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ABSTRACT

Automatic segmentation of vestibular schwannoma (VS) from routine clinical MRI has potential to
improve clinical workflow, facilitate treatment decisions, and assist patient management. Previous
work demonstrated reliable automatic segmentation performance on datasets of standardised
MRI images acquired for stereotactic surgery planning. However, diagnostic clinical datasets
are generally more diverse and pose a larger challenge to automatic segmentation algorithms,
especially when post-operative images are included. In this work, we show for the first time that
automatic segmentation of VS on routine MRI datasets is also possible with high accuracy.

We acquired and publicly release a curated multi-centre routine clinical (MC-RC) dataset of
160 patients with a single sporadic VS. For each patient up to three longitudinal MRI exams
with contrast-enhanced T1-weighted (ceT1w) (n=124) and T2-weighted (T2w) (n=363) images
were included and the VS manually annotated. Segmentations were produced and verified
in an iterative process: 1) initial segmentations by a specialized company; 2) review by one
of three trained radiologists; and 3) validation by an expert team. Inter- and intra-observer
reliability experiments were performed on a subset of the dataset. A state-of-the-art deep learning
framework was used to train segmentation models for VS. Model performance was evaluated on
a MC-RC hold-out testing set, another public VS datasets, and a partially public dataset.

The generalizability and robustness of the VS deep learning segmentation models increased
significantly when trained on the MC-RC dataset. Dice similarity coefficients (DSC) achieved
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by our model are comparable to those achieved by trained radiologists in the inter-observer
experiment. On the MC-RC testing set, median DSCs were 86.2(9.5) for ceT1w, 89.4(7.0) for T2w
and 86.4(8.6) for combined ceT1w+T2w input images. On another public dataset acquired for
Gamma Knife stereotactic radiosurgery our model achieved median DSCs of 95.3(2.9), 92.8(3.8),
and 95.5(3.3), respectively. In contrast, models trained on the Gamma Knife dataset did not
generalise well as illustrated by significant underperformance on the MC-RC routine MRI dataset,
highlighting the importance of data variability in the development of robust VS segmentation
models.

The MC-RC dataset and all trained deep learning models were made available online.

Keywords: Vestibular Schwannoma, Segmentation, Deep Learning, Convolutional Neural Network, Volumetry, Surveillance MRI

1 INTRODUCTION

Vestibular Schwannoma (VS) is a slow growing, benign tumour that develops in the internal auditory canal.
It originates from an abnormal multiplication of Schwann cells within the insulating myelin sheath of
the vestibulo-cochlear nerve. It typically presents with hearing loss but also frequently causes tinnitus
and balance disturbance. Larger tumours may also cause headaches, cranial neuropathies, ataxia, and
hydrocephalus. It is estimated that 1 in 1000 people will be diagnosed with a VS in their lifetime (Marinelli
et al., 2018); however, improvements in magnetic resonance imaging (MRI) that facilitate the detection of
smaller VS have led to an increased incidence of VS in recent years (Stangerup et al., 2006). Treatment
options include conservative management, radiosurgery, radiotherapy, and microsurgery for tumours that
are growing or exhibit mass effect (Carlson et al., 2015).

Previous studies have demonstrated that a volumetric measurement is more accurate than linear
measurements and smaller interval changes in VS size may be detected (Varughese et al., 2012; MacKeith
et al., 2018). Implementing routine volumetric measurements would enable clinicians to more reliably
demonstrate tumour growth and potentially offer earlier interventions. However, available tools make
calculating tumour volume assessment a labour-intensive process, prone to variability and subjectivity.
Consequently, volumetric methods of measuring tumour size have not been widely implemented in routine
clinical practice (MacKeith et al., 2018).

To reduce the workload for clinical staff and free resources, deep learning models have recently been
developed to automate this time-consuming and repetitive task. Shapey et al. (2019) and Wang et al. (2019)
previously presented a deep learning framework for automatic segmentation of VS that achieved high
accuracy on a large publicly available dataset of MR images acquired for Gamma Knife (GK) stereotactic
radiosurgery. According to Shapey et al. (2019), “the main limitation of [their] study is [. . . ] that it was
developed using a uniform dataset and consequently may not immediately perform as well on images
obtained with different scan parameters.”

Such scan parameters include the type of pulse sequence and hardware-specific parameters relating to the
MRI scanner and radio-frequency coil such as the magnetic field strength and field inhomogeneities as
well as the use and type of contrast agent. These parameters influence the degree of T1-weighted (T1w)
and T2-weighted (T2w) contrast, determine the image resolution and field-of-view (FOV) and regulate the
image noise and other acquisition artefacts. As there are no official national guidelines for MRI acquisition
protocols for VS in the UK imaging centres choose and optimize pulse sequences independently from each
other so that images from different centres are rarely equivalent with scan parameters varying widely.
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Although deep-learning models have pushed performance in medical image segmentation to new heights,
they are particularly sensitive to shifts between the training and testing data (Van Opbroek et al., 2014;
Donahue et al., 2014). Thus, a model that is trained on data from a single scanner with a fixed set
of settings might perform well on images acquired with the same scanner/settings but fail on images
acquired differently. Nevertheless, 3D-segmentation models for VS published to date rely on standardized
radiosurgery treatment planning data from individual institutions with minimal differences in acquisition
parameters (Shapey et al., 2019; Wang et al., 2019; Shapey et al., 2021c; Lee et al., 2021; Dorent et al.,
2023). Previous studies have focused on retrospectively collected radiosurgery datasets because they often
contain high quality verified manual segmentations required for treatment planning and dose calculation.
However, standardized acquisition protocols mean that these datasets lack variability in terms of their
acquisition parameters.

Furthermore, tumour characteristics in such datasets are biased towards tumours which are suitable for
radiosurgery whereas tumours suitable for conservative management or microsurgery are under-represented.
Post-operative cases are also typically not included in radiosurgery datasets although they account for a
significant fraction of VS images in routine clinical practice as patients undergo regular follow-up scans
to monitor tumour residuals and recurrence. After surgery, a disrupted anatomy in the cerebellopontine
angle (CPA), accumulation of cerebrospinal fluid in the former tumour cavity, and the usually small size of
residual tumour tissue can make the segmentation of post-operative VS particularly challenging. Moreover,
these structural alterations vary depending on the surgical approach and the size of the resected volume
which introduces significant variability in post-operative VS presentation on medical images. Consequently,
deep learning models trained on standardized pre-operative datasets are unlikely to perform robustly in a
general clinical setting.

In this work, we present for the first time deep learning models for automatic 3D-segmentation that
perform well on routine clinical scans acquired for diagnosis and surveillance and which generalize to a
wide range of scan parameters. We acquired a large multi-centre routine clinical (MC-RC) longitudinal
dataset with images from 10 medical centres and devised a multi-stage, iterative annotation pipeline to
generate high quality manual ground truth segmentations for all 3D images. The new dataset was used to
develop segmentation models and assess their performance on a hold out subset of this MC-RC dataset and
on 2 public VS datasets. Results show that the models perform robustly on most images and generalize to
independent datasets. In particular, on independent datasets, they outperform earlier models trained on
images that were acquired for Gamma Knife (GK) stereotactic radiosurgery when evaluated on unseen
data.

In clinical practice, the models can be applied to monitor tumour size, post-operative residuals, and
recurrence more accurately and efficiently, thereby facilitating the VS surveillance and management of
patients. The MC-RC dataset will help to facilitate further research into automatic methods for VS diagnosis
and treatment and can serve as a benchmark dataset for VS segmentation methods. The dataset and all
trained deep learning models were made available online.

2 MATERIALS AND METHODS

2.1 Ethics statement

This study was approved by the NHS Health Research Authority and Research Ethics Committee
(18/LO/0532). Because patients were selected retrospectively and the MR images were completely
anonymised before analysis, no informed consent was required for the study.
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2.2 Multi-Centre Routine Clinical (MC-RC) dataset

Our MC-RC dataset including all manual segmentations is available for download on The Cancer Imaging
Archive (TCIA) (Kujawa et al., 2023b).

2.2.1 Study population

The dataset contains longitudinal MRI scans with a unilateral sporadic VS from 10 medical sites in the
United Kingdom. The data acquired at these medical sites was accessible and collected at the skull base
clinic at the National Hospital of Neurology and Neurosurgery (London, UK) where all included patients
were consecutively seen over an approximate period from April 2012–May 2014. All adult patients aged
18 years and above with a single unilateral VS were eligible for inclusion in the study, including patients
who had previously undergone previous surgical or radiation treatment. Patients with Neurofibromatosis
type 2 (NF2) were excluded. All patients had a minimum 5-year surveillance period.

2.2.2 Uncurated dataset

Imaging data from 168 patients with dates of imaging ranging between February 2006 and September
2019 were screened for the study. The median number of time points at which each patient underwent
an MRI examination was 4 (interquartile range (IQR) 3-7), and the median number of MRI sequences
acquired per session was 7 (IQR 4-9). The complete uncurated image dataset comprised MRI sessions
from 868 time points with 5805 MRI scans.

2.2.3 Automatic image selection

To select the images most relevant for VS delineation and volumetry an automatic selection pipeline
illustrated in Figure 1 was employed. For each patient images from at most 3 time points were included in

Figure 1. Pipeline for data curation, iterative generation of manual vestibular schwannoma ground truth
segmentations, and review of the annotated multi-centre routine clinical (MC-RC) dataset.

the final dataset to limit the number of manual segmentations required. If more than 3 time points were
available the first, last, and the time point closest to the midpoint were included while data from all other
time points were discarded. Consequently, initial diagnostic as well as post-operative images were included
in the final dataset. Images with a slice thickness of more than 3.9 mm were excluded due to the decreased
sensitivity to small lesions and partial volume effects, which make accurate VS delineation and volumetric
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analysis difficult. Finally, for each of the remaining time points, image series were selected subject to the
following selection rules which were designed to automatically select the most suitable MRI scans for
manual segmentation.

1. If a high-resolution contrast enhanced T1 (ceT1w) image was available the image was selected. High-
resolution was defined as a voxel spacing of less than 1 mm in the three directions of the voxel grid.
(19 time points)

2. If a low-resolution (defined as not high-resolution) ceT1w image and a high-resolution T2w image
(hrT2w) were available, both were selected. The low-resolution ceT1w image was selected with
preference for axial orientation. (60 time points)

3. If a low-resolution ceT1w image was available but no hrT2w image, the low-resolution ceT1w image
was selected. (45 time points)

4. If no ceT1w image was available a T2w image was selected with preference for high resolution. (303
time points)

Finally, for cases where multiple images of the same modality passed the selection process, the image with
the smallest average voxel spacing was chosen.

2.2.4 Exclusion of imaging data

Subsequently, during the manual annotation process, 59 time points were excluded either because parts
of the tumour were outside the FOV (n=39), because a different tumour type (meningioma, trigeminal
schwannoma) was identified (n=4) or because severe imaging artefacts prevented accurate VS delineation
(n=4). Post-operative images in which no residual tumour could be identified (n=12) were excluded from
the MC-RC training dataset, because the corresponding ground truth segmentations without foreground
pixels complicate the model training and evaluation in terms of Dice Similarity Coefficient (DSC). However,
model performance on these images was considered in a separate evaluation.

2.2.5 Demographic data

The final MC-RC dataset after the above exclusion and curation included 160 patients (males/females
72:88; median age 58 years, IQR 49–67 years). 11 patients had imaging data from a single time point, 31
patients from two time points, and 118 patients from three time points, resulting in a total of 427 time points
and 487 3D images. The average time between the first two time points was 2.4±1.6 years and between the
first and third time point 4.9±2.7 years. With respect to the image modality, 64 time points included only a
ceT1w image, 303 time points only a T2w image, and 60 time points included both. The ceT1w images
comprised 19 high-resolution and 105 low-resolution images, while the T2w images comprised 349 high
and 14 low-resolution images.

2.2.6 Scanner/acquisition settings

Out of 427 MRI exams, 205 were acquired on a SIEMENS, 111 on a Philips, 110 on a General Electrics,
and 1 on a Hitachi MRI scanner. The magnetic field strength was 1.5T for 314 exams, 3.0T for 78 exams,
1.0 T for 34 exams and 1.16T for 1 exam. Figure 2 shows the distributions of slice thickness and voxel
volume and the intensity distribution of the dataset in comparison to a Gamma-Knife dataset acquired for
stereotactic radiosurgery (described in Section 2.3).
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Figure 2. Comparison of multi-centre clinical (MC-RC) and single-centre Gamma Knife (SC-GK) datasets.
Distributions of (A) slice thickness and (B) image resolution in terms of voxel volume across all ceT1w and
T2w images. Parameter values of the MC-RC dataset vary significantly, while parameters of the SC-GK
dataset are fixed to a small range of values. (C) Comparison of the normalized voxel intensity distributions
of the whole image and the voxels belonging to the vestibular schwannoma (VS). The standardized
acquisition protocol of the SC-GK dataset results in similar intensity distributions for each scan and hence
more pronounced peaks in the average intensity distribution, while the increased variability in the MC-RC
dataset leads to a wider spread of intensity values.

2.2.7 Ground truth segmentations

A multi-stage manual annotation pipeline illustrated in Figure 1 was designed to obtain high quality
ground truth segmentations. At the centre of the pipeline is an iterative process in which annotations
were gradually improved and reviewed at each iteration. Initial VS segmentations were produced by
a technician at a company specialized in providing brain measurement services based on MRI scans
(Neuromorphometrics, Somerville, Massachusetts, USA) according to our specified guidelines. Focus
was placed on the accuracy of segmentation edges, the brain/tumour interface, tumour within the internal
acoustic meatus, the exclusion of obvious neurovascular structures from the segmentation, and for post-
operative images the exclusion of scar tissue and fat. Capping cysts were included in the segmentation. If
a time point included both ceT1w and T2w images, the segmentation was performed on the voxel grid
of the higher resolution image and under additional visual assessment of the other image. Subsequently,
each segmentation was reviewed by one of three trained radiologists (MI, AV, EM) who either accepted the
segmentation or provided suggestions for improvement in the form of written comments. Alternatively,
reviewers had options to exclude scans that did not fulfil inclusion criteria or refer ambiguous cases to an
expert team consisting of two consultant neuroradiologists (SC + ST) and a consultant neurosurgeon (JS).
During each iteration, the specialist technician improved segmentations based on the reviewer feedback
until each segmentation was accepted or the corresponding image excluded from the dataset. Finally,
a subset of segmentations that had either been flagged by the reviewers as ambiguous or had not been
accepted after 5 iterations was reviewed and jointly annotated by the expert team. All segmentations were
created, edited, and reviewed using the segmentation tool ITK-SNAP (Yushkevich et al., 2006).

2.2.8 Inter- and intra-observer reliability

Inter- and intra-observer reliability was assessed on a subset of 10 ceT1w (5 high and 5 low resolution)
and 41 T2w images (39 high and 2 low resolution). For intra-observer reliability assessment, 2 sets of
segmentations were provided by the specialist technician at two time points, approximately 5 months apart.
The first set of segmentations was reviewed according to the described iterative process, while the second
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set produced at the end of the learning curve for the technician was not reviewed. Thus, the measured
intra-observer reliability reflects the annotators capability to recreate the first set of validated annotations.

Inter-observer reliability was based on 4 annotators. The first set of segmentations was provided by the
specialist technician, while the other 3 sets were generated independently by the three reviewers (trained
radiologists). For each pair of annotators and for both modalities, the mean DSC over all images in the
subset was calculated and the averaged results reported.

2.3 Single-Centre Gamma Knife (SC-GK) dataset

This dataset was chosen as an example of a GK dataset acquired on a single scanner with little variation
in sequence parameters. It enables a comparison of models trained on this dataset with models trained on
our MC-RC dataset. The SC-GK dataset is a publicly available collection (Shapey et al., 2021c; Clark et al.,
2013) of 484 labelled MRI image pairs (ceT1w and T2w) of 242 consecutive patients with a unilateral VS
undergoing GK Stereotactic Radiosurgery. 51 patients had previously undergone surgery. Images were
acquired with a 1.5T MRI scanner (Avanto Siemens Healthineers). For further details we refer to the dataset
publication (Shapey et al., 2021c,b).

2.3.1 Patient overlap with SC-GK dataset

While 58 patients whose MRI are included in the MC-RC dataset also have MRIs included in the SC-GK
dataset, the time points and MRI series were mostly different. However, 8 series are included in both
datasets and were considered separately when creating training and testing sets (Section 2.5.1). A record of
overlapping patients and series is included in the MC-RC dataset (Kujawa et al., 2023b).

2.4 Tilburg Single-Center Gamma Knife (T-SC-GK) dataset

This dataset served as a fully independent testing set. While the previous two datasets were acquired
at centres in the UK, this dataset was acquired in the Netherlands, ensuring no overlap of patients or
acquisition settings/protocols. The T-SC-GK dataset was released as part of the cross-modality domain
adaptation (crossMoDA) VS segmentation challenge (Dorent et al., 2023). In the present study, the
challenge’s ceT1w open-access training data (n=105) (Wijethilake, 2023) was adopted as a testing set for
the assessment of the ceT1w based models. The challenge’s T2w private validation data was used as a
testing set for the T2w (n=32) based models. Images were acquired on a Philips Ingenia 1.5T scanner using
Philips quadrature head coil. Acquisition of ceT1w images was performed with a 3D-FFE sequence with
in-plane resolution of 0.8×0.8mm, in-plane matrix of 256×256, and slice thickness of 1.5 mm (TR=25ms,
TE=1.82ms). Acquisition of T2w images was performed with a 3D-TSE sequence with in-plane resolution
of 0.4x0.4mm, in-plane matrix of 512×512, and slice thickness of 1.0 mm (TR=2700ms, TE=160ms,
ETL=50).

2.5 Model training and testing

2.5.1 Models

Each dataset’s time points were randomly split into two subsets at a ratio of 80:20 for training and testing
while assuring no patient overlap between sets. Furthermore, series overlapping between MC-RC and
SC-GK datasets were placed in the respective training sets. In total, 9 deep learning models were trained
and tested:

• 3 models were trained on the MC-RC training set, one for each input modality/modality set
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• 3 models were trained on the SC-GK training set, one for each input modality/modality set
• 3 models were trained on a combination of both training sets (MC-RC + SC-GK) while sampling

training cases from either set with equal probability, one for each input modality/modality set

The input modalities/modality sets were ceT1w, T2w, or ceT1w+T2w.

2.5.2 Training

All models were trained and evaluated with nnU-Net (v2), a framework for biomedical image
segmentation that yields state-of-the-art results for a wide range of public datasets used in international
biomedical segmentation competitions (Isensee et al., 2021). Based on the training set, the framework
automatically determines the architecture of a U-Net, a well-established type of Convolutional Neural
Network (CNN) in the field of medical image segmentation (Ronneberger et al., 2015).

Models were trained with 2D and 3D U-Net configurations. A five-fold cross-validation strategy was
employed, resulting in 5 sets of network weights per configuration. To this purpose the training set was
split into 5 non-overlapping subsets for hyperparameter optimization. The 5 complement sets served as
the network input during training. Inference was performed either with only the 3D U-Net (ensemble of 5
networks) or with an ensemble of 2D and 3D U-Nets. The best model configuration was determined by
evaluating all configurations on the hyperparameter optimization sets. Model ensembling was performed
by averaging the softmax outputs of all networks prior to generating the segmentation map via an argmax
operation. The segmentation networks were trained for 1000 epochs where one epoch is defined as an
iteration over 250 mini-batches. The mini-batch size was 2. The optimizer was stochastic gradient descent
with Nesterov momentum (µ = 0.99). The initial learning rate of 0.01 was decayed during training
according to the “poly” learning rate policy (Chen et al., 2017). The loss function was the sum of cross-
entropy and Dice loss (Drozdzal et al., 2016). For training scripts and the full list of hyperparameters we
refer to the nnU-Net source code (https://github.com/MIC-DKFZ/nnUNet) and to the publicly
available model metadata (Kujawa et al., 2023a).

2.5.3 Evaluation

Each model’s performance was evaluated on all testing sets of matching modality. In total, 8 testing sets
were considered:

• 3 testing sets constructed from the MC-RC dataset, one for each input modality/modality set
• 3 testing sets constructed from the SC-GK dataset, one for each input modality/modality set
• 2 testing sets constructed from the T-SC-GK dataset, one for ceT1w and one for T2w input. A testing

set for combined ceT1w and T2w input was not available because the crossMoDA challenged provides
unpaired images.

The sample sizes for each experiment are shown in Table 1. The trained segmentation models, example
input images, and usage instructions were made available online (Kujawa et al., 2023a).

2.5.3.1 Evaluation metrics

The main metric applied to assess and compare the models’ segmentation performances was the
commonly reported Dice similarity coefficient which is the recommended evaluation metric for semantic
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segmentation (Maier-Hein et al., 2022). It is defined as:

DSC =
2
∑

i SiGi∑
i Si +

∑
iGi

(1)

where Si and Gi represent the binary segmentation masks of model prediction and ground truth
segmentation, respectively. The DSC ranges from 0 (no overlap between model prediction and ground
truth) to 1 (perfect overlap).

Additionally, we report the following metrics: average symmetric surface distance (ASSD), undirected
Hausdorff distance (HD), relative absolute volume error (RVE), and distance between the centres of mass
(COM).

2.6 Post-operative cases without residual tumour

Post-operative cases tend to be the most difficult to segment since the residual tumour is often small and
obscured by scar tissue, fat, and an accumulation of CSF. In cases where no residual tumour is present the
DSC is less meaningful. For example, the classification of a single voxel (or more) as a voxel belonging
to the tumour would lead to a DSC of 0. Moreover, the other metrics described above are not defined for
cases without residual tumour. Therefore, we examined the performance of our model on these cases in a
separate evaluation by reporting whether residual tumour was predicted (false positive) and reporting the
corresponding volume of falsely predicted tumour.

3 RESULTS

Example segmentations generated by the deep learning models trained on the different input modalities of
the MC-RC dataset are shown in Figure 3. The selected example cases have DSCs close to the median
DSCs achieved on the respective testing sets. The models correctly predict most of the tumour volume
and deviate from the ground truth only in regions of low image contrast between tumour and surrounding
tissues. Especially on T2w images, tumour boundaries are less pronounced and can be ambiguous even
to human annotators as seen in the jagged through-plane contour lines of the ground truth in Figure 3b.
Notably, the models avoid inconsistencies between adjacent slices in all spatial directions and render
smoother tumour boundaries. Reduced performance on T2w images is consistent with the measured inter-
and intra-observer reliability which was significantly higher for ceT1w images. The average DSC between
two annotators was 88.1±3.4% (minimum: 87.5±4.3%, maximum: 89.1±3.4%) when the segmentation
was performed on ceT1w images and 84.5±7.8% (minimum: 82.5±13.9%, maximum: 85.8±7.9%) when
performed on T2w. Similarly, intra-observer reliability was higher for ceT1w (87.8±4.4%) than for T2w
(84.4±11.5%).

Mean DSCs achieved by all models on MC-RC, SC-GK, and T-SC-GK testing sets are presented in
Table 1. Models which were trained on our MC-RC training sets performed well on all testing sets. The
model performance in terms of average DSCs was comparable to that achieved by human annotators in our
inter- and intra-observer experiments. In contrast, the models trained on the SC-GK training sets performed
well only on the SC-GK and T-SC-GK testing sets but poorly on the MC-RC testing sets. This highlights
that the variability of the MC-RC training set is key to obtaining robust segmentation results in a clinical
setting. The combined model (SC-GK+MC-RC) performs best on most testing sets and results in the
smallest number of failures. Its capability for generalization, can further be assessed on the independent
T-SC-GK testing sets on which it outperformed the other models.
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Figure 3. Example segmentation results generated with the 3 models trained on the multi-centre clinical
(MC-RC) training sets. Predictions in (A) were obtained with the ceT1w model, predictions in (B) with the
T2w model and predictions in (C) with the ceT1w+T2w model. Each example shows axial, coronal, and
sagittal views of the full MRI image and magnified images of the tumour region. The magnified region
is indicated by a red bounding box. Dice similarity coefficients (DSC) were 86.3%, 89.0%, and 87.1%
respectively, which is close to the median DSC achieved by each model on the MC-RC testing set.
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Table 1. Dice similarity coefficients (DSC) achieved by all models trained on the multi-centre routine
clinical (MC-RC), single-centre Gamma Knife (SC-GK), and combined (MC-RC+SC-GK) training sets
and evaluated on the MC-RC, SC-GK, and Tilburg single-centre Gamma Knife (T-SC-GK) testing sets.
The DSC values correspond to the mean DSC over all cases in the testing sets, the errors correspond to the
standard deviation. A visual representation of these results is shown in Figure 4. Moreover, the split sample
sizes for training sets (including hyperparameter optimization cases) and testing sets for each experiment
are shown.
testing dataset modality training dataset ntrain ntest DSC[%]

MC-RC

ceT1w
MC-RC 52

12
86.9 ± 5.9

SC-GK 196 65.5 ± 39.8
MC-RC+SC-GK 248 90.4 ± 3.6

T2w
MC-RC 291

72
85.0 ± 15.6

SC-GK 196 16.5 ± 31.9
MC-RC+SC-GK 248 85.2 ± 14.1

ceT1w
+

T2w

MC-RC 48
12

75.8 ± 27.0
SC-GK 196 21.8 ± 30.7
MC-RC+SC-GK 248 79.7 ± 23.7

SC-GK

ceT1w
MC-RC 52

46
90.4 ± 6.3

SC-GK 196 95.2 ± 2.2
MC-RC+SC-GK 248 94.8 ± 2.1

T2w
MC-RC 291

46
87.5 ± 8.0

SC-GK 196 92.2 ± 3.4
MC-RC+SC-GK 248 92.0 ± 3.4

ceT1w
+

T2w

MC-RC 48
46

90.8 ± 3.7
SC-GK 196 95.2 ± 2.2
MC-RC+SC-GK 248 95.2 ± 2.0

T-SC-GK

ceT1w
MC-RC 52

105
89.9 ± 11.6

SC-GK 196 88.9 ± 16.2
MC-RC+SC-GK 248 91.5 ± 8.1

T2w
MC-RC 291

32
85.6 ± 8.9

SC-GK 196 76.2 ± 22.8
MC-RC+SC-GK 248 87.2 ± 6.5

The spread of DSCs is shown in the box and whisker plots of Figure 4. Performance on ceT1w images
was generally slightly better than on T2w. The MC-RC ceT1w+T2w model with combined input modalities
performed worse on the corresponding MC-RC testing set than the MC-RC models for separate input
modalities. This is due to the relatively small number of training cases available for the ceT1w+T2w
model (n=48) and the presence of large cystic components in the testing set which the model failed to
include in the segmentation as illustrated in Figure 5. Although the models trained on the MC-RC training
sets generated some outliers there was always a partial overlap between ground truth and segmentation
(DSC > 0) so that no tumour was missed completely. Failure modes of each MC-RC model with examples
of the worst cases are addressed in the next section. In contrast, the number of outliers and complete misses
(DSC=0) by the SC-GK models on the other testing sets (MC-RC and T-SC-GK) was significantly higher.
Median DSCs and other commonly reported metrics for segmentation tasks are reported in Table 2.

11

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 9, 2024. ; https://doi.org/10.1101/2022.08.01.22278193doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278193
http://creativecommons.org/licenses/by/4.0/


Kujawa et al. Automatic Segmentation of Vestibular Schwannoma

Figure 4. Dice similarity coefficients achieved by deep learning models on multi-centre clinical (MC-
RC) and single-centre Gamma Knife (SC-GK) datasets. The x-axis indicates on which testing set the
models were evaluated. The centre vertical line indicates the median and the green triangle indicates the
mean. The boxes extend from the lower quartile Q1 to the upper quartile Q3, the whiskers extend from
Q1 − 1.5(Q3 −Q1) to Q3 + 1.5(Q3 −Q1). Data beyond the whiskers are considered outliers and shown
as black diamonds.

Post-operative cases without residual tumour were assessed separately for the MC-RC models. For ceT1w
input, all 7 cases were correctly labelled without residual tumour. For ceT1w+T2w input, a residual of
24 mm3 was predicted in 1 of 4 cases. Most false positives occurred for T2w input where 6 out of 9
predictions were in agreement with the ground truth, while the other 3 predictions suggested residuals of 1,
3, and 23 mm3, respectively.

4 DISCUSSION

4.1 Summary of contributions

For an automatic VS segmentation model to be useful in a routine clinical setting, accurate and reliable
performance irrespective of acquisition parameters and tumour presentation is essential. In this work, we
developed the first model for automatic VS segmentation whose application is not limited to MRI images
from a specific scanner and acquisition protocol. Rather, by collecting a large multi-centre dataset and
providing labour-intensive high-quality annotations, it was possible to train and evaluate a model that
generalizes well under a wide range of settings and for all time points encountered in clinical routine,
including initial diagnostic scans as well as scans of post-operative tumour residuals.

The generated automatic segmentations had average DSCs comparable to those of human annotators
as measured by inter- and intra-observer experiments and performed robustly on independent datasets.
Therefore, this work represents a key step toward the incorporation of automated segmentation algorithms
in the clinical workflow and management of VS patients.

For example, based on the model segmentation, automatic surveillance of the patient’s tumour growth
through longitudinal scans could be performed (Shapey et al., 2021a). Currently, in routine clinical practice,
tumour size is usually assessed by determination of the maximum extrameatal linear tumour dimension,
although several studies have shown that tumour volume is a more reliable and accurate metric to measure
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Figure 5. Comparison of the worst model predictions with the manual segmentation ground truth for each
input modality. The models were trained on the multi-centre routine clinical (MC-RC) dataset using ceT1w
images (A), T2w images (B), or their combination ceT1w+T2w (C). Each example shows an axial slice of
the full MRI image and magnified images of the tumour region. The magnified region is indicated by a red
bounding box. Dice similarity coefficients were 73.6%, 1.9%, and 4.7% respectively.
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Table 2. Additional commonly reported segmentation metrics (median and interquartile range). The values
represent the median and interquartile ranges over all cases in the testing sets. The metrics are Dice
similarity coefficient (DSC), average symmetric surface distance (ASSD), relative absolute volume error
(RVE), undirected Hausdorff distance (HD), and distance between the centres of mass (COM). A ASSD,
HD or COM value of ∞ (infinity) for a single case indicates that the model did not predict any VS in the
image. A median value of ∞ shows that this occured in over half of the testing cases. In this case the metric
is not defined.
testing
dataset

modality
training
dataset

DSC
[%]

ASSD
[mm]

RVE
[%]

HD
[mm]

COM
[mm]

MC-RC

ceT1w
MC-RC 86.2 (9.5) 0.3 (0.3) 19.0 (11.6) 2.6 (1.8) 0.4 (0.4)
SC-GK 83.9 (30.3) 0.5 (∞) 14.7 (38.6) 5.6 (∞) 0.5 (∞)
MC-RC+SC-GK 91.0 (6.1) 0.2 (0.1) 8.4 (7.3) 1.7 (1.0) 0.2 (0.2)

T2w
MC-RC 89.4 (7.0) 0.3 (0.1) 6.6 (10.6) 2.3 (1.6) 0.4 (0.4)
SC-GK 0.0 (3.4) ∞ (∞) 100.0 (7.8) ∞ (∞) ∞ (∞)
MC-RC+SC-GK 88.6 (8.2) 0.3 (0.1) 8.8 (11.4) 2.6 (1.8) 0.4 (0.3)

ceT1w
+

T2w

MC-RC 86.4 (8.6) 0.5 (0.4) 12.7 (16.9) 3.2 (2.1) 0.8 (0.4)
SC-GK 0.0 (41.6) ∞ (∞) 100.0 (46.0) ∞ (∞) ∞ (∞)
MC-RC+SC-GK 86.4 (4.6) 0.4 (0.3) 10.1 (9.9) 2.2 (2.1) 0.7 (0.5)

SC-GK

ceT1w
MC-RC 92.2 (3.8) 0.2 (0.2) 11.2 (7.0) 2.1 (1.5) 0.2 (0.2)
SC-GK 95.3 (2.9) 0.1 (0.1) 4.1 (4.5) 1.5 (0.4) 0.2 (0.2)
MC-RC+SC-GK 94.8 (2.8) 0.1 (0.1) 6.0 (7.2) 1.7 (0.9) 0.2 (0.2)

T2w
MC-RC 89.4 (6.1) 0.4 (0.4) 9.7 (13.5) 2.6 (3.8) 0.5 (0.6)
SC-GK 92.8 (3.8) 0.2 (0.1) 3.7 (6.2) 1.8 (1.2) 0.3 (0.3)
MC-RC+SC-GK 92.4 (3.1) 0.2 (0.1) 3.8 (5.7) 1.9 (1.3) 0.3 (0.2)

ceT1w
+

T2w

MC-RC 91.7 (4.0) 0.3 (0.1) 4.5 (8.6) 2.1 (1.4) 0.3 (0.3)
SC-GK 95.5 (3.3) 0.1 (0.1) 3.9 (4.7) 1.5 (0.4) 0.2 (0.2)
MC-RC+SC-GK 95.3 (2.8) 0.1 (0.1) 5.0 (5.0) 1.5 (0.4) 0.2 (0.2)

T-SC-GK

ceT1w
MC-RC 92.8 (4.0) 0.3 (0.2) 7.3 (11.1) 1.8 (0.7) 0.3 (0.2)
SC-GK 93.4 (5.4) 0.2 (0.2) 8.9 (10.8) 1.6 (0.9) 0.2 (0.2)
MC-RC+SC-GK 93.6 (2.7) 0.2 (0.1) 6.6 (10.1) 1.6 (0.7) 0.3 (0.2)

T2w
MC-RC 88.1 (7.1) 0.4 (0.2) 5.6 (7.8) 2.2 (1.3) 0.6 (0.4)
SC-GK 84.6 (8.9) 0.6 (0.4) 19.5 (16.6) 3.0 (1.8) 0.6 (0.7)
MC-RC+SC-GK 88.8 (6.6) 0.4 (0.1) 5.3 (10.8) 2.0 (1.1) 0.6 (0.2)

tumour growth (MacKeith et al., 2018; Walz et al., 2012; Tang et al., 2014; Roche et al., 2007). Using
our deep learning model, the automatic calculation of tumour volume is a simple task. Moreover, the
model could be used to generalize methods for automatic classification of VS according to the Koos
scale which requires accurate tumour segmentations as an initial step (Kujawa et al., 2022; Koos et al.,
1998). Finally, the model could be used as an initialization for interactive segmentation approaches (Wang
et al., 2018b,a) or as input for subsequent models that further segment the VS into intra- and extrameatal
components (Wijethilake et al., 2022).

A study similar to ours was published recently. Neve et al. (2022) employ a private multi-centre dataset
of ceT1w and T2w images for model training and evaluation. In contrast to our study, no longitudinal
imaging data but rather a single time point per patient were considered. Furthermore, all post-operative
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images were excluded from the model training and analysis. Although the detection of residual tumour
tissue is more difficult it is essential for post-operative surveillance and detection of tumour recurrence. A
comparison of segmentation accuracy in terms of DSC is presented in Table 3.

4.2 Comparison with state-of-the-art

Like the model presented here, state-of-the-art methods for VS segmentation employ CNNs based on
a U-Net architecture. The referenced average DSCs as well as our DCSs listed in Table 3 were obtained
on hold-out testing sets that were drawn from the same datasets as the training sets. Within the margin of
error, our results obtained with the SC-GK dataset are comparable to or outperform previously reported
results, confirming the validity of our model training approach. On the MC-RC dataset, DSCs are decreased
as a result of the increased variability of the MC-RC testing sets compared to the more homogenous
datasets used in the referenced studies. Especially the presence of post-operative cases with residual
tumours increases the complexity of the segmentation task. This interpretation is supported by the reduced
inter-observer reliability (DSC= 88.1±3.4% on ceT1w images and 84.5±7.8% on T2w images) compared
to the inter-observer reliability reported on the SC-GK dataset (DSC=93.82±3.08% based on ceT1w and
T2w images). For ceT1w+T2w input, another contributing factor is the relatively small number of available
training cases.

Table 3. Comparison with state-of-the-art results in terms of mean Dice similarity coefficients and standard
deviation. Prior results are based on data extracted from treatment plans for Gamma Knife stereotactic
radiosurgery. Another study employs a multi-centre dataset with pre-operative images. In each referenced
publication different training and testing datasets were used.

reference training set testing set DSC [%]
ceT1w T2w ceT1w+T2w

Shapey et al. (2019) Gamma Knife Gamma Knife 93.4 ± 4.0 88.3 ± 3.9 93.7 ± 2.8
Shapey et al. (2021a) Gamma Knife Gamma Knife 94.5 ± 2.2 90.7 ± 3.6 -
Wang et al. (2019) Gamma Knife Gamma Knife - 87.3 ± 4.9 -
Lee et al. (2021) Gamma Knife Gamma Knife - - 90 ± 5

Neve et al. (2022) Multi-Centre
(pre-operative)

Multi-Centre
(pre-operative) 92 ± 5 87 ± 6 -

This work SC-GK SC-GK 95.2 ± 2.2 92.2 ± 3.4 95.2 ± 2.0
This work MC-RC MC-RC 86.9 ± 5.9 85.0 ± 15.6 75.8 ± 27.0

4.3 Worst cases

While the MC-RC models fail in only a small number of cases the analysis of the corresponding images
and faulty predictions can highlight potential model weaknesses with regards to specific acquisition settings
and tumour presentations. Figure 5 shows the worst model prediction for each of the three inputs. The ceT1w
case inFigure 5a and T2w case in Figure 5b are post-operative scans after surgery with translabyrinthine
approach. The model prediction for the ceT1w image has an acceptable DSC of 73.6% since it captures
parts of the tumour with high contrast agent uptake but misses lower contrast regions in inferior slices. The
T2w case contains a small tumour residual which is almost entirely missed by the model (DSC=1.9%).
Due to the low contrast with adjacent tissue this tumour residual is particularly difficult to segment. For
this case, a human annotator would require a contrast-enhanced scan to confirm the boundaries of the
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residual. The case shown in Figure 5c is a post-operative scan after surgery with retrosigmoid approach
with a large cystic component. While parts of the solid tumour residuals are accurately delineated, the
cystic component is missed by the model prediction (DSC=4.7%). It is likely that the small training set
available for ceT1w+T2w input did not contain a sufficiently large number of cystic tumours to train the
model with respect to their inclusion.

4.4 Post-operative cases without residual tumour

Cases without residual tumour are edge cases that can be particularly challenging for segmentation
algorithms. While the MC-RC models correctly predicted no residual tumour in 16 out of 20 cases, small
residuals (<30 mm3) were predicted for the remaining cases. While the ceT1w model was reliable, the T2w
model led to false positive predictions in 3 of 9 cases. This difference in robustness is expected because
residuals are typically hyper-intense on ceT1w images while they are difficult to discern in images without
contrast enhancement.

A frequently applied post-processing strategy for segmentation models is to remove segments below a
fixed volume threshold (Antonelli et al., 2022). A reasonable volume threshold can be based on an assumed
detection limit for VS in routine clinical MRI of 2 mm, which corresponds to a cubic volume of 8 mm3.
In comparison, the smallest tumour residual contained in the MC-RC dataset was 30 mm3. Application
of this post-processing strategy improved the number of correct predictions to 18 out of 20 cases without
significantly affecting the results presented in Table 1 and Table 2.

4.5 Limitations and future work

While the dataset curated and annotated in this work is the first large multi-centre dataset for VS
segmentation made publicly available, sample sizes for ceT1w and ceT1w+T2w images were small
compared to T2w. This is because the slice thickness of the majority of ceT1w images in routine clinical
dataset exceeded the threshold of the inclusion criterion (3.9 mm). Detection and manual segmentation
of small tumours on these low-resolution images is difficult and generally not sufficiently accurate for
volumetric measurements. We expect that segmentation performance can be improved by increasing the
number of ceT1w images in the dataset.

Furthermore, since this study focuses on sporadic unilateral VS, bilateral tumours in patients with the
hereditary condition NF2 were excluded. Due to the simultaneous presence of multiple schwannomas and
meningiomas, the segmentation task is disproportionately more difficult. In the future, we plan to integrate
NF2 cases into the model development.

These models can be applied for the automatic generation of case reports for multidisciplinary team
meetings (MDM) (Wijethilake et al., 2023). The reports in their work include multiple automatically
generated views of the tumour and the model segmentation and frequently reported tumour measures, such
as volume and extrameatal dimensions. It will be interesting to assess how the reports might facilitate, on
the one hand, MDM preparation, and on the other hand, the treatment decision process during the meeting
itself.

In conclusion, we developed a model for automatic VS segmentation for diverse clinical images acquired
at different medical centres with a wide range of scan protocols and parameters. The application of this
model has the potential to monitor tumour size, post-operative residuals, and recurrence more accurately
and efficiently, thereby facilitating the VS surveillance and management of patients.
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