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Abstract

Observing phenotyping practices from an international cohort of 1,686 cases revealed

heterogeneity of phenotype reporting among clinicians. Heterogeneity limited their

exploitation for diagnosis as only 43% of symptom-gene associations in the cohort were

available in public databases. We developed a symptom interaction model that summarized

16,600 terms into 390 groups of interacting symptoms and detected 3,222,053 novel

symptom-gene associations. By learning phenotypic patterns in genetic diseases, symptom

interaction modeling handled heterogeneity in phenotyping, to the extent of covering 98% of

our cohort’s symptom-gene associations. Using these symptom interactions improved the

diagnostic performance in gene prioritization by 42% (median rank 80 to 41) compared to the

best algorithms. Symptom interaction modeling will provide new discoveries in precision

medicine by standardizing clinical descriptions.

One sentence summary

Learning phenotypic patterns in genetic disease by symptom interaction modeling addresses

physicians' heterogeneous phenotype reporting.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.07.29.22278181doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.29.22278181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Precision medicine relies on patient stratification and recognition of clinically relevant groups

to improve diagnosis, prognosis, and medical treatment 1. Phenotyping allows homogeneous

groups of individuals to be constituted, where physicians report characteristics deviating from

normal morphology, physiology, and behavior using standardized descriptions in the Human

Phenotype Ontology (HPO) 2,3. Despite a common ontology and abundant clinical data,

medical records often lack consistency and comparability between descriptions and

practitioners, which is referred to as fuzzy matching in phenotype profiles 4. This inconsistent

phenotyping is a major hurdle to fully exploiting the clinical data contained in medical

records. Nevertheless, no studies about phenotyping practices in clinical sequencing are

known to have been undertaken until now.

1. Phenotyping practices in large cohorts

Through four international studies, including 1,686 patients in total, we collected 2501

different symptoms in HPO format and 849 different disease-causing genes 5–7 (Table S1).

Nearly half of the patients in the multi-center cohort had symptoms belonging to the

Abnormality of the nervous system (HP:0000707) and Abnormality of the musculoskeletal

system (HP:0033127) classes, illustrating the current focus on those rare disorders in clinical

practice 8 (Figure S1). Reflecting the genetic heterogeneity of rare diseases, 538 of 849 genes

were declared only once in the cohort and the most frequently mutated gene occurred in less

than 2% of cases (ABCC6, n=21, Table S2).

We observed heterogeneity in HPO selection terms, as 47% of terms were used only once

(Figure 1A, Table S3). The median number of HPO terms per physicians’ clinical description

varied across observations, ranging from three (Peng et al. 7) to seven (PhenoGenius

consortium, Seo et al. and Trujillano et al. 5,6) (Figure 1B). The heterogeneity of physicians’
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clinical descriptions was also observed for patients with identical genetic diagnoses. For

genes involved in diagnosis of more than ten patients, 67 % of symptoms were declared in

only one clinical description.

To exclude the possibility that the observed heterogeneity was due to variability in clinical

examinations, we next investigated whether heterogeneity in clinical descriptions was

reported if physicians phenotyped the same clinical observations. We settled on a prospective

experiment where 12 clinical geneticists with various levels of expertise (Table S4) were

asked to phenotype three independent clinical reports associated with genetic test

prescription, i.e. to convert free text to phenotypes in HPO format. We observed

heterogeneity in terms of the number and diversity of symptoms declared per clinical

observation (Figure 1C). For instance, two to nine symptoms were declared in clinical

descriptions of the Kleefstra syndrome observation with the EHMT1 pathogenic variant. A

total of 29 different terms were provided; 17 of these terms were used by two or more

physicians, and none of the terms were mentioned by all 12 physicians.

2. Quantifying the overlap of symptoms-gene associations between
the retrospective cohort and the medical literature

To assess if the clinical descriptions of our cohort matched available knowledge in the

medical literature, we mapped the cohort’s 11,526 unique symptom-gene associations to the

734,931 associations available in HPO-structured databases (Orphanet, DDG2P 9, and the

Monarch Initiative or MI 3). From these databases, only 4,913 associations (43%) matched,

meaning that 57% were missing (Figure 2A).
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As the clinical descriptions of genetic diseases in medical literature are mainly available in

free-text format, we developed a text-mining algorithm based on Elasticsearch to extract

symptom-gene associations from free-text data in HPO format. Applied to OMIM 10,

MedGen 11, and abstracts from PubMed, this text-mining algorithm identified an additional

1,049,522 symptom-gene associations. This approach resulted in a 3.2-fold increase in

HPO-structured database associations (Figure 2B).

The text-mining algorithm provided symptom-gene associations where symptoms were

significantly deeper in the ontology compared to the HPO-structured databases (median depth

6.7 and 5.2 respectively, Kolmogorov-Smirnov test p-value < 10-215, Figure S2). This

underlines the complementarity of these approaches, as illustrated in Figure 2C where

KMT2D was associated with Abnormal morphology of the great vessels (HP:0030962) in the

MI database and Tetralogy of Fallot (HP:0001636) in the OMIM database. Reflecting the

variability across individuals in selecting an HPO term to summarize a clinical observation,

76% of associations were exclusive to one database. We hypothesized that text-mined

symptom-gene associations in the literature were related to associations available in

HPO-structured databases. This hypothesis embodies the fuzzy phenotyping concept,

providing human-determined alternative wordings of the same information.

To evaluate this hypothesis, for each gene we compared the average distance in the ontology

of exclusive symptom-gene associations to the MI database and the text-mined OMIM

database, respectively the largest database of each type (Figure 2B). Compared with a

random choice of an HPO term, the average distance of the exclusive symptom-gene

associations was significantly lower, suggesting these associations are related

(Kolmogorov-Smirnov test p-value < 10-215, Figure 2D).
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Although in this exercise the number of symptom-gene associations increased from 734,931

(MI, DDG2P, Orphanet database) to 1,784,453 (with associations found with the text mining

algorithm), a match with the cohort’s symptom-gene associations was only available for

6,226 of 11,526 (57%) associations, meaning that 43% of matches were still missing (Figure

2A).

3. From symptom-gene to symptom-symptom associations modeling

We investigated whether modeling associations between symptoms of the same genetic

disorder improved matches. As the Human Phenotype Ontology is ordered according to

human development, it may not represent the interaction of symptoms in disease (Figure 3A).

We explored an alternative approach to measure symptom-symptom associations in genetic

diseases. We considered a node similarity algorithm based on a knowledge graph that stored

the symptom-gene associations we collected from the literature.

We found a high correlation between symptom-symptom similarity pair scores and their

frequency of co-occurrence in clinical observations (Spearman correlation coefficient: 0.99).

No correlation was observed between symptom-symptom similarity pair scores and the

distance between symptoms in the HPO (Spearman correlation coefficient: -0,02, Figure S3),

reflecting that symptom-symptom associations cannot be solely derived from the ontology

architecture.

According to similarity score distributions, we posited that similarities above 80% were

potential substitutes or highly similar symptoms in diseases (Figure S4). This resulted in the
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selection of 565,943 pairs of highly similar symptoms, corresponding to the 10% highest

symptom-symptom association scores (Figure 3B). A total of 26% of these pairs were

observed for symptoms in the same ontology class (145,611 of 565,943), mostly from the

Abnormality of the musculoskeletal system (HP:0033127) class (51%, 73,817 of 145,611).

Inter-classes pairs of symptoms represented 74% of highly similar symptoms, where the most

recurrent pair was Abnormality of metabolism/homeostasis (HP:0001939) with Abnormality

of the nervous system (HP:0000707) (8%, 35,476 of 420,332).

We illustrate these similarities in Figure 3C, using the symptom Hypotonia (HP:0001290)

reported by six of the 12 practitioners in our exercise on the Kleefstra syndrome with the

EHMT1 pathogenic variant. In the symptom-symptom association graph, the closest term to

Hypotonia is Neurodevelopmental delay (HP:0012758), with a symptom-symptom similarity

pair score measuring 86%. In the HPO, these symptoms are separated by ten nodes and

belong to two different main classes: Abnormality of the musculoskeletal system

(HP:0033127) and Abnormality of the nervous system (HP:0000707) respectively.

We then investigated to what extent considering two highly similar symptoms as substitutes

improved the coverage of symptoms-gene associations. Among the cohort’s 11,526 unique

symptom-gene associations, only 6,226 associations were found in HPO-structured and

text-mined databases, but this number rises to 8,350 when accounting for similarities.

Considering substitutes provided additional 1,506,469 symptom-gene associations to the

previous 1,784,453 associations from MI, DDG2P, Orphanet, and text-mined databases.

Modeling associations between symptoms revealed a majority of inter-HPO classes included

similar symptoms, highlighting the missing aspect of symptom relationships in the HP
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ontology. Enhancing symptoms with their highly similar pairs improved coverage of

symptom-gene associations in the cohort, but 27% of associations were still missing.

4. From symptom-gene associations to groups of symptoms modeling

Symptom-symptom associations were evaluated independently when identifying substitutes

based on node similarity. To gain better coverage of symptom-gene associations, we

considered a more elaborate collaborative filtering approach based on non-negative matrix

factorization (NMF) 12.

Using the topic coherence measure 13, we determined that the 16,660 HPO terms could

optimally be reduced to 390 groups of interacting symptoms or phenotypic patterns (Figure

S5). Each symptom was positioned in the graph with group weights determined by the

algorithm (Figures 4A-4B). Each gene was associated in a median of 36 groups and a group

with a median of 501 genes. To compare the recall of the NMF and the node similarity

model, we kept only the top 10% of 390 symptom-groups weights (Figure S6). Overall in this

selection, there were 43,308 symptom-group associations leading to 5,971,755 pairs of

symptoms.

We investigated to what extent the coverage of symptoms-gene associations was improved by

considering that two symptoms belonging to the same group were substitutes. Using these

pairs of symptom associations enhanced the coverage of symptom-gene associations to

11,340 of the 11,526 associations from the cohort, leaving less than 2% of matches missing.

This new manner of detecting associations resulted in the addition of 2,163,663 NMF-based

symptom-gene associations to the previous 1,784,453 associations obtained from MI, DD2P,
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Orphanet, and text-mined databases. NMF-based symptom-gene associations overlapped with

99% of similarity-based associations (1,497,601 of 1,506,469).

To evaluate if these 390 phenotypic patterns represented the clinical spectrum of genetic

diseases, we projected the cohort into the groups of symptoms dimension and performed a

UMAP visualization 14. We applied agglomerative clustering to the cohort and compared

clustering patient performance using this projection and the 16,600 HPO dimension. Using

the initial list of 16,600 symptoms, 152 patients were found in 14 clusters significantly

enriched in symptoms (Fisher exact test with p-value < 0.05 with Benjamini Hochberg

correction) (Figures S7-S8). Applying the projection in groups of symptoms, 1,136 patients

were found in 51 clusters significantly enriched in groups of symptoms (Figure S9, Figure

S10). To evaluate if this projection could standardize clinical descriptions, we applied it to the

three clinical reports phenotyped by the 12 physicians in our experiment. We demonstrated

the high coherence of our method even with symptom heterogeneity when sufficient numbers

of HPO terms were given (KMT2D report) (Figure 4C, Figure S11). When fewer than 5 terms

were provided, clinical description projections still grouped patients but with lower

homogeneity (EHMT1, C3).

The delineation of 390-groups of interacting symptoms enabled an increase in coverage of

the available knowledge on genetic disorders and provided a way of building on HP ontology

to standardize clinical descriptions. Next, we used symptom interaction modeling to develop

a phenotype matching system.
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5. Symptom interaction models as an efficient and robust system for
phenotype matching

To evaluate the clinical relevance of symptom interaction models, we designed phenotype

matching and diagnostic gene ranking experiments. We defined a phenotype match when at

least one symptom in the clinical description was related to the diagnostic gene (Figure 5A).

According to the count of matches per gene, a personalized ranked list of genes was provided

(Figure S12). These experiments were performed on the clinical observations of 1,686

patients.

Using the HPO-structured databases (MI, DDG2P, Orphanet), we obtained a phenotype

match for 1,566 clinical observations with a median diagnostic gene rank of 251. Applying

text-mined associations led to a match for 1,628 clinical observations with a median rank of

40 (Figure 5B). The best performance in median diagnostic rank was provided by node

similarity symptoms association (median rank 37, compared to 58 with NMF), but NMF was

able to get a more exhaustive coverage of clinical observations (1682, compared to 1663 with

node similarity). This coverage gap was exclusively observed where the clinical descriptions

contained five terms or less (four unmatched descriptions, compared to 25 with node

similarity). As each symptom interaction model provides a different level of inductive

reasoning, we conditionally applied a model according to the number of symptoms in the

clinical description. The combined system, which we called PhenoGenius provided the best

performance (median rank 41) and reached a nearly full phenotype match of diagnostic genes

(99.8%, 1682/1686) for all clinical descriptions.

To illustrate this phenotype-matching system, we considered a clinical description containing

two symptoms of the Kleefstra syndrome observation with the EHMT1 pathogenic variant:

10
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Sparse hair (HP:0008070) and Moderate global developmental delay (HP:0011343). There is

no match between these terms and EHMT1 in HPO-structured databases. No match is

identified from text-mined symptom-gene associations either. Symptom interaction modeling

achieves phenotype matches, ranking 1244 out of 5235 (top 25% of genes) with the similarity

model and 851 out of 5235 (top 17% of genes) with the NMF model and PhenoGenius

combined system.

We then compared PhenoGenius to four recently published algorithms for phenotype-driven

gene prioritization: PhenoApt, Phen2Gene, CADA, and LIRICAL 7,15–17. Despite using

different prioritization methodologies, these four programs demonstrated similar

performances in phenotype matching (Figure 5C). Using symptom interaction modeling,

PhenoGenius (median rank 41) increased the median diagnostic gene rank by 42% compared

to the best competitor, Phen2Gene (median rank 71, 73 to 80 for other methods). This

improvement was replicated across each study subgroup in the cohort, highlighting the

clinical relevance of symptom interactions in genetic disease models (Figure S13).

To assess the robustness of gene prioritization, we randomly removed each symptom from

clinical descriptions with two terms or more and measured the consequence on the

disease-causing gene ranking for descriptions in the top-ranked half of the cohort (rank 41 or

lower). Overall, 701 clinical descriptions led to 6,331 symptom removal experiments. In most

cases, phenotype matching remained robust with symptom removal (Figure 5D).

Disease-causing gene ranking was identical in 35% of cases (2,274 of 6,331) and the median

of absolute differences between ranks was only one. However, nine extreme drops in the

ranking (> 1000) were observed with clinical descriptions with three or fewer terms,
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including two complete loss of phenotype matches for descriptions with two symptoms. For

clinical descriptions with four or more terms, we found no extreme drops in gene rankings.

Discussion

This study used symptom interaction modeling to learn phenotyping patterns in genetic

diseases. This method adds to the precision medicine toolbox with a way of standardizing

clinical descriptions and matching physicians' phenotyping to the medical knowledge of

genetic diseases.

This study provides an in-depth analysis of phenotyping clinical practice by analyzing 1,686

phenotyping reports of patients with a definitive genetic diagnosis 5–7. In addition, a

qualitative comparison of three clinical reports phenotyped by 12 physicians was performed.

Complementary to recent reports 8,18, this study provides original insights on heterogeneous

patient phenotyping, both in the cohort’s clinical descriptions and the medical literature. In

our qualitative experiment, the main observation was the diversity of terms chosen by

physicians to describe the exact same clinical description. These observations suggest that

clinical description should be standardized, following harmonization of symptom description

with HP ontology.

As well as encouraging richness of clinical description, tools must address the medical reality

of summarized or partial clinical information. Lacking time or omitting symptoms in their

clinical routine, physicians provide scanty phenotyping. Symptoms may be chosen based on

strong clinical a priori or learned phenotypic patterns. Medical inductive knowledge often

proposes patterns or groups of hypotheses based on recurrently associated symptoms in the

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.07.29.22278181doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.29.22278181
http://creativecommons.org/licenses/by-nc-nd/4.0/


physician’s own experience and in the literature. Defining groups of symptoms represent a

natural behavior of medical inductive reasoning 19,20. This could explain the heterogeneity of

phenotyping across clinical observations, independently from the innate clinical

heterogeneity of a disorder.

To handle heterogeneous phenotyping, we developed symptom interaction models to

standardize clinical descriptions and evaluate their clinical relevance through gene

prioritization experiments. Based on symptom interaction models, PhenoGenius decreases the

rank of the diagnostic gene by 42% compared to the best competitor. Its simplicity in scoring

allows a complete understanding of phenotype matching, thus providing an interpretable

measure of potential genotype-phenotype correlation. To lower the risk of missing a

phenotype match because of a fuzzy description, clinical descriptions with four or more terms

are recommended. Our approach contrasts with state-of-the-art phenotype-driven gene

prioritization software, which mostly relies on complex scoring or symptom relationships

based on HPO architecture.

Current algorithms address phenotyping heterogeneity using the ontology structure either to

extract additional symptom-gene associations from literature or to evaluate the semantic

similarity of symptoms 21. In contrast to these approaches, we used HPO as a dictionary of

symptoms and considered relationships between symptoms only through their co-occurrence

in genetic diseases found in HPO-structured and text-mined databases. Our algorithm

uncovered the missing pieces of medical inductive reasoning in clinical descriptions through

symptom similarity modeling and collaborative filtering using NMF methods 12. As such,

projection into the symptoms interaction model dimension could provide a path to

standardizing clinical descriptions. Moreover, the application of this algorithm is

13
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reproducible and interpretable, and these features are fundamental in a medical context 22. In

addition, node similarity and NMF allow free association of symptoms, which is important

since the same symptom may belong to different disease groups.

Our AI system performed well for gene prioritization. However, evaluation of our system’s

performance in detecting gene/symptom associations is incomplete. In our international

cohort, only 43% of symptom-gene associations were described in public databases. We have

shown that the recall rate (percentage of detected associations among known associations)

increased when considering similarity measures or techniques based on NMF. However, as

the list of associations increased, an increase in recall came at a price of reduced precision,

i.e. a reduced proportion of true associations among the detected associations. Evaluation of

precision is impossible because some true associations are missing, highlighting the need to

improve data sharing of physicians’ phenotype information.

As current knowledge overwhelms human learning abilities, an overarching goal in precision

medicine is to overcome digital bottlenecks to succeed in deep phenotyping and identification

of clinically relevant groups of patients. Progressive adoption of the Monarch Initiative’s

HPO in clinical symptoms description, the development of automatic extraction of symptoms

in HPO format from electronic medical records 23, and the definition of the Phenopackets

standard file format by GAG4H 24 bring the community one step forward. A current

challenge is integrating multiple data sources from electronic health records for deep

phenotyping 25. Complementary to this challenge, we seek to standardize and improve the

exploitation of clinical descriptions available in clinical practices using symptom interaction

models. Long-standing aspirations are to be able to answer the question, “Have I seen a case

14
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like that before?” among extensive clinical data, and to identify undescribed symptom-gene

associations 26.

Clinical description standardization using symptom interaction modeling may overcome

several clinical bottlenecks in precision medicine. PhenoGenius is open-source, accessible

through an interactive graph browser (https://github.com/kyauy/PhenoGenius), and a web app

(https://phenogenius.streamlitapp.com/). This work paves the way for a set of tools to help

identify new genes in disease, expand their clinical spectrum, and provide an easily

interpretable clinical decision support system. If we can successfully deal with fuzzy

phenotypic profiles and inductive medical reasoning in rare diseases, clinical data can be used

for computational phenotype analysis, to improve the feasibility of precision medicine, and to

support the adoption of genomic medicine.

Data availability

The PhenoGenius source code is available for resource generation and scientific experiments

in Apache License 2.0, including an interactive graph browser, on GitHub

(https://github.com/kyauy/PhenoGenius). A web app is accessible at

https://phenogenius.streamlitapp.com.
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Fig 1. The landscape of phenotyping practices from a retrospective cohort of 1,686

patients and a prospective experiment of clinical reports phenotyped by multiple

physicians. A. Treemap chart of the HPO terms frequency across the retrospective cohort. B.

Violin plot of HPO term counts per clinical description for each subgroup of the cohort. C.

Violin plot of HPO term counts per clinical description for each clinical report phenotyped by

12 physicians.
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Fig 2. Quantifying the overlap of symptoms-gene associations between the retrospective

multicenter cohort of 1,686 patients and the medical literature. A. Venn diagram of

symptom-gene associations observed in cohort overlapped with public HPO-structured

databases and text-mined associations in free-text databases. B. Count distribution of

symptoms-gene association exclusive to each database. C. Illustration of exclusive

symptom-gene associations found in Monarch Initiative database (blue) and text-mined

OMIM database (green), using KMT2D as an example. Gray associations were unfound. D.

Distribution of the mean lowest distance in the ontology between exclusive terms in the

Monarch Initiative database and our text-mined OMIM database, compared to a random

choice of HPO terms.
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Fig 3. Modeling symptom-symptom interaction in rare diseases using node similarity

algorithms on collected symptoms-gene associations. Node color represents the main HPO

class. A. Graph visualization of symptom relationships based on the human development

architecture of HPO. B. Graph visualization of symptoms relationships with node similarity >

80%. C. Illustration of symptom relationships with the Kleefstra syndrome clinical report

with EHMT1 variant, phenotyped by 12 geneticists. Blue arrows linked the closest symptom

in HP ontology and red arrows the symptom with the highest node similarity among declared

symptoms.
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Fig 4. Modeling symptom-symptom interactions in genetic disease using non-negative

matrix factorization. A. Visualization of symptom relationship based on 390 groups of

interacting symptoms from medical literature. Group 273 is highlighted by the black box and

arrow. B. Illustration of group 273 with the main symptom Autoimmunity (HP:0002960). For

graphs in figures A and B, the line thickness is proportional to the weights of symptoms in

the group. Colors correspond to the main HPO class and groups are in black. For readability,

only the top 10% of symptom-group associations are displayed. C. UMAP visualization of

cohort’s clinical descriptions projected into the group of symptom dimension, colored by the

number of symptoms. Boxes represent clinical reports description phenotyped by twelve

physicians.
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Fig 5. Modeling symptom interactions as an efficient system for phenotype matching. A.

Illustration of the principle of phenotype matching, looking for the most connected genes to

the clinical description containing two symptoms of the Kleefstra syndrome observation with

the EHMT1 variant: Sparse hair (HP:0008070, yellow) and Moderate global developmental

delay (HP:0011343, purple). Line thickness is proportional to the probability score of

symptom-gene associations available with joint HPO-structured and text-mined databases. B.

Performance benchmark metrics of diagnostic gene prioritization ranking (median rank, left

side) and phenotype matching (count of unmatched description, right side) according to a

maximum number of symptoms in clinical descriptions of the cohort. C. Benchmark of a

selection of state-of-the-art gene prioritization programs. The fraction of cases correctly

diagnosed (y-axis) is plotted against a cumulative causal gene rank. D. Ranking differences

after removing one symptom according to the number of terms in clinical descriptions.
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