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Abstract 75 

With age, acquired mutations can cause clonal expansion of hematopoietic stem cells (HSC). This 76 
clonal hematopoiesis of indeterminate potential (CHIP) leads to an increased predisposition to 77 
numerous diseases including blood cancer and cardiovascular disease. Here, we report multi-78 
ancestry genome-wide association meta-analyses of CHIP among 323,112 individuals (19.5% 79 
non-European; 5.3% have CHIP). We identify 15 genome-wide significant regions and nominate 80 
additional loci through multi-trait analyses, and highlight variants in genes involved in self-81 
renewal and proliferation of HSC, telomere maintenance, and DNA damage response pathways. 82 
We then use Mendelian randomization to establish a causal relationship between CHIP and 83 
coronary artery disease. Next, we systematically profile consequences of CHIP across the 84 
phenome, which revealed strong associations with hematopoietic, neoplastic, and circulatory 85 
conditions corroborated by polygenic enrichment of CHIP loci in immune cells and 86 
cardiomyocytes. These findings expand the genomic and phenomic landscape of CHIP. 87 

  88 
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Introduction 89 

Self-renewing cell populations accumulate somatic mutations with aging, although most 90 
of these mutations are without functional consequence. In rare cases, these somatic mutations 91 
confer a selective advantage leading to clonal expansion1-3. In the case of hematopoietic stem cells, 92 
driver mutations in genes with diverse functions, including DNA methylation (DNMT3A, TET2)4,5, 93 
RNA splicing (SF3B1, U2AF1)6, chromatin remodeling (ASXL1)7, and DNA damage response 94 
(TP53, PPM1D)8-10 can lead to a clonal expansion of hematopoietic stem cells termed clonal 95 
hematopoiesis of indeterminate potential (CHIP) when such mutations make up >4% of peripheral 96 
blood cells (variant allele fraction, VAF≥2%). CHIP is the pre-cancerous precursor lesion for 97 
myeloid hematologic malignancy11-13, but numerous studies in human and model systems have 98 
linked CHIP to diverse diseases of aging, including coronary artery disease14,15, stroke16, heart 99 
failure17, chronic obstructive pulmonary disease18, osteoporosis19, and chronic liver disease20. 100 
However, CHIP is less commonly observed among patients with Alzheimer's disease21. 101 
Characterizing the germline genetic determinants of CHIP offers the opportunity to prioritize 102 
unifying features of multiple diseases of aging.  103 

We previously performed a genome-wide association study (GWAS) of CHIP and 104 
identified three genomic regions associated with CHIP risk in a study of 3,831 CHIP cases and 105 
61,574 controls from whole-genome sequencing of blood DNA utilizing the National Heart, Lung 106 
and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) study22. This effort 107 
identified three germline genetic variants, including one in the TERT promoter, the intronic region 108 
of TRIM59, and a distal enhancer of TET2 specific to individuals of African ancestry. These 109 
findings enabled further work demonstrating that the low-frequency germline variant at TET2 110 
leads to locally altered methylation and decreased germline TET2 expression, subsequently 111 
promoting the self-renewal and proliferation of hematopoietic stem cells22. Furthermore, 112 
bidirectional Mendelian randomization analyses of leukocyte telomere length (LTL), TERT locus 113 
variants, and CHIP highlight the dynamic nature of genomic models across the lifespan23. 114 

Here, we analyze 17,044 CHIP cases and 306,068 controls across four cohorts, including 115 
63,442 (19.5%) individuals of non-European ancestry from whole-genome or whole-exome 116 
sequencing of blood DNA. Using this expanded dataset, we perform genome-wide discovery 117 
analyses and fine-mapping at both variant24 and gene levels25. We identify multiple components 118 
of the DNA damage response pathways26,27 that lead to CHIP, unifying epidemiological 119 
observations regarding enhanced CHIP risk in populations with specific environmental or 120 
cytotoxic exposures8,28,29. Multivariate Bayesian analyses with myeloproliferative neoplasm 121 
(MPN)-associated alleles30 further prioritize several additional loci. Finally, we leverage this 122 
expanded dataset to systematically profile the disease risk of CHIP compared to another form of 123 
clonal hematopoiesis—mosaic chromosomal alterations (mCAs), and further investigate the 124 
disease associations by examining cell types31 enriched by CHIP (Extended Data Fig. 1).  125 
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Results 126 

Baseline characteristics 127 

We analyzed 355,183 individuals across four cohorts, UK Biobank (UKB; N=200,128), 128 
TOPMed (N=87,116), Vanderbilt BioVU (N=54,583), and Mass General Brigham Biobank 129 
(MGBB; N=13,356) for CHIP mutations using previously described methods (see Methods). 130 
These individuals are of European (N=287,991), African (N=31,900), Asian (N=14,073), Hispanic 131 
(N=13,939), and other or unknown (N=7,280) ancestry (Supplementary Table 1). We identified 132 
20,302 CHIP mutations in 18,499 individuals (5.2%). Consistent with previous reports22, CHIP 133 
was robustly associated with age (Fig. 1a) and had a similar distribution of genes identified in 134 
prior studies. Across all cohorts, 90.8% of individuals with CHIP driver mutations had only one 135 
identified mutation (Fig. 1b). DNMT3A, TET2, and ASXL1 are the most frequent mutated genes, 136 
accounting for more than 75% of CHIP mutations (Fig. 1c). Compared with other cohorts, MGBB 137 
has a relatively lower proportion of individuals with DNMT3A mutations but a relatively larger 138 
proportion with TET2 mutations. The next seven most frequent genes are PPM1D, TP53, JAK2, 139 
SF3B1, SRSF2, GNB1, and CBL. For most of these top mutated genes, the corresponding VAF for 140 
participants in TOPMed are larger than that seen in other cohorts, which is likely explained by 141 
technical sensitivities between whole-genome (TOPMed) and whole-exome (UKB and MGBB) 142 
sequencing-based CHIP detection. The median VAF of DNMT3A was 0.08 in UKB, 0.13 in 143 
TOPMed, and 0.09 in MGBB; the median VAF of TET2 was 0.11 in UKB, 0.16 in TOPMed, and 144 
0.09 in MGBB. JAK2 has the largest clonal fraction among the top ten genes, with a median VAF 145 
of 0.30 in UKB, 0.21 in TOPMed, and 0.32 in MGBB (Fig. 1d). In BioVU, CHIP was identified 146 
in four driver genes, DNMT3A, JAK2, TET2, and ASXL1, using a customized genotyping array 147 
(see Methods). The most common mutations in BioVU samples were JAK2 V617F and DNMT3A 148 
R882C/H. 149 

Fifteen genome-wide significant loci associated with CHIP categories 150 

We performed multi-ancestry meta-analyses of overall CHIP (pooled sample size, 17,044 151 
cases, and 306,068 controls), DNMT3A (8,949 cases and 307,971 controls), and TET2 (2,851 cases 152 
and 307,527 controls) CHIP GWAS from TOPMed, UKB, MGBB, and BioVU. Here, we 153 
performed three GWAS for each of the four participating cohorts, followed by multi-ancestry 154 
meta-analyses using the fixed-effects inverse-variance-weighted approach (see Methods). A total 155 
of 323,112 participants and 21,455,227 variants (minor allele frequency (MAF)>=0.1%; variants 156 
present in >=two studies) remained after variant filtering and quality-control procedures. There 157 
was no evidence of artificial inflation of association statistics due to the population structure 158 
(genomic control factor λGC = 1.05 for CHIP and DNMT3A, 1.06 for TET2; Fig. 2a-c). The SNP 159 
heritability (h2SNP) of overall CHIP among the entire study population was estimated at 3.5% 160 
(SD=0.002) on the observed scale and 15.8% (SD=0.011) on the liability scale using the BLD-161 
LDAK model (see Methods and Supplementary Table 2), representing a four-fold increase from 162 
the previous estimate22. 163 
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We discovered ten loci associated with overall CHIP at genome-wide significance after 164 
correcting for multiple testing (P < 1.67 × 10-8, i.e., 5.0 × 10-8/3). Seven of the loci are new and 165 
mapped to the following genes based on proximity of the lead variants: PARP1, CD164/SMPD2, 166 
ATM, ITPR2, MSI2, SETBP1, and CHEK2 (Fig. 2a and Supplementary Tables 3,4). Consistent 167 
with previous report22, the strongest signal remained at the TERT locus, with rs7705526-A as the 168 
lead variant (odds ratio (OR) (95% confidence interval (CI)) = 1.26 (1.23-1.29); P=2.6 × 10-81). 169 
Regional association plots are shown in Extended Data Fig. 2. The effects of associated SNPs 170 
were largely homogeneous across studies (i.e., heterogeneity P>0.05, Supplementary Tables 171 
3,4). Summary-statistics-based conditional analysis yielded 12 independent SNPs that reached 172 
genome-wide significance at P < 1.67 × 10-8 (Supplementary Table 5).  173 

CHIP driver gene-specific association analyses identified ten loci associated with 174 
DNMT3A and six loci associated with TET2 (Fig. 2bc, Extended Data Fig. 3,4, Supplementary 175 
Tables 4, 6-9). TCL1A is a newly discovered locus that significantly increased the risk for 176 
DNMT3A CHIP (rs2887399-T; OR (95% CI) = 1.19 (1.15-1.23); P=1.26 × 10-22) and significantly 177 
reduced the risk for TET2 CHIP (rs4900291-T; OR (95% CI) = 0.78 (0.73-0.84); P=2.92 × 10-11). 178 

Interestingly, there was a larger overlap of loci associated with overall CHIP and DNMT3A 179 
CHIP: nine of the ten loci were common between the two CHIP categories (Fig. 2d). CHIP-180 
associated loci (P < 1.67 × 10-8) also overlapped with LTL32, expanded mCAs33, and MPN30 181 
associated genome-wide significant loci (P < 5 × 10-8). Here, seven, five, and three of the CHIP-182 
associated loci overlapped with LTL, expanded mCAs, and MPN-associated loci, respectively 183 
(Fig. 2d). 184 

We also conducted a joint multivariate analysis across MPN30, overall CHIP, DNMT3A, 185 
and TET2 using empirical Bayes hierarchical modeling34 (see Methods). This approach yielded a 186 
3-fold boost in power for discovery. Compared with conventional GWAS, we identified 39, 39, 187 
and 46 more genetic regions for overall CHIP, DNMT3A, and TET2 CHIP, respectively, with 188 
evidence for the association through this method (Extended Data Fig. 5). 189 

Statistical fine-mapping identified causal variants at ATM and PARP1 190 

Statistical fine-mapping was conducted using the results of the European meta-analysis and 191 
LD matrix derived from the UKB European population to identify the causal variants in the 192 
associated loci (see Methods). We identified 27 variants with posterior inclusion probability (PIP)> 193 
10% (Supplementary Table 10), among which a missense variant, rs1800057-G, in the newly 194 
discovered ATM gene (ENST00000675843.1:c.3161C>G:p.Pro1054Arg; OR (95% CI) =1.28 195 
(1.18-1.37); P=1.3 × 10-10) showed higher posterior probability of inclusion (PIP 22%) in the locus 196 
(Fig. 3a). The risk allele for this coding variant was predicted to be deleterious by various 197 
functional annotation tools (Fig. 3b). Decreased function of the ATM gene and increased risk for 198 
CHIP aligns with the prior observation that the loss of function and low expression of ATM were 199 
associated with tumorigenesis and worse prognosis in various cancers, including MPN35,36. In 200 
another newly discovered locus at PARP1, we identified a non-coding variant, rs1527365-T, with 201 
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high posterior probability (PIP=33%; OR (95% CI) = 0.88 (0.85-0.91); P=7.0 × 10-13), which is 202 
the lead variant in European meta-analysis of CHIP GWAS (Fig. 3c). The T allele at rs1527365 is 203 
protective for overall CHIP and DNMT3A CHIP (Supplementary Tables 3,6) and associated with 204 
decreased expression of PARP1 in whole blood (Fig. 3d; normalized effect size=-0.067, 205 
P=1.7 × 10-4, GTEx v8). This is consistent with the observations that a higher expression of PARP1 206 
is a marker for worse clinical outcomes in various tumors, including myeloid leukemia, and that 207 
inhibition of PARP1 has anti-tumor effects37. rs1527365 is also a cis-methylation QTL where the 208 
T allele is associated with increased DNA methylation at CpGs around PARP1 (data from 209 
GoDMC38:http://mqtldb.godmc.org.uk/), further supporting the negative regulation of PARP1 by 210 
this allele.  211 

Similarity-based gene prioritization identified several putative causal genes 212 

Next, to prioritize causal genes from the GWAS data, we incorporated a novel gene 213 
prioritization method, Polygenic Priority Score (PoPS)25. PoPS combines GWAS data with other 214 
omics data (e.g., gene expression, biological pathway, and predicted protein-protein interaction) 215 
to prioritize casual genes based on functional similarity. We applied PoPS to summary-level data 216 
from the UKB GWAS results of overall CHIP, DNMT3A, and TET2 using European ancestry 217 
individuals from the UKB study population as a reference panel. Features from gene expression 218 
data, protein-protein interaction networks, and pathway membership that passed a marginal feature 219 
selection step were included in the final predictive model (see Methods). We identified 26 220 
prioritized gene-trait pairs. Top putative causal genes prioritized by PoPS (PoPS score>0.3) 221 
included PARP1, ITF80, TET2, TERT, SMPD2, ATM, ITPR2, MSI2, and CHEK2 for overall CHIP 222 
(Supplementary Table 11), PARP1, ITF80, TERT, SMPD2, ATM, ITPR2, TCL1A, SETBP1, and 223 
CHEK2 for DNMT3A CHIP (Supplementary Table 12), and AGTRAP, BDKRB2, and ZFPM1 224 
for TET2 CHIP (Supplementary Table 13). This prioritization corroborates with the fine-mapped 225 
causal variants at PARP1, TERT, and ATM as well as previously validated causal variants at 226 
TET222 and TCL1A39. Further, the consistency between prioritized genes by PoPS (similarity-227 
based approach) and distance (non-similarity-based approach) suggest high confidence25. 228 

Mendelian randomization refined causality between CHIP and coronary artery 229 
disease 230 

Leveraging the large CHIP meta-analysis, we used Mendelian randomization (MR) to 231 
understand the causality of CHIP and disease outcomes. Since CHIP has been associated with 232 
coronary artery disease (CAD) incidence in humans and atherosclerosis in a Tet2 CHIP mouse 233 
model14,40,41, we performed MR analyses of overall CHIP, DNMT3A, and TET2 with CAD. While 234 
genetic predispositions for CHIP overlapped with those for LTL, previous MR studies support 235 
inverse causality for LTL on CAD, implying complex causal relationships between CHIP-LTL, 236 
and LTL-CAD23. Thus, we carefully selected instrumental variables (IVs) to avoid clear violations 237 
of MR assumptions by excluding IVs 1) associated with known confounders between CHIP and 238 
CAD, including hypercholesterolemia, hypertension, type 2 diabetes, body mass index, smoking 239 
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status, or 2) having more robust associations with LTL than with CAD, and/or 3) having inverse 240 
effect sizes for LTL, CHIP, and CAD, accounting for the inverse causal association between LTL 241 
and CAD. Mendelian randomization using the robust adjusted profile score (MR-RAPS) was used 242 
given the limited power for CHIP analyses due to low heritability, especially the gene-specific 243 
analyses. MR-RAPS is a novel method that accommodates weak instruments in the MR framework. 244 
The approach was used as our primary method, and a liberal p-value threshold was applied for IV 245 
selections (see Methods)42. Using summary statistics of multi-ancestry meta-analysis for CHIP, 246 
we observed significant positive causal effects of genetically-determined TET2 CHIP mutation 247 
risk on CAD risk (P=3.2 × 10-4). In contrast, the overall CHIP and DNMT3A CHIP mutation results 248 
were null, consistent with differential causal effects on CAD risk by CHIP mutated gene types 249 
(Fig. 4). However, sensitivity analyses using other MR approaches that do not allow for weak 250 
instruments yielded null results across overall CHIP, DNMT3A, and TET2 CHIP mutations 251 
(Extended Data Fig. 6 and Supplemental Tables 14-16). 252 

Phenome-wide scans yielded different patterns between CHIP and mCAs  253 

The dataset assembled now permits a comprehensive and well-powered phenome-wide 254 
association study (PheWAS) of CHIP. At the same time, we contrast CHIP with a different age-255 
associated clonal hematopoietic phenomenon, mosaic chromosomal alterations (mCAs) (see 256 
Methods). We not only compared the CHIP and mCAs in the same study population where 257 
information on both is available, but we also examined the mCAs in an extended dataset (N= 258 
1,116,579) as a secondary analysis to maximize the discovery power.  259 

Among incident hematopoietic and neoplastic conditions (Fig. 5a and Supplementary 260 
Table 17), significant associations were observed with leukemias [CHIP: hazard ratio (HR) 261 
=1.78,   95% CI 1.42 - 2.24, FDR=1.76× 10-4; autosomal mCAs: HR=6.87, FDR=5.81 × 10-89], 262 
with the largest effect for expanded CHIP (i.e., VAF>10%) and myeloid leukemias (HR 11.56, 263 
95% CI 6.67 - 20.06, FDR=3.67× 10-15) and for expanded autosomal mCAs and lymphoid 264 
leukemias (HR 78.36, 95% CI 57.55 - 106.69, FDR=5.91 × 10- 166), as shown previously2,43. 265 
Besides hematopoietic malignancies, neoplastic associations were also detected with incident 266 
respiratory cancer (Expanded CHIP: HR 1.52, 95% CI 1.27 - 1.81, FDR=4.05× 10-4), malignancies 267 
of the brain for CHIP (HR=1.84, 95% CI 1.31 - 2.58, FDR=0.025), and skin cancer for mCAs 268 
(Expanded autosomal mCAs: HR 1.45, 95% CI 1.15 - 1.82, FDR=0.024). 269 

For CHIP, across other non-hematopoietic/neoplastic conditions, significant associations 270 
were observed with circulatory, gastrointestinal, genitourinary, renal, and infectious conditions, 271 
some of which showed consistent associations with mCAs (Fig. 5b and Supplementary Table 272 
17). In particular, among circulatory conditions, association with incident arterial embolism and 273 
thrombosis was detected for expanded TET2 (HR=2.97, 95% CI 1.58 - 5.59, FDR=0.03). While 274 
no significant association for mCAs was detected among the same sample set analyzed for CHIP, 275 
a significant association with incident arterial embolism and thrombosis was detected for expanded 276 
mCAs (HR=1.17, 95% CI 1.08 - 1.27, FDR=0.0017) (Supplementary Table 18 and Extended 277 
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Data Fig. 7), particularly for expanded ChrX mCAs in females (HR=3.92, 95% CI 1.92 - 8.02, 278 
FDR=0.029). Additionally, significant associations with cardiomyopathy for CHIP (HR 1.64, 95% 279 
CI 1.30 - 2.07, FDR=0.0026) but not for mCAs were observed (Supplementary Table 18 and 280 
Extended Data Fig. 7). The following were other notable CHIP-specific cardiovascular 281 
associations: hypertension, pulmonary heart disease, and lower extremity varicose veins. While 282 
CHIP was not strongly associated with CAD in the PheWAS analysis, using solely combined ICD-283 
9 and ICD-10 codes per the 'phecode' algorithm, further analyses using a more comprehensive 284 
CAD phenotype (composite of myocardial infarction, coronary revascularization, stroke, and death) 285 
yielded significant associations between CHIP and incident CAD (Supplementary Table 19). 286 

Other than circulatory conditions (Fig. 5b and Supplementary Table 18), several 287 
additional incident phenotypic associations were observed. CHIP-specific associations included 288 
peptic ulcer disease and diverticulosis. mCAs and CHIP were similarly associated with acute renal 289 
failure and pneumonia, and mCAs had a larger association with splenomegaly. Additionally, 290 
mCAs were more strongly associated with sepsis and viral infections, while CHIP was more 291 
strongly associated with bacterial infections.  292 

Polygenic associations of CHIP at a single-cell level corroborated PheWAS findings  293 

We used scDRS31 to assess the polygenic enrichment of the overall CHIP, DNMT3A, and 294 
TET2 GWASs in different cell populations in 2 single-cell RNA sequencing (scRNA-seq) data 295 
sets, namely the Tabula Muris Senis (TMS) mouse cell atlas44 and Tabula Sapiens (TS) human 296 
cell atlas45. scDRS assesses excess expression of GWAS-associated genes in single-cell data; we 297 
considered FDR<0.3 for significant association and P<0.01 for suggestive association (see 298 
Methods). Results are reported in Figure 6. We determined the polygenic signal in the CHIP 299 
GWAS is significantly more highly expressed in ventricular myocytes and atrial myocytes from 300 
the heart (P<0.001, and P=0.004, respectively) and neuronal stem cells and oligodendrocytes from 301 
the brain non-myeloid tissue (P=0.004, and 0.01 respectively). DNMT3A is suggestively more 302 
highly expressed in ventricular myocytes from the heart (P=0.003). TET2 is significantly more 303 
highly expressed in DN4 thymocytes from the thymus (P=0.002) and suggestively in T cells 304 
(P=0.007; combined from trachea, heart, brown adipose tissue, and limb muscle). Notably, the 305 
polygenic enrichment findings corroborate our PheWAS results and the existing literature14,21. The 306 
results are also consistent between TMS and TS (Extended Data Fig. 8a) and between cell type-307 
level and tissue-level associations (Extended Data Fig. 8b,c). In addition, we assessed the 308 
robustness of the results by subsampling the TMS data and subsampling the putative trait gene 309 
sets. We determined that the results are consistent across the subsampling experiments (Extended 310 
Data Figure 9). 311 

 312 
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Discussion 313 

In this large and diverse genetic study of CHIP, we identified ten genome-wide significant 314 
regions, including seven that are new and one that is driver gene-specific. We highlight variants in 315 
ATM and PARP1 as causal CHIP variants leading to decreased DNA damage repair and a number 316 
of putative causal genes. We systematically profiled CHIP consequences phenome-wide and 317 
highlighted strong associations with hematopoietic, neoplastic, and circulatory conditions 318 
corroborated by the polygenic enrichments of CHIP in immune cells and myocytes. These findings 319 
provide an expanded genomic and phenomic landscape for clonal hematopoiesis.  320 

Our study has several important findings. First, the relatively large sample size enabled 321 
better-powered delineations of potential mechanisms that contribute to CHIP and specific driver 322 
genes, including failure to repair DNA damage and differential clonal competitive advantage. 323 
Among the newly discovered CHIP-associated genes, ATM has been significantly associated with 324 
the JAK2 V617F clonal hematopoiesis and MPNs46, and it is a core component of the DNA repair 325 
system, and the fine-mapped missense variant on this gene is predicted to decrease its function47. 326 
Also, high PARP1 expression has been shown to exacerbate DNA damage48, and the fine-mapped 327 
regulatory variant, which reduces CHIP risk, decreases PARP1 expression in the human blood 328 
cells. Driver gene-specific GWAS showed differential association patterns for DNMT3A and TET2 329 
CHIP mutations. In particular, we observed significant signals at the TCL1A locus for both 330 
DNMT3A and TET2, with the direction of effects being opposite. TCL1A has been observed to 331 
implicate in B-cell and T-cell and malignancies49,50, and its encoded protein is thought to promote 332 
Akt activity, which is central to many signaling pathways, such as cellular proliferation, growth, 333 
and survival51,52. Recent evidence using gene expression data suggested activation of TCL1A as an 334 
event driving clonal expansion for TET2, but not for DNMT3A39 and our GWAS findings provide 335 
further evidence to support that finding. These findings indicate that while driver mutations 336 
ultimately yield CHIP, their respective heritable bases have shared and distinct heritable factors. 337 

Second, we found that the specific somatic mutation in the hematopoietic stem cell clone 338 
was indicative of specific disease consequences. We conducted a phenome-wide scan for overall 339 
CHIP and individual driver mutations and contrasted CHIP with a distinct clonal hematopoietic 340 
phenomenon, lymphoid-biased mCAs. We observed associations of CHIP and mCAs with clonal 341 
hematopoiesis, hematologic malignancy, and non-malignant diseases linked to aging, with 342 
leukemia showing the strongest association followed by circulatory, gastrointestinal, genitourinary, 343 
renal, and infectious conditions, most of which showed consistent associations between CHIP and 344 
mCAs. However, marked heterogeneity was also observed between CHIP and mCAs. For example, 345 
unique protective associations for ChrY mCAs and cardiomyopathy in males were observed, while 346 
opposing effects between CHIP and mCAs on essential hypertension, pulmonary heart disease, 347 
and lower extremity varicose veins were observed. 348 

Third, the application of novel statistical methods yielded new insights into CHIP biology. 349 
In alignment with the differential pheWAS associations between DNMT3A and TET2 CHIP 350 
mutations, our MR analyses demonstrated their differential causal effects on CAD. We observed 351 
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a significant causal effect of genetically determined increased risk for acquiring TET2 CHIP 352 
mutation on an increased risk for CAD, whereas the causal relationship was null for DNMT3A. 353 
Furthermore, our study leveraged a novel statistical approach to access the polygenic enrichment 354 
of CHIP, DNMT3A, and TET2 in scRNA-seq data31. Corroborating the significant cardiomyopathy 355 
association in pheWAS results, CHIP had the strongest involvement with ventricular myocytes 356 
and atrial myocytes, while DNMT3A and TET2 demonstrated different suggestive association 357 
patterns at the cell-type level. Lastly, using an empirical Bayes hierarchical approach for jointly 358 
modeling multiple traits34, we leveraged the high correlation between MPN and CHIP variables 359 
and nominated three-fold additional genetic regions that contain strong signals for CHIP, 360 
DNMT3A, and TET2.  361 

Important limitations of our study include that many of the newly analyzed samples are of 362 
European ancestry, limiting our ability to benefit from the full diversity of genetic variation present 363 
in diverse ancestries. Second, the cross-sectional nature of our CHIP analysis limits conclusions 364 
regarding the temporal evolution between CHIP and these diseases. Third, the technical sensitivity 365 
of whole genome and whole exome sequencing precludes the ability to evaluate the clinical 366 
significance of CHIP mutations at low VAF. 367 

Overall, our analyses of the inherited basis of CHIP identified new mechanisms affecting 368 
somatic mutation acquisition and clonal fitness with an expanded appreciation for how these 369 
somatic mutations shape disease phenotypes. 370 

 371 

Methods 372 

Study population 373 

UK Biobank (UKB) is a prospective cohort study of ~500,000 participants (age range 40-374 
69 at enrollment) from across the United Kingdom with deep genetic (DNA isolated from blood) 375 
and phenotypic data53. The present study was conducted under UKB application ID 7089 and 376 
50834. Secondary use of these data was approved by the Mass General Brigham Institutional 377 
Review Board (protocol 2021P002228). 378 

TOPMed is a research program generating genomic data from DNA isolated from blood 379 
and other -omics data for more than 80 NHLBI-funded research studies with extensive phenotype 380 
data22,54. A total of 51 studies with diverse reported ethnicity (40% European, 32% African, 16% 381 
Hispanic/Latino, 10% Asian) were included in the Freeze 6 (https://topmed.nhlbi.nih.gov/topmed-382 
whole-genome-sequencing-methods-freeze-6). Each of the included studies provided informed 383 
consent. Secondary analysis of the TOPMed data was approved by the Mass General Brigham 384 
Institutional Review Board (protocol 2016P001308). All relevant ethics committees approved this 385 
study, and this work is compliant with all applicable ethical regulations. 386 
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Mass General Brigham Biobank (MGBB)55 is a volunteer biobank of patients receiving 387 
care at Mass General Brigham with electronic health records and genetic and phenotypic data on 388 
~50,000 participants (https://biobank.massgeneralbrigham.org/). The present secondary analyses 389 
were approved by the Massachusetts General Hospital Institutional Review Board (protocol 390 
2018P001236). 391 

BioVU, the Vanderbilt DNA Databank, is a de-identified biorepository that includes DNA 392 
from the peripheral blood remaining from routine clinical testing of approximately 250,000 393 
patients56,57. The present secondary analyses were approved by the Vanderbilt University Medical 394 
Center Institutional Review Board (IRB #201783).  395 

 396 

 397 

CHIP detection 398 

UKB  399 
Whole exome sequencing of whole blood DNA of 200,628 participants was used to identify 400 
somatic mutations. We selected 500 random youngest samples for panel-of-normal (PON) and 401 
called somatic mutations on the remaining 200,128 samples using Mutect2 software58 in the Terra 402 
platform (https://portal.firecloud.org/?return=terra#methods/gatk/mutect2-gatk4/20). PON was 403 
used to minimize sequencing artifacts, and Genome Aggregation Database (gnomAD)59 was used 404 
to filter likely germline variants from the putative somatic mutations call set. Each Variant Call 405 
Format (VCF) file was annotated using ANNOVAR software60, and putative CHIP mutations were 406 
identified using the pipeline described in Bick et al.22 (https://app.terra.bio/#workspaces/terra-407 
outreach/CHIP-Detection-Mutect2; last accessed Feb 7, 2022). For identifying CHIP, pathogenic 408 
variants were queried in 74 genes known to drive clonal hematopoiesis and myeloid malignancies 409 
(list of variants queried is presented in Supplementary Table 20)22. We kept variants for further 410 
curation if (i) total depth of coverage ≥10, (ii) number of reads supporting the alternate allele ≥3, 411 
(iii) ≥1 read in both forward and reverse direction supporting the alternate allele, and (iv) 412 
VAF≥0.02. Finally, CHIP mutations that passed sequence-based filtering were manually curated 413 
by a team of hematopathologists. The median depth of coverage was 77 (mean=80; SD=31.2; 414 
range 9-305), and the median number of supporting reads were 7 (mean=10; SD=8.6; range 3-101) 415 
in the final CHIP call set. 416 

 417 

NHLBI TOPMed  418 
Whole-genome sequencing of blood DNA was performed on 97,691 samples from Freeze 8 419 
NHLBI TOPMed data with a mean depth of at least 30× using Illumina HiSeq X Ten instruments. 420 
All sequences in CRAM files were remapped to the hs38DH 1000 Genomes build 38 human 421 
genome reference, following the protocol published previously61. Single nucleotide 422 
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polymorphisms (SNP) and short indels were jointly discovered and genotyped across the TOPMed 423 
samples using the GotCloud pipeline62. The procedure used for CHIP and germline variants calling 424 
has been previously described22,63. 425 

MGBB  426 
Whole exome sequencing with an average coverage of 55× from whole blood DNA samples was 427 
performed for 13,356 MGBB participants. The procedure used for UKB CHIP calling (described 428 
above) was also applied for whole exome sequencing data in MGBB. Here, PON was created from 429 
100 random whole exome sequencing samples from the youngest participants (age at enrolment 430 
≤21y). Putative CHIP mutations that passed the minimum depth of coverage (≥20) and supporting 431 
reads threshold were manually curated to arrive at the final CHIP call set. 432 

 433 

Vanderbilt BioVU 434 

Among 54,583 participants of the Vanderbilt BioVU, CHIP was identified in DNA genotyped on 435 
the Illumina Multi-Ethnic Genotyping Array-Expanded (MEGAEX) for somatic mutations in four 436 
known CHIP driver genes: DNMT3A, JAK2, TET2, and ASXL1. We examined nonsense, splice 437 
site, and previously reported missense variants that are genotyped on the MEGAEX array, totaling 438 
29 CHIP mutations. B-allele fractions (BAF) were calculated from the intensity of alternate allele/ 439 
(alternate intensity + wild-type intensity), following the method previously developed and 440 
validated by Hinds, et al. 46. For validation of this method of detecting somatic mutations, we 441 
evaluated 149 MEGAEX-genotyped patients with a putative JAK2 mutation and performed NGS 442 
analysis on the same DNA sample. The two genotyping methods demonstrated high concordance 443 
down to the NGS limit of detection of 5% VAF (R2=0.9931). Because the MEGAEX-sequenced 444 
DNA samples were not available for DNMT3A, TET2, or ASXL1 at the time of the present study, 445 
an alternative method was employed for these genes. The mean BAF and its standard deviation 446 
were calculated for the population under 40 years of age. Detectable CHIP is extremely rare before 447 
this age, allowing for the determination of the noise in BAF measurements at baseline. The BAFs 448 
of the over-40 population were normalized to the under-40 mean and standard deviation. 449 
Individuals with a normalized BAF greater than or equal to 6 standard deviations above the mean 450 
were considered to have a somatic CHIP mutation.  451 

mCAs detection 452 

UKB  453 
The detection of mCAs from genome-wide array genotyping of blood DNA in the UKB has been 454 
described in detail previously64,65. Briefly, among 447,828 genotyped individuals in the UKB who 455 
passed sample quality control criteria, intensities from the genotyping arrays were used to yield 456 
log2R ratio and BAF for each SNP, and the Eagle2 software66 was used to phase SNPs. mCAs 457 
calling was performed by leveraging long-range phase information to search for allelic imbalances 458 
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between maternal and paternal allelic fractions across contiguous genomic segments. 459 
Constitutional duplications and low-quality calls were filtered out, and cell fraction was estimated 460 
as previously described65.  461 

 462 

MGBB  463 
The detection of mCAs in the MGBB was previously described33. Briefly, among 22,143 464 
participants who had available probe raw intensity data (IDAT) files for mCAs calling,  genotype 465 
clustering was performed using the Illumina GenCall algorithm, and the resulting GTC genotype 466 
files were converted to VCF files using the bcftools gtc2vcf plugin 467 
(https://github.com/freeseek/gtc2vcf). Genotype phasing was performed using SHAPEIT467, and 468 
the phased genotypes were ligated across overlapping windows using bcftools concat 469 
(https://github.com/samtools/bcftools). mCAs detection in the MGBB was performed using 470 
MoChA (https://github.com/freeseek/mocha), a workflow to process raw genotypes and probe 471 
intensities to the final mCAs callset. Poor quality sample, defined as having a call rate below 0.97, 472 
BAF auto-correlation across heterozygous sites greater than 0.03, likely germline calls, or runs of 473 
homozygosity identified according to standard filtering practices described in the MoChA online 474 
documentation, were excluded from further analysis. 475 

 476 

Vanderbilt BioVU 477 
A total of 51,028 participants in the Vanderbilt BioVU had their blood DNA genotyped on the 478 
Illumina Multi-Ethnic Genotyping Array-Expanded (MEGAEX). mCAs detection in BioVU was 479 
then performed using MoChA (https://github.com/freeseek/mocha). Samples that did not pass 480 
quality control criteria were excluded from the analysis. 481 

 482 

Millions Veteran Program 483 
DNA extracted from the whole blood of 613,329 participants in the Millions Veteran Program 484 
(MVP) was genotyped using a customized Affymetrix Axiom Biobank array, the MVP 1.0 485 
Genotyping Array, followed by standard QC and imputation as described elsewhere68. mCAs were 486 
detected using the MoChA pipeline (https://github.com/freeseek/mocha). Samples that did not 487 
pass quality control criteria were excluded. 488 

 489 

GWAS and Meta-analysis 490 

GWAS for overall CHIP, DNMT3A, and TET2 CHIP was performed using REGENIE69 (in UKB, 491 
MGB, and BioVU cohort) or SAIGE70 (in TOPMed cohort, previously reported in Bick et al.22). 492 
We performed GWAS in UKB, MGBB, and BioVU cohorts separately with CHIP status (VAF≥2% 493 
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as "1", "0" otherwise) as the outcome, fitting a logistic mixed model, adjusting for age at enrolment, 494 
age2, sex, first ten principal components, self-reported ethnicity, and genotyping batch (where 495 
appropriate). Here, only unrelated samples (one sample from each pair of 1st or 2nd-degree related 496 
samples, or ≥3rd-degree relatedness) with genotype missingness<10% and non-missing 497 
outcome/covariates were included in the analysis. GWAS was performed in two steps: 1) prepare 498 
the null model using high-quality SNP in a leave-one-out cross-validation approach (REGENIE "-499 
-loocv" flag), and 2) perform the single variant association. In Step 1, we used ~500k directly 500 
genotyped SNP after excluding variants with minor allele frequency (MAF) below 5%, genotype 501 
missingness above 10%, and Hardy-Weinberg equilibrium P>1 × 10-15. In Step 2, we used imputed 502 
GWAS variants with a minor allele count ≥20 for the association test. To account for the case-503 
control imbalance, we used the REGENIE "--firth" flag at GWAS P<0.01 to implement the Firth 504 
likelihood test to control Type 1 errors.  505 

Next, we meta-analyzed GWAS results from the four cohorts using inverse-variance 506 
weighted fixed-effect meta-analysis and Cochran's Q-test for heterogeneity in GWAMA 507 
software71. Here, variants at MAF≥0.1% and present in ≥2 studies were included in the meta-508 
analysis. Finally, variants were considered genome-wide significant at P ≤1.67 × 10-8, considering 509 
1-million independent SNP and three outcomes tested at a 5% significance level (i.e., 5 × 10-8/3).  510 

 511 

Conditional and Joint Analysis (COJO) 512 

Conditional and joint (COJO)72,73 analyses of summary statistics from multi-ancestry meta-513 
analyses of CHIP, DNMT3A, and TET2 CHIP GWAS were performed using a multi-ancestry LD 514 
reference prepared from the UKB imputed GWAS dataset that included all the 191k unrelated 515 
samples used in our UKB CHIP GWAS. The LD panel included variants with MAF≥0.1% and 516 
INFO≥0.3. In the COJO analyses, we conditioned the lead variant (false discovery rate (FDR) 517 
<5%) from each chromosome, and independent variants (FDR <5% and LD with the conditioned 518 
variant<0.8) were included iteratively. Finally, all variants were fitted simultaneously in the joint 519 
analyses when multiple independent variants were detected in the same chromosome. Independent 520 
variants at P≤1.67 × 10-8 were considered genome-wide significant.  521 

SNP-based heritability (h2SNP) 522 

We estimated h2SNP using the summary statistics from the multi-ancestry meta-analysis of CHIP 523 
GWAS. We used the SumHer function of LDAK software74,75 with precomputed LD tagging 524 
(BLD-LDAK model: https://genetics.ghpc.au.dk/doug/bld.ldak.genotyped.gbr.tagging.gz) 525 
prepared from directly genotyped UKB EUR sample. The BLD-LDAK EUR LD tagging was 526 
prepared using 577,457 non-ambiguous directly genotyped SNP from 2,000 white British 527 
individuals. Using 573,701 overlapping SNP from the summary statistics, h2SNP was estimated on 528 
a liability scale assuming a sample and population CHIP prevalence of 5%. 529 
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MashR 530 

To nominate potentially associated variants, we leveraged the observation that myeloproliferative 531 
neoplasm (MPN) shared strong germline genetic susceptibility with CHIP30. We used MPN 532 
GWAS summary statistics from Bao, et al. 30, and applied mashR (Multivariate Adaptive 533 
Shrinkage in R)34 to 6,749,139 variants across MPN, CHIP, DNMT3A, and TET2 using the 534 
exchangeable Z statistic model. Briefly, we fit the empirical Bayes prior by using the maximum 535 
SNP across each of the 1,703 linkage disequilibrium (LD) blocks specified in Pickrell, et al. 76 and 536 
used a random sampling of 40,000 SNPs to estimate the relative abundance of each pattern in the 537 
overall data set. Armed with this prior information, we then estimated the likelihood and computed 538 
posteriors on all variants.  539 

 540 

Statistical fine-mapping 541 

To infer putative causal variants in the associated loci, we conducted LD-informed statistical fine-542 
mapping. We derived the LD-matrix of tested variants in each locus using UK Biobank imputed 543 
dosage of European ancestries by LDstore2 software (version 2.0)77. Using derived LD-matrices, 544 
we applied statistical fine-mapping using the summary statistics obtained from the European meta-545 
analysis (only included GWAS of EUR samples from UKB, TOPMed, MGBB, BioVU) by 546 
FINEMAP software (version 1.4)24. To obtain consistent statistical power for each variant, we 547 
only kept variants tested in at least 200,000 individuals.  548 

 549 

Similarity-based gene polygenic prioritization of causal genes  550 

We implemented PoPS to leverage the full genome-wide signal for nominating causal genes. 551 
Details of these methods have been described elsewhere25. Briefly, PoPS is a novel similarity-552 
based gene prioritization approach that assesses the polygenic enrichments of gene features, 553 
including cell-type-specific gene expression, protein-protein interaction networks, and biological 554 
pathways, through training linear models to predict gene-level association scores from those 555 
features and converting the gene p-values from the linear models to Z-scores that reflect the 556 
confidence on its causal role to the given locus. We used the summary statistics of UKB CHIP, 557 
DNMT3A, and TET2 GWAS and the same LD reference panel of 191k UKB samples used in 558 
COJO analysis. In total, 57,543 features were considered for analysis, and those who passed 559 
marginal feature selection were carried forward to the linear models for computation. We 560 
computed a PoPS score for all protein-coding genes within a defined 500kb window around each 561 
of the significant genomic regions and prioritized the gene with the highest PoPS score in each 562 
locus. 563 

 564 
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Mendelian randomization  565 

All procedures for the MR analysis between CHIP and CAD were consistent with current 566 
recommendations for MR studies78. IVs detected in European-only CHIP GWAS were used for 567 
this causal analysis. While genetic predispositions for CHIP overlap with those for LTL, previous 568 
MR studies support inverse causality for LTL on CAD79, implying complex causal relationships 569 
between CHIP, LTL, and CAD23. Thus, we carefully selected instrumental variables (IVs) to avoid 570 
clear violations of MR assumptions by excluding IVs 1) associated with known confounders 571 
between CHIP and CAD, including hypercholesterolemia, hypertension, type 2 diabetes, body 572 
mass index, smoking status, or 2) having more robust associations with LTL than with CAD, and 573 
3) having inverse effect sizes for LTL and CAD, accounting for the inverse causal association 574 
between LTL and CAD. We used CAD GWAS summary statistics from 575 
CARDIOGRAMplusC4D80 for the outcome (last accessed March 2022; downloaded from:   576 
http://www.cardiogramplusc4d.org/). We downloaded summary statistics from OpenGWAS 577 
project81,82 for excluding IVs which strongly (P<5×10-8) associated with known confounders 578 
between CHIP and CAD, including hypercholesterolemia (ukb-b-12651), hypertension (ukb-d-579 
I9_HYPTENS), type 2 diabetes (ebi-a-GCST007518), body mass index (ukb-b-2303), smoking 580 
status (ukb-b-20261). We used the full summary statistics for LTL GWAS from the previous study 581 
in UKB to inspect the association with LTL79. Since we do not have many SNPs that pass through 582 
the genome-wide significance, particularly for TET2, we used the multi-ancestry meta-analysis of 583 
DNMT3A and TET2 CHIP summary statistics and MR using the robust adjusted profile score (MR-584 
RAPS), which allows for the inclusion of weak IVs42, as the primary method. We performed 585 
sensitivity analyses using inverse-variance weighted (IVW)83, weighted median83, weighted 586 
mode84, MR-Egger85, and MR-PRESSO86 methods available in the TwoSampleMR82 package in 587 
R. For all MR methods except for MR-RAPS, genome-wide significance (P<5×10-8) was 588 
considered as the criteria for the IV assumption of robust relevance (the first assumption of MR). 589 
We relaxed this assumption for MR-RAPs to P<1×10-3, 1×10-4, and 1×10-5. IVs were clumped into 590 
independent loci<10 Mb apart and in the linkage equilibrium (R2>0.001 calculated in European 591 
ancestry in UKB) using PLINK (v1.90b6.24)87. Due to the limited availability of CHIP GWAS to 592 
date, we could not use an independent cohort for IV discovery for MR-RAPS and Steiger filtering 593 
to avoid the potential "winner's curse". 594 

 595 

PheWAS analysis 596 

The PheWAS of CHIP and mCAs with incident phenotypes across all disease organ system 597 
categories were performed using Cox proportional hazards models, adjusting for age, age2, sex 598 
(not used for ChrY and ChrX mCAs analysis), smoking status (using a 25-factor smoking status 599 
adjustment in the UKB and current/prior/never smoker status in other cohorts), tobacco use 600 
disorder, and principal components 1-10 of genetic ancestry. The primary comparative analysis 601 
was conducted among individuals from UKB who had both CHIP and mCAs calls available. 602 
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Additionally, in the secondary analysis, mCAs associations were meta-analyzed across the multi-603 
ancestry study population of UKB, MGBB, BioVU, and MVP. Time since DNA collection was 604 
used as the underlying timescale. The proportional hazards assumption was assessed using 605 
Schoenfeld residuals and was not rejected. Individuals with a history of hematological cancer 606 
before DNA collection were excluded. To address multiple testing, an association between CHIP 607 
or mCAs and incident health outcomes with FDR<0.05 was considered significant. Analyses of 608 
incident events were performed separately in each biobank using the survival package in R (version 609 
3.5, R Foundation). Meta-analyses of the mCAs results were performed using a fixed-effects 610 
model from the "meta" R package. 611 

 612 

CHIP associations at the cell-type level 613 

scDRS group analysis was used to assess the polygenic associations of CHIP, DNMT3A, and TET2 614 
at cell type and tissue level. Details of the methods have been described elsewhere31. Briefly, 615 
scDRS is a novel statistical method that associates individual cells in a scRNA-seq data to a trait 616 
GWAS based on the aggregate expression across a set of putative GWAS trait genes, assessing 617 
statistical significance using appropriately matched control genes; furthermore, the scDRS group 618 
analysis computes a p-value for a cell group (e.g., cell type or tissue) based on the association of 619 
cells within the given cell group. Following the scDRS guideline, the putative trait gene sets were 620 
constructed as the top 1,000 MAGMA genes, where MAGMA88, an existing gene-scoring method, 621 
was applied to GWASs from UKB participants of European ancestry using a set of 489 unrelated 622 
individuals of European ancestry from phase 3 1000 Genomes Project as an LD reference panel89 . 623 
Two scRNA-seq data sets were used for this analysis: TMS mouse cell atlas44 (FACS data with 624 
110,824 cells, 23 tissues, and 103 cell types with more than 50 cells) and TS human cell atlas45 625 
(FACS data with 26,813 cells, 24 tissues, and 68 cell types with more than 50 cells). Multiple 626 
testing correlation (FDR) was applied to each trait separately across all cell types (103 for TMS 627 
and 68 for TS) or across all tissues (23 for TMS and 24 for TS). To increase power, associations 628 
were considered significant at FDR<0.3, and all suggestive associations with P<0.01 were reported. 629 
Sensitivity analyses were conducted by repeating the analysis using downsampled scRNA-seq data 630 
(to 50K cells) and downsampled putative trait gene sets (to 500 genes) separately, each with 20 631 
repetitions. 632 

  633 
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Data availability 634 

All univariable summary statistics for genotype association with CHIP will be available at the time 635 
of publication. Epigenome annotation tracks: We obtained chromHMM100 tracks from diverse 636 
primary human cells from the NIH Epigenome Roadmap (http://dcc.blueprint-637 
epigenome.eu/#/md/secondary_analysis/Segmentation_of_ChIP-Seq_data_20140811), and 638 
additional immune-specific human primary and cell lines from the Blueprint consortium, 639 
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core640 
Marks/jointModel/final. Whole-blood eQTL summary statistics: Summary statistics from whole-641 
blood cis-eQTL analysis from 31,683 individuals were downloaded from https://eqtlgen.org. Code 642 
used to generate all data in main and supplemental tables and figures will be provided in a publicly 643 
accessible archive at the time of publication. 644 
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Figures 890 

 891 

Fig. 1 | Identifying CHIP in 300,600 whole-genome or whole-exome samples. a, CHIP prevalence increased with the age of the donor 892 
at the time of blood sampling. The centre line represents the general additive model spline, and the shaded region is the 95% confidence 893 
interval (NUKB=200,128 WES; NTOPMed=87,116 WGS; NMGBB=13,356 WES). b, More than 90% of individuals with CHIP had only one 894 
somatic CHIP driver mutation variant identified. c, Proportion of individuals carrying a driver mutation in the ten most frequently 895 
mutated genes in CHIP. d, There was heterogeneity in CHIP clone size as measured by variant allele fraction by CHIP driver gene. 896 
Violin plot spanning minimum and maximum values with median variant allele fraction highlighted by white circles. Information on 897 
BioVU was not included as CHIP call is array-based. CHIP: clonal hematopoiesis of indeterminate potential; WES: whole-exome 898 
samples; WGS: whole-genome samples. 899 
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 907 
Fig. 2 | Genetic determinants of CHIP, DNMT3A, and TET2. Gnome-wide meta-analyses of CHIP identified (a) ten genome-wide-significant (P<1.67e-8) regions for overall 908 
CHIP (n=17,044 cases and n=306,068 controls), (b) ten for DNMT3A CHIP (n=8,949 cases and n=307,971 controls), and (c) six for TET2 CHIP (n=2,851 cases and n=307,527 909 
controls). Previously known loci in blue, and new loci in red. d, Overlap of significant variants from (a-c) with GWAS of myeloproliferative neoplasm (MPN)30, leukocyte telomere 910 
length (LTL)32, and expanded mosaic chromosomal alterations (mCAs)33. Only genome-wide significant (P<5e-8) variants from MPN, LTL, and expanded mCAs GWAS were 911 
considered to compare the overlap with variants from overall CHIP, DNMT3A, and TET2 CHIP GWAS (P<1.67e-8). CHIP: clonal hematopoiesis of indeterminate potential.  912 
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 914 

 915 

 916 
Fig. 3 | Statistical fine mapping in the genome-wide significant loci. a, Regional association plot for ATM locus. X-axis shows genetic 917 
coordinate. Y-axes show -log10 P-value and PPI. b, In-silico functional prediction for putative causal missense variant rs1800057 918 
(ENST00000675843.1:c.3161C>G:p.Pro1054Arg) in ATM gene. c, Regional association plot for PARP1 locus. d, PARP1 expression in 919 
human whole blood by genotypes at rs1527365 (https://gtexportal.org/). The effect allele rs1527365-T is associated with lower 920 
expression of PARP1. NES: normalized effect size. 921 
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 924 

Figure 4. Mendelian randomization for CHIP and CAD using MR-RAPS. MR-RAPS for CHIP and CAD including weak IVs. We 925 
selected IVs using GWAS summary statistics for any CHIP, DNMT3A, and TET2, and filtered out the IVs with 1) associated with known 926 
confounders between CHIP and CAD, including hypercholesterolemia, hypertension, type 2 diabetes, body mass index, smoking status, 927 
or 2) having more robust associations with LTL than with CAD, and 3) having inverse effect sizes for LTL and CAD, accounting for  the 928 
inverse causal association between LTL and CAD.1) more robust association with LTL than CAD, and 2) the opposite directionality of 929 
the effect for LTL and CAD, to avoid potential confounding by LTL. We used CAD GWAS summary statistics from 930 
CARDIOGRAMplusC4D for outcome. CAD: coronary artery disease, CHIP: clonal hematopoiesis of indeterminate potential, IV: 931 
instrumental variable, LTL: leukocyte telomere length, SE: standard error. 932 
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 934 

Figure 5: Heat map of significant associations between CHIP or mCAs and incident conditions from phenome-wide association analysis: (a) Hematopoietic conditions and 935 
neoplasms and (b) Non-hematopoietic/neoplastic conditions. PheCode phenotypes were filtered to those with CHIP or mCA FDR<0.05 among incident phenotypes with at least 936 
5 incident cases. The CHIP and mCA analyses were conducted among the same subset of individuals in the UK Biobank with both CHIP and mCA calls available. All analyses were 937 
adjusted for age, age2, sex (not used for ChrY and Chr X mCA analysis), smoking status (using a 25-factor smoking status adjustment in the UK Biobank and current/prior/never 938 
smoker status in other cohorts), tobacco use disorder, and principal components 1-10 of genetic ancestry. Colors in heat map reflect z-score (beta/se) of associations. * denotes 939 
0.01<FDR<0.05, ** denotes 0.0001<FDR<0.01, *** denotes FDR<0.0001. CHIP: clonal hematopoiesis of indeterminate potential, mCAs: mosaic chromosomal alterations. 940 



 31 

 941 

 942 

Figure 6: Cell type-level associations in TMS. Cell type-level associations in TMS. The x-axis represents scDRS –log10 cell type-943 
level association p-values while the y-axis represents potentially associated cell types (P<0.01) for the 3 traits, ordered by significance. 944 
* denotes FDR<0.3, ** denotes FDR<0.2, and *** denotes FDR<0.1 across all cell types for a given trait. CHIP: clonal hematopoiesis 945 
of indeterminate potential. TMS: Tabula Muris Senis. 946 


