a new endemic equilibrium after
damped oscillations, (f) invasion and fixation of the vaccine-adapted mutant (extinction of the wild
type). Note that (b), (c) and (d) result to the same endemic equilibrium (wild-type population)
after damped oscillations. The vertical dashed line (black) indicates the start of vaccination. For
simplicity we consider that vaccination starts after the wild-type population has reached an endemic
equilibrium. The horizontal dashed line indicates the “stochastic threshold” above which one may
consider that the deterministic model provides a very good approximation of the dynamics and we
can neglect the effect of demographic stochasticity.
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Figure 2: A schematic representation of the model. Naive and uninfected hosts (SU hosts)
are introduced at a rate λ and are vaccinated with probability p at birth and at rate ν later on.
Immunization induced by the vaccine wanes at rate ω. Uninfected hosts (SU and SV ) die at a rate δ
while infected hosts (IUi and IV i) die at a rate di = δ+αi, where i refers to the virus genotype: the
wild-type (i = w) or the escape mutant (i = m). The rate of infection of naive hosts by the genotype
i is hi = βi(IUi + IV i), where βi is the transmission rate of the genotype i. Vaccination reduces the
force of infection and ei refers to the ability of the genotype i to escape the immunity triggered by
vaccination (we assume em > ew). A host infected by parasite genotype i recovers from the infection
at rate γi and yields lifelong and perfect immunity (R hosts). N = SU + SV +

∑
i(IUi + IV i) + R

is the total host population density.
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Figure 3: Faster vaccine rollout delays the arrival time of the mutant. We plot the
probability density function fm(t) of the arrival time of the mutant for different speeds of vaccination
rollout: ν = 0.1 (top), 0.2 (middle) and 0.3 (bottom). We contrast a scenario where θV = θU
(dashed line), and θV = 10 × θU (full line). Other parameter values: θU = 1, λ = 0.01, δ = 0.01,
γ = 1, βw = 20, αw = 1, ew = 0.03, ω = 0.05, p = 0.1. For these parameter values the critical
rate of vaccination νc above which the wild-type pathogen is driven to extinction is νc ≈ 0.54 (see
equation (5)).
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Figure 4: Probability of invasion of the vaccine-escape mutant increases with tm. We
plot the probability invasion P tmm of a slow (green) and a fast (red) vaccine-escape mutant for
different speeds of vaccination rollout: ν = 0.1 (top), 0.2 (middle) and 0.3 (bottom). The slow
mutant: em = 1, βm = 10, αm = 1. The fast mutant: em = 1, βm = 30, αm = 5.02. The probability
of invasion P ?m in the limit tm → ∞ (see equation (9)) is indicated with the dashed black line.
Other parameter values: λ = 0.01, δ = 0.01, γ = 1, βw = 20, αw = 1, ew = 0.03, ω = 0.05, p = 0.1.
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Figure 5: Probability of fixation of the vaccine-escape mutant may be low when tm is
large. We plot the probability of fixation of a slow (green) and a fast (red) vaccine-escape mutant
for different speeds of vaccination rollout: ν = 0.1 (top), 0.2 (middle) and 0.3 (bottom). The slow
mutant: em = 1, βm = 10, αm = 1. The fast mutant: em = 1, βm = 30, αm = 5.02. For comparison
with Figure 4 we plot the probability of invasion P tmm with dashed colored lines and its asymptotic
value P ?m with a dashed black line. Other parameter values: λ = 0.01, δ = 0.01, γ = 1, βw = 20,
αw = 1, ew = 0.03, ω = 0.05, p = 0.1, n = 108.
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Figure 6: Probability of adaptation and the speed of vaccination rollout. We plot the
probability of adaptation Atm of a vaccine-escape mutant against the speed of vaccination rollout
for different values of time t (black line). The dashed line indicates the probability of adaptation
when we impose periodic fluctuations in c(t) which measures the intensity of Non-Pharmaceutical
Interventions (NPIs) that reduce the transmission rate of all pathogens by 1− c(t). Here we use a
square wave function for c(t) that fluctuates between 0.2 and 0 with a period T = 200. These NPIs
affect both the flux of mutations (Figure S3) and the probability of invasion (Figure S4). The
light gray area on the right-hand-side indicates the speed above which the wild-type pathogen is
expected to be driven to extinction (ν > νc). In the absence of NPIs the critical rate of vaccination
νc above which the wild-type pathogen is driven to extinction is νc ≈ 0.77 (see equation (5)).
Parameter values: λ = 0.01, δ = 0.01, γ = 1, βw = 20, αw = 1, ew = 0.03, βm = 10, αm = 1,
em = 1, ω = 0.05, p = 0, θV = θU = 0.1.
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Figure S1: Numerical computation of the probability of fixation agrees well with
individual-based stochastic simulations. In (A) we consider a scenario where the vaccine-
escape mutant is a slow strain (in green: em = 1, βm = 10, αm = 1) and in (B) the vaccine-
escape mutant is a fast strain (in red: em = 1, βm = 30, αm = 5.02). We plot the probability of
invasion (dashed black line) and the probability of fixation computed numerically (full line) and
obtained from stochastic simulations (dots). The intensity of the colors (from light to dark) indicate
increasing values of the system size : n = 105 (light), 106 (intermediate) and 107 (dark). Other
parameter values: λ = 0.01, δ = 0.01, γ = 1, βw = 20, αw = 1, ew = 0, ω = 0, ν = 0, p = 0.5.
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Figure S2: Fluctuations of the per-capita growth rate of the vaccine-escape mutant
rm for different introduction times tm. We plot the per-capita growth rate of the vaccine-
escape mutant rm of a slow (green) and a fast (red) vaccine-escape mutant for different speeds of
vaccination rollout: ν = 0.1 (top), 0.2 (middle) and 0.3 (bottom). We also vary the introduction
time tm: tm = 0 (left column), 20 (middle column) and 50 (right column). The slow mutant:
em = 1, βm = 10, αm = 1. The fast mutant: em = 1, βm = 30, αm = 5.02. Other parameter
values: λ = 0.01, δ = 0.01, γ = 1, βw = 20, αw = 1, ew = 0.03, ω = 0.05, p = 0.1.
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Figure S3: The speed of vaccination rollout affects the probability of introduction of
a vaccine-adapted variant by mutation (with or without NPI). We plot the probability
that the first vaccine-escape variant is introduced by mutation before t = 1000:

∫ 1000
0 fm(s) ds. We

consider three different values of mutation θV : θV = 0.05 (black), θV = 0.5 (orange), θV = 5 (red).
The gray area indicates the parameter region where vaccination leads to pathogen eradication
(i.e., ν > νc). The dashed lines correspond to a scenario where we impose periodic fluctuations
in c(t), which measures the intensity of Non-Pharmaceutical Interventions (NPIs) that reduce the
transmission rate of all pathogens by a fraction 1 − c(t). Here we use a square wave function for
c(t) that fluctuates between 0.2 and 0 with a period T = 200. Other parameter values: θU = 0.05,
λ = 0.01, δ = 0.01, γ = 1, βw = 20, αw = 1, ω = 0.05, ew = 0.03, p = 0.1. For these parameters
values νc ≈ 0.75.
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Figure S4: Probability of invasion of the vaccine-escape mutant increases with tm with
NPI. As in Figure 4 we plot the probability of invasion P tmm of a slow (green) and a fast (red)
vaccine-escape mutant for different speeds of vaccination rollout: ν = 0.1 (top), 0.2 (middle) and
0.3 (bottom). Here we use a square wave function for c(t) that fluctuates between 0.2 (light gray
shading) and 0 (no shading) with a period T = 100.The slow mutant: em = 1, βm = 10, αm = 1.
The fast mutant: em = 1, βm = 30, αm = 5.02. The probability of invasion P ?m in the limit tm →∞
(see equation (9)) is indicated with the dashed black line. Other parameter values: λ = 0.01,
δ = 0.01, γ = 1, βw = 20, αw = 1, ew = 0.03, ω = 0.05, p = 0.1.
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