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ABSTRACT 

Spread of transmissible diseases is dependent on contact patterns in a population (i.e. 

who contacts whom). Therefore, many epidemic models incorporate contact patterns within a 

population through contact matrices. Social contact survey data are commonly used to generate 

contact matrices; however, the resulting matrices are often imbalanced, such that the total 

number of contacts reported by group A with group B do not match those reported by group B 

with group A. While the importance of balancing contact matrices has been acknowledged, how 

these imbalances affect modelled projections (e.g., peak infection incidence, impact of public 

health measures) has yet to be quantified. Here, we explored how imbalanced contact matrices 

from age-stratified populations (<15, 15+) may bias transmission dynamics of infectious 

diseases. First, we compared the basic reproduction number of an infectious disease when using 

imbalanced versus balanced contact matrices from 177 demographic settings. Then, we 

constructed a susceptible exposed infected recovered transmission model of SARS-CoV-2 and 

compared the influence of imbalanced matrices on infection dynamics in three demographic 

settings. Finally, we compared the impact of age-specific vaccination strategies when modelled 

with imbalanced versus balanced matrices. Models with imbalanced matrices consistently 

underestimated the basic reproduction number, had delayed timing of peak infection incidence, 

and underestimated the magnitude of peak infection incidence. Imbalanced matrices also 

influenced cumulative infections observed per age group, and the projected impact of age-

specific vaccination strategies. For example, when vaccine was prioritized to individuals <15 in a 

context where individuals 15+ underestimated their contacts with <15, imbalanced models 

underestimated cumulative infections averted among 15+ by 24.4%. We conclude stratified 

transmission models that do not consider reciprocity of contacts can generate biased projections 
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of epidemic trajectory and impact of targeted public health interventions. Therefore, modellers 

should ensure and report on balancing of their contact matrices for stratified transmission 

models.  
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AUTHOR SUMMARY  

Transmissible diseases such as COVID-19 spread according to who contacts whom. 

Therefore, mathematical transmission models – used to project epidemics of infectious diseases 

and assess the impact of public health interventions – require estimates of who contacts whom 

(also referred to as a contact matrix). Contact matrices are commonly generated using contact 

surveys, but this data is often imbalanced, where the total number of contacts reported by group 

A with group B does not match those reported by group B with group A. Although these 

imbalances have been acknowledged as an issue, the influence of imbalanced matrices on 

modelled projections (e.g. peak incidence, impact of public health interventions) has not been 

explored. Using a theoretical model of COVID-19 with two age groups (<15 and 15+), we show 

models with imbalanced matrices had biased epidemic projections. Models with imbalanced 

matrices underestimated the initial spread of COVID-19 (i.e. the basic reproduction number), 

had later time to peak COVID-19 incidence and smaller peak COVID-19 incidence. Imbalanced 

matrices also influenced cumulative infections observed per age group, and the estimated impact 

of an age-specific vaccination strategy. Given imbalanced contact matrices can reshape 

transmission dynamics and model projections, modellers should ensure and report on balancing 

of contact matrices.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.28.22278155doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.28.22278155
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

INTRODUCTION 

Contact patterns (i.e., who contacts whom) are a fundamental component of infectious 

disease transmission dynamics. Such patterns, and the role of highly connected subgroups, can 

determine the size of epidemics, the incidence of infection among subgroups of a population, and 

whether epidemics emerge and persist [1]. Mathematical models are widely used to study 

transmission dynamics and evaluate public health interventions; therefore, such models are often 

structured to consider population and contact heterogeneity [2–6]. 

Models with population and contact heterogeneity require estimates of contact within and 

between subgroups, represented through a contact matrix. Data to generate contact matrices are 

often obtained from contact diaries and surveys, with the POLYMOD social contact study [7] 

among the most commonly used data sources [2–5]. POLYMOD collected data on daily age-

stratified social contacts of almost 8000 individuals across 8 European countries. To enable 

broader application of POLYMOD data, several techniques were then developed to project 

contact matrices to other countries [8–10]. For example, Prem et al. [8,9] used a Bayesian 

hierarchical model with country-specific data on population demographic structure, school 

enrollment, workforce participation, and household makeup to project POLYMOD contact 

matrices to 177 different countries around the world. 

When using empirical contact data to structure the underlying contact patterns in a 

population, analysts must consider the balanced (i.e., reciprocal) nature of contacts [11,12]. In 

reality, the total number of contacts that individuals in subgroup i form with individuals in 

subgroup j must be equal to the total number of contacts that individuals in subgroup j form with 

individuals in subgroup i, such that: 

 ����� � ����� (1) 
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where Cij is the number of contacts an individual in subgroup i forms with individuals in 

subgroup j per day; Ni is the size of subgroup i; and likewise for Cji and Nj. However, perfect 

reciprocity is rarely observed in contact survey data. Imbalances in empirical contact data often 

arise due to measurement error in survey responses (e.g., recall bias or social desirability bias). 

However, even when measurement error is absent, imbalances can arise due to selection bias 

(e.g., differential sampling of subgroups across the network). That is, contact surveys rarely 

sample from closed, perfectly defined networks, and sampling frames are seldom designed to 

reflect network structures [11,12].  

Numerous mathematical transmission models have used contact data from POLYMOD 

and Prem et al., but many lack description of methods to handle the imbalanced (i.e., non-

reciprocal) nature of these matrices [6,13–15]. As such, it is not always clear if and when age-

structured transmission models used balanced or imbalanced contact patterns. Moreover, how 

imbalanced contact matrices affect modelling projections has yet to be quantified. 

We sought to examine how imbalances in contact matrices influence infection 

transmission dynamics using a theoretical, compartmental transmission model of SARS-CoV-2, 

stratified by age. Specifically, we examined if and how imbalanced contact matrices influence 

the estimated: basic reproduction number (R0); temporal epidemic dynamics; cumulative 

infections among age groups; and impact of age-specific vaccination strategies. 

 

METHODS 

Study design  

We conducted an analytic and simulation (mathematical modeling) study to examine three 

key characteristics of a model’s underlying transmission dynamics that can be modified by a 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.28.22278155doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.28.22278155
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

network structure: the basic reproduction number, the temporal pattern of an epidemic, and the 

epidemic size. First, we compared the basic reproduction number R0 of an epidemic in a 

population stratified into two age groups (<15 and 15+) when parameterized with imbalanced 

versus balanced contact matrices across all 177 demographic settings studied by Prem et al. [8]. 

We used contact matrices from Prem et al. to inform parametrization because of their use in most 

SARS-CoV-2 transmission models to date.  

Next, we conducted a theoretical SARS-CoV-2 simulation study using an SEIR (susceptible-

exposed-infectious-recovered) mathematical model in three demographic settings where 

imbalanced contacts reported by 15+ with <15 were a) larger than (Singapore), b) equal to 

(Luxembourg), and c) less than (Gambia) balanced contacts between 15+ and <15. We compared 

the timing and magnitude of peak infection incidence, cumulative infections after one year of 

seeding, and cumulative infections averted in the context of age-specific vaccination strategies 

after one year of seeding, when models were parameterized with imbalanced versus balanced 

matrices. 

 

Age-stratified social contact data 

We obtained age-stratified social contact matrices and population data from Prem et al [8]. 

Raw matrices were imbalanced, and stratified into 16 age groups, with each matrix element, Cij, 

representing the mean number of contacts that a person in age group i reported with a person in 

age group j per day. To simplify our analysis, we transformed the age-structure of the matrices 

into two age groups: individuals less than 15 years of age, and 15 and older. Imbalanced contact 

matrices for these age groups were derived by calculating the population-weighted average 
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contacts per person per day of contributing age groups (e.g. 0-4, 5-9 and 10-14 for the new age 

group <15) from the raw, imbalanced, contact matrices from Prem et al.  

 

Derivation of balanced social contact matrices 

As has been done previously [10,16,17], we estimated the balanced contacts between 

individuals in age groups i and j (C’ij) per day by averaging reported contacts from Prem as 

follows:  

 ���� �
1
2��

������ � �����	 (2) 

 

Derivation of R0  

We used methodology from Diekmann et al. [18] to calculate R0. In brief, R0 is the dominant 

eigenvalue of the next generation matrix (i.e. the number of secondary infectious persons that 

result in each age group). In a population divided into two age groups, the dominant eigenvalue 

is the maximum solution of:  

 �
�,�� � 
�	�
�,�� � 
�	 � 
�,��
�,�� � 0 (3) 

where i and j denote the two age groups (i.e., <15 and 15+), and R0,ij is the number of secondary 

infectious individuals in age group i that result from contact with an infectious person in age 

group j in a completely susceptible population, calculated as: 

 
�,�� �

������

��
 (4) 

where β is the probability of transmission of an infectious disease upon contact, and D is the 

duration of infectiousness. We calculated R0 with imbalanced and balanced matrices from 177 
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demographic settings studied in Prem [8]. We then calculated a relative R0 (RR0) under 

imbalanced versus balanced conditions where:  



� �

�
������	
��


�
����	
��

 (5) 

We assumed the probability of transmission and the duration of infectiousness was constant 

across age groups (and therefore had no impact on the relative reproduction number); thus, our 

estimate of the influence of imbalanced matrices is independent of a specific infectious disease.  

 

SEIR transmission model 

For our simulations, we used a deterministic, compartmental transmission model of SARS-

CoV-2 using a simplified SEIR system. Susceptible individuals transitioned to an exposed health 

state (E) via a force of infection, defined by a probability of contact and probability of 

transmission per contact with a person in the infectious (I) health state. Individuals in the 

exposed health state became infectious (I) after a latent period. After an average period of 

infectiousness, individuals in the infectious health-state moved to the recovered health state (R), 

where they could not be re-infected. Model equations and details are outlined in S1 Appendix 

material (supplementary equations S1 to S4). Table 1 summarizes model parameter values.  

 

Table 1. Model parameters. 

Parameter Symbol Value Source 

Probability of transmission per contact β 0.015 (19) 

Contact rate per day  Cij Supplementary data* (8) 

Duration of pre-infectious (latent) period 1/Ω 5.5 days (20)21) 

Duration of infectious period  1/γ 10 days (22) 
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Population size Ni Supplementary data* (8) 

*Parameter varies by age group. Supplementary data are available at https://github.com/mishra-lab/imbalanced-

contact-matrices. 

 

We made three key assumptions to simplify our model and focus the analysis on the 

influence of imbalanced matrices. First, we assumed the population size was fixed (i.e. the model 

simulates a closed system with no births or deaths) to avoid changes in the probability of contact 

over time. Second, we assumed there were no interventions to mitigate the spread of SARS-

CoV-2 (e.g. isolation of infected individuals, reduction in contacts in response to increases in 

infection rates) as we were interested in isolating the effect of imbalanced matrices rather than 

infection prevention and control strategies. Finally, we assumed the probability of transmission 

of, and duration of infectiousness with, SARS-CoV-2 was fixed across age groups to estimate the 

impact of imbalanced matrices independent of infection properties by age.  

 

Simulation of SARS-CoV-2 transmission  

We simulated SARS-CoV-2 transmission in three demographic settings from Prem et al. [8], 

where imbalanced contacts that 15+ reported with <15 were: larger than (Singapore), equal to 

(Luxembourg), and less than (Gambia) balanced contacts between 15+ and <15 (S1 Fig). Models 

were seeded with 1 individual in the infectious state per age group for all simulations. We then 

compared the magnitude and time to peak incidence, and the percent difference in cumulative 

infections 1 year after seeding, when models were parameterized with imbalanced versus 

balanced matrices. 

 

Transmission impact of a targeted public health intervention 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.28.22278155doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.28.22278155
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

To explore the influence of imbalanced matrices on the impact of prioritized public health 

interventions, we simulated two age-specific SARS-CoV-2 vaccination scenarios in all models: 

one in which vaccines were administered to individuals <15, and another where vaccines were 

administered to individuals 15 and older. We assumed 50% of the vaccinated age group were 

immune prior to seeding, and all vaccinated individuals could not be infected (i.e. were 

permanently immune). We compared cumulative infections overall and per age group in the 

presence and absence of vaccination over 1 year, to calculate cumulative infections averted from 

vaccination. Then, we calculated the percent difference in cumulative infections averted between 

models parameterized with imbalanced versus balanced matrices.  

 

Validation analyses 

To validate robustness of findings, we conducted two additional analyses. First, we assessed 

how imbalanced matrices affected R0 in a population stratified into different age groups: 

individuals less than 40, and 40 and older. Next, we assessed how imbalanced matrices affected 

R0 when biases in raw contact matrices were opposite to original observations from Prem et al. 

[8]. For example, if reported contacts between <15 and 15+ were larger than balanced contacts 

between <15 and 15+ (e.g. Gambia), we forced <15 to underestimate contacts with 15+. We 

conducted this analysis to assess how systematic bias in contact patterns from Prem may have 

influenced our results.  

 

RESULTS 

Imbalance in contact matrices by demographic setting 
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In comparison to balanced matrices, imbalanced matrices from countries with older 

populations overestimated total contacts reported by 15+ with <15 (Fig 1A, red), and 

underestimated total contacts reported by <15 with 15+ (S2A Fig, blue). The opposite pattern 

was observed in countries with younger populations, where contacts reported by <15 with 15+ 

were overestimated (S2A Fig, red) and contacts reported by 15+ with <15 were underestimated 

(Fig 1A, blue). For example, in Singapore (median age 42.2 years) the number of imbalanced 

contacts reported by 15+ with <15 were 1.5 times balanced contacts between 15+ and <15, 

whereas in Gambia (median age 17.8 years), imbalanced contacts reported by 15+ with <15 were 

0.45 times balanced contacts between 15+ and <15. 
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Fig 1. Models with imbalanced contact matrices underestimate R0. (A) Direction and 

magnitude of imbalance in synthetic contact matrix per country. (B) Underestimation of R0 in 

models with imbalanced contact matrices. R0, basic reproduction number; C, population contact 

rate; o, “old”, 15+; y, “young”, <15; imbal, imbalanced; bal, balanced.  
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Influence of imbalanced contact matrix on R0 and epidemic trajectory 

 In comparison to models with balanced matrices, models with imbalanced matrices 

consistently underestimated R0 (Fig 1B, S2B Fig). For example, R0 was 5.7% and 3.1% smaller 

in Gambia and Singapore respectively, when matrices were imbalanced versus balanced. Models 

with imbalanced matrices also underestimated the magnitude of, and had delayed time to, peak 

incidence of SARS-CoV-2 (Fig 2). Peak incidence was most dampened and delayed among the 

age group that underestimated their contacts (i.e., 15+ in Gambia and <15 in Singapore).  

 

 

Fig 2. Bias in SARS-CoV-2 epidemic trajectory overall and among age groups according to 

imbalance in synthetic contact matrix. Models were run among a closed population for 1 year 

in the absence of public health interventions. Models were seeded with 1 infected individual per 

age group. 
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When imbalanced and balanced contacts between 15+ and <15 were similar, there was 

minimal influence on R0 and on the epidemic trajectory of SARS-CoV-2. For example, in 

Luxembourg imbalanced contacts reported by 15+ with <15 were 0.99 times balanced contacts; 

therefore, R0 was nearly the same under imbalanced and balanced conditions (% difference in R0 

= 0.0003%). 

 

Influence of imbalanced contact matrix on cumulative infections after 1 year of 

transmission 

 Models with imbalanced contacts consistently overestimated cumulative infections in the 

age group that overestimated their contacts, and underestimated cumulative infections in the age 

group that underestimated their contacts (Fig 3). For example, cumulative infections were 3.2% 

larger among <15 and 6.7% smaller among 15+ in imbalanced versus balanced models in 

Gambia; whereas, cumulative infections were 1.6% larger among 15+ and 10.2% smaller among 

<15 in imbalanced versus balanced models in Singapore. 
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Fig 3. Imbalanced contact matrices bias estimates of cumulative SARS-CoV-2 infections 

overall and among subgroups. (A) Direction and magnitude of imbalance in synthetic contact 

matrices from Gambia, Luxembourg and Singapore. (B) Percent difference in cumulative 

infections overall, and per age group from models parameterized with imbalanced versus 

balanced contact matrices. One infected individual was seeded per age group per model. 

Cumulative infections were compared one year after seeding in a completely susceptible and 

closed population in the absence of public health interventions. Imbal, imbalanced; bal, balanced. 
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Influence of imbalanced contact matrix on age-specific vaccination strategies 

Imbalanced matrices also directly and indirectly biased projected infections averted from 

age-specific SARS-CoV-2 vaccination strategies (Fig 4). For example, when vaccines were 

prioritized to individuals <15, imbalanced models underestimated infections averted among 15+ 

in Gambia (percent difference = -24.4) and overestimated infections averted among 15+ in 

Singapore (percent difference = 38.8). When vaccines were prioritized to individuals 15+, 

imbalanced models overestimated infections averted among <15 in Gambia (percent difference = 

20.2) and Singapore (percent difference = 25.5).   
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Fig 4. Imbalanced contact matrices bias impact of age-specific SARS-CoV-2 vaccination 

strategies. (A) Percent difference in cumulative infections averted in models parameterized with 

imbalanced versus balanced contact matrices when 50% of population <15 was vaccinated (B) 

Percent difference in cumulative infections averted in models parameterized with imbalanced 

versus balanced contact matrices when 50% of population 15+ was vaccinated. One infected 

individual was seeded per age group, per model. Cumulative infections averted were compared 

one year after seeding in a completely susceptible and closed population, in the absence of 

additional public health interventions other than vaccination. Imbal, imbalanced; bal, balanced. 
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Validation analyses 

Our results were robust to changes in stratification of age groups (S3A Fig). For example, 

imbalanced contacts reported by 40+ with <40 were 1.4 and 0.38 times balanced contacts 

reported by 40+ with <40 in Singapore and Gambia respectively. In these two settings, models 

with imbalanced matrices underestimated R0 by 2.5% and 5.4% respectively.  

Results were also robust to assumptions regarding which age group over- or 

underestimated their contacts (S3B Fig). For example, when we forced imbalanced contacts 

reported by 15+ with <15 to be 0.48 and 1.6 times balanced contacts between 15+ and <15 in 

Singapore and Gambia respectively (i.e. opposite the original imbalance direction observed in 

Prem et al.), models with imbalanced matrices still underestimated R0 by 3.0% and 5.8% 

respectively.  

 

DISCUSSION 

Using a combination of analytic and simulation methods, we found that the use of 

imbalanced contact matrices reshaped the underlying transmission dynamics of SARS-CoV-2. 

Models with imbalanced matrices consistently underestimated R0, leading to: 1) biased time to, 

and magnitude of peak infection incidence, 2) biased estimates of subgroup specific cumulative 

infections, and 3) biased impact of age-specific SARS-CoV-2 vaccination strategies. Biases 

resulting from imbalanced matrices persisted as we varied age group definitions, and as we 

transformed assumptions regarding which age group over- or underestimated their contacts per 

demographic setting. 

The finding that R0 is always smaller when models are parameterized with imbalanced 

versus balanced matrices can be explained mathematically. In simplifying equation 3, we see that 
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R0 is monotonically related to the product of R0,ij and R0,ji (proof provided in S1 Appendix; 

supplementary equations S5 to S8). We can also see that R0,ij and R0,ji are proportionate to CijNi 

and CjiNj, respectively (i.e., equation 4). Following the isoperimetric theorem for rectangles, 

given a fixed sum of population contacts between age groups i and j (i.e., CijNi + CjiNj), the 

product of CijNi and CjiNj will be maximized when CijNi = CjiNj (i.e., equation 1; conditions for 

balanced mixing). Since we assumed all other parameters in equation 4 were fixed across age 

groups, and the sum of population contacts was constant between imbalanced and balanced 

matrices (i.e., equation 2), the product of R0,ij, and R0,ji will maximize when CijNi and CjiNj are 

equal. Therefore, under our model and assumptions, R0 will always be largest under balanced 

conditions.  

It may also be intuitive that biases in cumulative infections per age group are related to biases 

in contact patterns from imbalanced matrices. The number of infections among subgroup i is 

dependent on the “force of infection” (��):  

 
�� �


�����
��

�

�����
��

 

(5) 

As Cij increases or decreases, the force of infection among subgroup i will also increase or 

decrease, as will the number of infections observed within the subgroup.  

Given infection transmission dynamics were biased by imbalanced contact patterns, it was 

expected that they would also bias impact of subgroup specific public health interventions. This 

is because biases in contact patterns influence both risk of infection acquisition and transmission 

potential once infected. That is, if a model underestimates contacts that subgroup i makes with 

subgroup j, the model also underestimates the transmission potential of subgroup j to subgroup i. 

This was most notable when vaccine was administered to 50% of the population <15, where 

models that underestimated transmission potential of <15 underestimated infections averted 
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among 15+ (i.e. Gambia) and models that overestimated transmission potential of <15 

overestimated infections averted among 15+ (i.e. Singapore). Counterintuitively, when vaccine 

was administered to 50% of the population 15+, imbalanced models overestimated infections 

averted among <15 in both Gambia and Singapore (i.e. regardless of direction of bias in 

transmission potential of 15+). We hypothesize imbalanced models from Singapore 

overestimated infections averted among <15 (despite underestimating transmission potential of 

15+) because of indirect bias in infection transmission dynamics. In addition to underestimating 

transmission potential of 15+, imbalanced models from Singapore overestimated transmission 

potential of <15. Therefore, in the absence of vaccination, there were more infections observed 

among 15+ in imbalanced models from Singapore. This provided more opportunity for 

vaccination to stop transmission of infection from 15+ to <15.  

To our knowledge, this is the first study to quantitatively assess bias associated with 

imbalanced contact matrices on compartmental models of infectious diseases. Our work builds 

on a previous study by Arregui et al. that demonstrated the way in which contact matrices are 

balanced and projected to new demographic settings can influence the epidemic trajectory 

observed [10]. The issue of non-reciprocity has been well-recognized in survey data on sexual 

partnerships, where various methods have been developed to balance sexual partnerships, and 

balancing is an established component of the modeling of sexually transmitted infections 

[11,23,24]. However, the importance of balanced contacts has been less discussed, nor 

established, as part of standard practice and reporting of transmission modeling studies with non-

sexually transmitted infections [25]. Given imbalanced matrices can create error in model 

projections, and models with population heterogeneity are increasingly used to inform public 
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health decisions [26–28], modellers should ensure and report on balancing of their contact 

matrices. 

 

Limitations 

The simplicity of our model allowed us to quantitatively assess and interpret the impact of 

imbalanced versus balanced matrices irrespective of other infection transmission parameters. 

However, our results may vary when studied in open populations (with births, deaths and/or 

movement of individuals) or when considering infection prevention and control measures such as 

school closures or isolation procedures. Bias may also vary when considering heterogeneity in 

biological characteristics, such as immunity to infection, duration of infectiousness, and 

probability of transmission once infected. For example, we assumed the probability of 

transmission and duration of infectiousness was constant across age groups. If older individuals 

were more likely to transmit SARS-CoV-2 than younger age groups, and had a longer duration 

of infectiousness, they would have greater transmission potential and we may see even greater 

bias in models that overestimate contacts that <15 made with 15+.  

Differences in epidemic dynamics between models with imbalanced versus balanced 

matrices are also inherently dependent on the method used to balance a contact matrix. We used 

a population weighted average of reported contacts given the matrices were synthetic [8]. 

However, when using survey data [e.g., POLYMOD [7]], it is more common to calculate 

respondent weighted averages of population contacts [10], or use statistical techniques to infer 

patterns across the population according to participant demographic information [12]. This may 

change the extent to which raw contacts are considered imbalanced, and thus the magnitude and 
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direction of bias in SARS-CoV-2 R0, epidemic trajectory, cumulative infections per subgroup, 

and impact of prioritized public health interventions.  

 

Conclusions 

 We show that compartmental models of infectious diseases parameterized with 

imbalanced contact matrices may produce biased estimates of initial epidemic characteristics 

(e.g., R0), epidemic trajectory (e.g., timing and magnitude of peak infection incidence), 

cumulative impact on populations (e.g., cumulative infections per age group), and impact of 

prioritized public health interventions. To avoid biases in projections, stemming from how the 

model is parameterized, modellers should account for and report reciprocity of contact matrices in 

their stratified transmission models. 
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