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Abstract

Predicting the trajectory of rare degenerative diseases can be extremely beneficial,

especially when these predictions are personalised to be relevant for a specific

patient. These predictions can help inform and advise patients, families, and

clinicians about the next stages of treatment and care. Obtaining such predictions,

however, can be challenging, especially when data is limited. In particular, it is

important that these predictions do not rely too heavily on general trends from the

wider afflicted population while not relying exclusively on the, potentially sparse,

data from the patient in question. We present a case study, wherein a modelling

framework is developed for predicting a patient’s long term trajectory, using a mix

of data from the patient of concern and a database of previously observed patients.

This framework directly accounts for the temporal structure of a patient’s trajectory,

effortlessly handles a large amount of missing data, allows for a wide range of

patient progression, and offers a robust quantification of the various uncertainties.

We showcase this framework to an example involving Duchenne Muscular Dystrophy,

where it provides promising results.
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Introduction

Degenerative diseases cover a wide class of conditions where the state of a patient
deteriorates over time. These are often genetic, or have genetic components, and often
have no known cure, with only treatments to slow the progression or mitigate the
symptoms. Examples include cystic fibrosis1, Huntington’s disease2, Alzheimer’s3,
spinal muscular atrophy4, and multiple sclerosis5. These diseases are often not
completely understood, but due to their chronic nature, improved treatment and prognosis
can have a great impact on a patient’s quality of life. As such, statistical modelling of
these diseases can be valuable as it can aid understanding of these diseases, at least
with regard to their general trajectory, reaction to treatments, and how different patients
experiences can differ. This can be especially valuable for personalised medicine, as data
on the patient in question, instead of only data on the wider affected population, can be
used to tailor treatments and predictions.

Modelling of these diseases, however, can be challenging. The trajectory of a patient
can be complex, and so standard linear assumptions over time can be insufficient. This
can be characterised by non-monotonic disease progression, such as biphasic slow (or
non-existent) declines in health followed by fast declines. This issue is confounded by
the fact that many degenerative diseases are rare, and so data can be limited, which makes
it difficult to learn complex relationships from the data. Similarly, the disease progression
trajectories are heterogeneous, i.e. the trajectory of one patient with the disease can vary
massively to the trajectory of another. For example, one patient could have a relative
period of stability followed by a sharp decline, while another patient could deteriorate
slowly but consistently. Learning all trajectories, for all patients, can be difficult without
an abundance of data on each patient. Furthermore, because the trajectories can be
complex in shape, it is desirable to have data in all stages (of interest) of the diseases,
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however this is often not the case as data can be lacking for some or all patients. For
example, perhaps the early symptoms of a disease relate strongly to the final outcome,
but data on these early symptoms may very well be limited, with only a few patients ever
being observed so early. Alternatively, perhaps a sharp decline exists for most patients
after a certain time point, but if no data is available after this time point, most models
will struggle to capture this sharp decline.

Many different strategies exist in the wider literature for modelling disease
progression. There are several features that need to be directly captured, or controlled
for, by such a model. One important feature is time; degenerative diseases progress over
time, and so how this relationship is captured is core to any degenerative disease model.
Another key feature is inter-patient variability; these trajectories can differ for different
patients, and so there needs to be some way of accounting for that. Treatments also need
to be captured, as they can have a big impact on the resulting trajectories.

One strategy is to learn a small set of representative trajectories, and then classify
patients as belonging to one of these trajectory ‘classes’6,7. This can be effective, and
it can also be intuitive and easily explainable - non-statisticians can be made familiar
with the different classes of patients. When classifying a patient, uncertainty can also
be provided via probabilities of belonging in each class. Treatments can also have an
impact on which class each patient falls into. The downside is that less of the individual
variability is captured. If a patient doesn’t fit well into any of the trajectory classes, in
general they will still be allocated a class (the one they are most similar to). Similarly, a
patient might fit well into one class to begin with, but diverge later. This is especially
likely if treatments given to the patient change over time. As such, these clustering
methods are well-suited for stratification, that is, describing a disease more generally,
and providing simplified (generic) predictions for a given patient, but they can struggle
with more precise and personalised modelling goals.

Another option is to perform regression, rather than classification. This requires a
carefully planned structure for the various features, and there is a wide range of possible
modelling decisions. Time can be explicitly modelled, or time (age) can be included
as a covariate to be regressed on. Including time as a covariate can be easier, making
use of more of the wider regression methodology. Explicitly modelling time requires a
careful choice for the model of time, such as a state-space model or a hidden Markov
model, but it ensures a causal directionality. Additionally, when predicting the future,
explicitly modelling time helps ensure uncertainty grows over time. Similarly, inter-
patient variability can be explicitly modelled (to varying degrees), ignored entirely, or
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separate models can be made for each patient. Fitting separate models relies on having
sufficient data on each patient, and does not provide (or make use of) any population-wide
information. It does however ensure each patient receives a fully-personalised model. A
fully general model, ignoring patient variability, does not provide the personalised care
that patients with chronic disease need. It does however make use of population-wide
information, and does not need sufficient data on any specific patient. Modelling inter-
patient variability can be the preferred outcome, making use of random effects (also
known as partial pooling), wherein parameters are personalised, but a global distribution
for them is learnt. However, knowing what random effects to include can be difficult,
and depends on the type of model used. Including treatments then depends on the other
modelling decisions. If time is included as a covariate, it can be difficult to include
treatment effects that change over time, at least not without massively increasing the
dimensionality of the problem.

For example, Alzakerin et al.8 used second order autoregressive models (AR(2)) to
model Huntington’s disease. This is a model that explicitly models time, but separate
models are used for each patient. Evers et al.9 used Dynamic Linear Models (DLMs) to
model Parkinson’s. In this case, time is again explicitly modelled, with separate models
again for each patient, but certain parameters in the models (the trend between each
time step, and the variances) are made the same. Severson et al.10 used hidden Markov
models for disease progression, with the disease able to progress between different latent
states over time. In this model, these latent states are different for each patient, but the
parameters controlling the random processes are the same between patients, with the
exception of an additive inter-patient random-effect term and a personalised parameter
for the effect of treatments. This type of model does assume there are discrete states of
health, which may not always be reasonable.

Other models regress on time (or age), providing a functional form for the trajectory.
This form needs to be chosen well to ensure the relevant relationships are captured.
Hamuro et al.11 outlined several simple functional forms for Duchenne Muscular
Dystrophy (DMD). Some of these are polynomial, while others are made up of pre-
defined piecewise linear regressions. Some of these models include random effect
parameters. Simple functional forms like this can be data-efficient, but overly simplistic
forms rely heavily on prior-expertise and are limited in scope. Schulam and Saria12

used a combination of simple parametric and spline terms for hierarchically modelling
population, sub-population, and individual trajectories. Gaussian Processes are then
also used for each patient, providing structured uncertainty that grows further away
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from data, imitating the effect one would get from explicitly modelling time. This is a
promising strategy, and whilst an explicit model for time might be preferable, especially
if predictions of the future are desired, it does show that the alternative, when done well,
can also be useful.

Another strategy is to make use of differential equation models, using data to estimate
the various parameters. Lennie et al.13 made use of an ordinary differential equation
for DMD, with some of the parameters allowed to vary for different patients. Monte
Carlo Markov Chain is then used to estimate the various parameters. This idea relates
to Uncertainty Quantification (UQ), where a complex numerical model for a system (in
this case, a degenerative disease) can be developed, making use of knowledge of the
underlying processes involved. Statistical methodologies can then be used to estimate
model parameters, accounting for the various uncertainties Such practice is common in
many fields of science, including climate14, engineering15, epidemiology16, and indeed
healthcare17. This is perhaps the gold standard for modelling, but it can require an
incredible amount of understanding about the underlying processes, and because of the
complexities of these processes (and thus models), estimating the various parameters can
become challenging18.

Another relevant technique is deep learning models (such as neural networks). These
can be used in many disease modelling strategies, and can be beneficial because of
the complex relationships involved19. However, such methods usually require a relative
abundance of data to perform well, and with rare diseases this is not always the case.
Similarly, the lack of well-calibrated uncertainty from these models can be concerning,
especially with regard to degenerative disease care.

In this paper, we outline a DMD case study which serves to exemplify a modelling
framework that we have developed. Our modelling framework is based on DLMs and
takes some of the best attributes from various modelling approaches. This includes
explicitly modelling time, which allows for a patient’s treatment to change over time
and allows for comprehensive uncertainty estimates for future prediction. We provide
personalised models for each patient, while still drawing information between patients
via extensive use of partial pooling. We have enough complexity to capture the various
relationships, but the methodology is also simple enough to be explainable and easily
generalised. We can also model multiple clinical metrics at once, incorporating the
structure between these, which is not always (easily) possible with some trajectory
modelling approaches (especially those methods which do not make use of latent
disease states). Additionally, because our approach is based on DLMs, we separate
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observational noise from structural variability, allowing more complex trajectories than
our parametrisation would usually allow, and we can easily accommodate missing
observations.

A description of our modelling framework is given in Section . Afterwards, this
framework is applied to an example involving DMD in Section , before finishing with
concluding remarks in Section .

Methodology

In our modelling framework, observations are modelled as:

y
(k)
i,t ∼ N

(
θ
(k)
i,t − β

(k)
i ϕ∗

i,t + ϵ
(k)
i,t , τ

(k)
obs,i

)
, (1)

with i representing the individual patient, t representing time, and k indexing the
clinical outcome of interest. This treats the observations as coming from several distinct
latent state variables. Together, these latent state variables control what the ‘true’ value
is for the observation. The standard deviation, τ

(k)
obs,i accounts for the presence of

observational noise and random fluctuations around the latent ‘true’ value. With this,
the ‘true’ value progresses over time, and we occasionally take measurements, which we
observe with some error. Missing data does not prevent the existence of the latent states,
it only means that there is no observation of y(k)i,t for a given i, t, and k. Whilst we assume
normality for the observations here, this need not be the case more generally, and other
distributions can be used instead.

The first latent state, θ(k)i,t , represents the healthy state of the patient. Over time, this can
progress (for example, because the physical abilities of the patient in question improve
as they reach maturity). This latent state broadly controls how the patient would perform,
were they healthy and did not have the degenerative disease. Mathematically, we model
θ
(k)
i,t as

θ
(k)
i,t = α

(k)
i θ

(k)
i,t−1 + δ

(k)
i . (2)

Here, δ(k)i controls how much the patient improves by over time, but α(k)
i allows this

improvement to level-off over time (as the patient reaches maturity).

The next latent state, ϕ∗
i,t, represents the progression of the degenerative disease.

This latent state is subjected to a positive constraint transform, specifically the softplus
transform, which is common in many machine learning tasks:
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ϕ∗
i,t = log(1 + exp(ϕi,t)). (3)

This transform ensures that the effect from the disease is always of the same sign (and so
can be forced to only negatively affect the patient).

The underlying ϕi,t disease state then progresses as:

ϕi,t = ϕi,t−1 +∆i − Γixi,t. (4)

ϕi,t progresses linearly over time at a rate of ∆i, although, due to the way it interacts
with the non-linear healthy state, this can still result in more complex declines in patient
wellbeing being captured. Similarly, because of the softplus transform, the negative
effects from the disease can have a delayed onset, as negative values of ϕi,t only result in
ϕ∗
i,t getting increasingly close to zero, and so a very negative value for ϕi,0 corresponds

to a long lag before any (measurable) effects from the disease manifest. Γixi,t is a
simple regression term representing the impact of various interventions and treatments.
xi,t are the actual treatments administered. These can be binary or categorical variables,
representing which treatments are administered, or continuous variables (such as how
much of a drug is given). Γi then captures a patient’s responsiveness to a specific
treatment. With Γixi,t, the treatments can slow the progression of the disease, and the
treatments can change over time.

The final latent component is then ϵ
(k)
i,t

ϵ
(k)
i,t ∼ N

(
ϵ
(k)
i,t−1, τ

(k)
innov,i

)
. (5)

This is simply a random walk term, which captures any localised trajectory changes
a patient might experience. In this way, each patient is allowed to progress in a more
complex way than the equations above would allow, and said complexity would not be
assumed to be observational error. It might be expected that we include these random
‘innovations’ in the equations for both θi,t and ϕi,t, but we find in practice that this can
cause identifiability issues between the two.

The above equations outline a personalised model for any given patient, for any amount
of time, for any amount of clinical outcomes. However, there is not always enough
data on each given patient to allow such a complex models to be fit. This requires
us to make use of data from multiple patients in the prediction for any given patient.
However, we specifically do not want to make global, population-based predictions; we
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are still interested in personalised predictions. It was with this in mind that the above
equations were designed, and to tackle this issue we make heavy usage of random effects,
or ‘partial-pooling’. Each of the parameters outlined above controls a specific property
of a given patient, and so, because there is still an overarching pattern of trajectories
amongst patients with the same degenerative disease, these parameters should be similar
between different patients. This similarity may be very weak, or it may be very strong,
but importantly this allows us to capture some information contained within the wider-
population’s data that is relevant for individualised predictions.

As such, we aim to learn what the population-wide distribution is for each of the
outlined parameters, which facilitates the estimation of patient-specific parameters.

For example, β(k)
i , which is the one parameter not yet discussed, controls the scaling

for the disease state for each observed clinical outcome. If a deteriorating patient resulted
in an increasing metric for one clinical outcome, but a decreasing metric for another, then
the disease state would need to be given a different sign for each. β(k)

i allows for this,
along with varying magnitudes of impact.

This scaling parameter, β(k)
i , which controls the general relationship between different

clinical outcomes, should be very similar for all patients. If a deteriorating disease state
is related to a declining lung capacity in one patient, then we would expect this same
relationship to hold for a different patient (to some degree). With this in mind, we aim to
learn what the overall average value for this parameter is, and how much this parameter
varies across the population:

(
β
(1)
i , . . . , β

(K)
i

)
∼ MVN

(
µβ ,Σβ

)
. (6)

Here, we jointly model all the β
(k)
i values for the ith patient with a multivariate

normal distribution. If the diagonal entries of Σβ are very small, then all patients have
a very similar value for the β

(k)
i values (approximately µβ). If the diagonal entries

of Σβ are very large, then each patient has a very different value for β
(k)
i . This

allows us to give each patient their own value for β
(k)
i , even with a limited number

of data points for each patient, because some information about β
(k)
i can be shared

between patients. Additionally, by using a multivariate normal distribution, we capture
correlations between the β

(k)
i values for different clinical outcomes. We would expect

the impact of the disease to have a similar effect on the different clinical outcomes, and
so it is sensible to have the outcome-specific parameters be correlated as well.
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Note that the first β(k)
i (when k = 1) can be set to 1, without any required estimation,

as the scaling of ϕi,t itself renders it redundant.

The same approach can be applied to other parameters within the model. With α
(k)
i ,

we want to constrain the value to within (0, 1). To do so, we make use of the logistic
transform, which is often used in logistic regression to convert continuous numbers into
probabilities.

(
logit(α

(1)
i ), . . . , logit(α

(K)
i )

)
∼ MVN

(
µα,Σα

)
, (7)

We constrain α
(k)
i to be between 0 and 1 because negative values cause oscillations in

the patient’s natural clinical outcome, and greater than 1 causes the clinical outcome to
naturally increase exponentially. These attributes may be possible in other situations, but
in this work we do not consider it realistic.

To improve identifiability, we also add constraints to the rate of disease progression.
We constrain ∆i to be positive, which forces the disease state to naturally increase
over time, representing the progression of the disease. This constraint is not completely
essential, as if the disease state instead decreased over time, then the β

(k)
i coefficients

could flip sign to accommodate this. Of course, as is, we have to carefully choose which
clinical outcome is the first outcome (k = 1), because if that outcome does not have a
respective β(k)

i value, then the disease state must have a negative impact on that outcomes
values. This should not be difficult, but it is an important point to remember. For the
positive constraint, we make use of the softplus transform.

log(exp(∆i)− 1) ∼ N
(
µ∆, σ∆

)
. (8)

Note that this parameter is modelled with a univariate normal distribution, as it is
global across all clinical outcomes.

We also add constraints to the treatment effects Γi. When the amount of data is low,
and the variety of treatment plans in the data set is low, then it can be easier for a model
to simply learn that increased treatments are correlated with worse patient outcomes.
This obviously is the incorrect direction of causality, and is not desirable. The explicit
time structure of our model should avoid this, but with observational data (rather than
experimental data), where the variety of treatment plans and the density of data can both
be low, it can still be possible for the model to struggle. Constraining the treatment effects
to be non-negative, whilst crude, forces the model to learn the more interesting structures
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present in the other latent states. This results in the following equations for Γi,p, where p
indexes the individual treatment effects.

log(exp(Γi,p)− 1) ∼ N
(
µΓp , σΓp

)
. (9)

One parameter where it would not be sensible to perform partial-pooling (at least
not directly) is δ

(k)
i . Whilst δ(k)i does control for a specific property of a given patient

(the rate of natural improvement the patient would otherwise experience), the actual
numerical values for δ(k)i are somewhat meaningless. This is because there is a strong
interaction with the parameter α

(k)
i , which controls the shape of the patient’s natural

progression. A large value for δ(k)i would usually mean very fast natural change in the
patient, but if α(k)

i were 0, then it would actually result in no natural change over time
for the patient. As such, without knowledge of α(k)

i , the value of δ(k)i does not have any
intuitive interpretation, and the values of δ

(k)
i for different patients may not have any

similarities. A solution to this, is to instead relate the values of θ(k)i,t at a certain time. If,
for example, we were to choose some sufficiently late enough time, where all patients
would be expected to be fully mature, then this value has an interpretation, and this value
should have some interpretable correlation between patients. We can then use this, as
well as the value of α(k)

i to back-infer what the value of δ(k)i is.

In other words, we say:

(
θ
(1)
i,Mature, . . . , θ

(K)
i,Mature

)
∼ MVN

(
µθMature

,ΣθMature

)
. (10)

We can then see how θ
(k)
i,Mature relates to δ

(k)
i by simply iterating Equation (2):

θ
(k)
i,Mature = δ

(k)
i + α

(k)
i δ

(k)
i + α

(k)
i

2
δ
(k)
i + ...+ α

(k)
i

T−1
δ
(k)
i + α

(k)
i

T
θ
(k)
i,0 (11)

where T is the number of timesteps needed to reach maturity (this will need some clinical
insight, in this work we assume age 20 for T). We can then see that this is in fact a
geometric series (plus an additional term):

θ
(k)
i,Mature = α

(k)
i

T
θ
(k)
i,0 +

T−1∑
t=0

δ
(k)
i α

(k)
i

t
. (12)
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Which then has a known analytic formula:

θ
(k)
i,Mature = α

(k)
i

T
θ
(k)
i,0 + δ

(k)
i

1− α
(k)
i

T

1− α
(k)
i

, (13)

and so we can obtain the value for δ(k)i :

δ
(k)
i =

(
θ
(k)
i,Mature − α

(k)
i

T
θ
(k)
i,0

) 1− α
(k)
i

1− α
(k)
i

T
. (14)

The observational and innovation standard deviations, τ (k)obs,i and τ
(k)
innov,i are both

modelled using truncated normal distributions (truncated to be positive):

τ
(k)
obs,i ∼ Truncated−Normal

(
µobs, σobs

)
. (15)

τ
(k)
innov,i ∼ Truncated−Normal

(
µinnov, σinnov

)
. (16)

To finish the model framework, we then also have to estimate the initial values for the
latent states, for all patients:

(
θ1i,0, . . . , θ

K
i,0) ∼ MVN

(
µθ0 ,Σθ0

)
, (17)

The initial disease state has a similar issue as δ(k)i , in that the numerical value for ϕi,0

can be less meaningful, although this issue is not as severe as it is for δ(k)i . If the initial
disease state is negative, this represents a partial delay for the onset of symptoms. The
length of this delay, however, depends on the rate of disease decay, ∆i. As such, we
choose to model the time when the disease state ϕi,t would reach zero in the absence of
any treatments, t†i , rather than ϕi,0 directly (which, with the softplus transform, is when
the gradient of ϕ∗

i,t would reach 0.5):

t†i ∼ N
(
µϕ0

, σϕ0

)
. (18)

We can then easily get the value for ϕi,0 from −t†i ∗∆i (because ϕi,0 +∆i ∗ t†i = 0).
Here we can see that it’s not too difficult to conceptualise what ϕi,0 represents, but t†i
is slightly more interpretable when there is a delay to the symptoms’ onset, and so we
choose to mode, this instead.
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Collectively, this outlines the general framework for modelling individual patient
trajectories. Specific changes can also be made where clinical knowledge is available,
and where specific clinical outcomes or treatment effects require it. From here, given
a data set, the various hyperparameters in the system can be estimated (either via
maximising the likelihood, or via MCMC, or otherwise), providing a model that can
produce individualised predictions for the patients, and a model that also contains an
understanding of the global patterns amongst the patients.

Application - DMD

To showcase this modelling framework, we consider an example involving Duchenne
Muscular Dystrophy (DMD)20. DMD is a degenerative disease which causes muscles to
weaken, leading to progressive walking difficulties, loss of deambulation, respiratory
insufficiency, among other symptoms. The disease predominantly affects boys, and
results in very early death, around the ages of 20-30. This disease is genetic, and there is
no-known cure, although treatments do exist21.

The progression of the disease can vary wildly between different patients7. This
increases the difficulty in providing support for those affected, not only as it can impact
the optimal treatment plan, but because general guidance for family is hindered. For
example, when a wheelchair may be required can be an important moment in the care
of the affected, and preparing for such a moment can be taxing, both logistically and
emotionally. This large degree of variation can also complicate clinical trial planning and
interpretation

With a wide range of potential trajectories in the population, being able to provide
personalised predictions for the health of a specific patient can be valuable, both for
clinicians, and those who have to live with the condition.

We have access to a database of anonymised clinical records of patients with DMD, via
the NorthStar Clinical Network Database (https://www.northstardmd.com). The dataset
contains over a thousand patients, although the quality and quantity of data on each
patient varies considerably.

Included within this dataset are several gradings of a patient’s ability to perform certain
tasks, graded on a three-point scale. These tasks include the patient’s ability to walk,
stand on one leg, climb a box, and other such tasks. Collectively, these can be combined
into an overall assessment of the patient’s motor skills, called the North Star Ambulatory
Assessment score (NSAA), which varies from 0 to 3422. This is a very valuable resource,
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as it is a single metric which summarises a patient’s function, and is common enough to
result in a widespread data set, including as a primary endpoint in clinical trials. We also
have access to other information about patients, including age, height, weight, the various
treatments they are on, and some other measurements from the patients.

With NSAA as our primary measurement, we can use the model outlined in section
to capture the population-wide trends, but we can also obtain patient-specific models,

and therefore patient specific predictions, for NSAA. Note that, technically, NSAA is a
discrete variable, only allowing whole numbers between 0 and 34. This would suggest
that a normal distribution for NSAA may not be the perfect choice, and instead a binomial
distribution, might be a better choice. Such a modelling choice is entirely possible
with this framework, as the latent states θ

(k)
i,t and ϕi,t could instead represent the latent

binomial probability of a success, and no further changes would be needed. In practice,
we find the normal distribution sufficient for this example, providing better confidence for
predictions where the NSAA is not near 0 or 34, and the effects of rounding predictions
to the nearest valid whole number do not appear particularly problematic.

Figure 1 shows these NSAA trajectories for a selection of patients. From these, we can
see that, whilst there is a general trend that many patients follow, there is also a large
variety in patient experience.

We also make use of other clinical outcomes. One is walk time, which measures (in
seconds) the time taken to walk/run 10 meters. Another is rise from floor time, which
measures the time taken to stand up straight from a lying down position. We have slightly
less data on walk time and rise from floor time, but they are a still a valuable and abundant
source of information (4867 total entries for walk time, 4636 for rise from floor time, and
5989 for NSAA).

For treatment effects, we have access to the steroid regime the patients are on. This
includes the steroid schedule, which we use as our treatment effect (as its prescription is
a standard of care recommendation). The data also includes how much steroids the patient
is on, and which steroid, but we do not make use of this here for this example, as most
patients in our dataset follow the same steroid dosage regime (see Figure 3 in Birnkrant et
al.23). The steroid treatment can potentially change over time (which is not a problem, as
xi,t is explicitly allowed to vary over time), although the steroid schedule does not often
change over time in the dataset. The steroid schedule is not always explicitly recorded at
all timesteps, however, a patient is unlikely to change their steroid regime without clinical
oversight, and so we can safely assume that a missing entry here means that no change
has occurred. The type of steroid is a categorical variable, which can be extended into
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Figure 1. A plot showing several trajectories of NSAA for different patients.

multiple binary columns of xi,t. Some patients have records for a dosage of steroids, but
it is never recorded which schedule they were allocated. In these cases, we still make use
of these patients but allocate the steroid type “unknown”. In total, we have 5 regimes the
patient can be on: “None”, “daily”, “intermittent 10.10” (10 days of steroids, then a 10
day break), “other”, and “unknown”. “None” is the default, and so the effect of all other
regimes are parametrised as the difference from “None”.

We have data recorded from the patients roughly every 6 months. However, this
fluctuates, as the availability of clinic slots is not always at exact 6-month intervals.
Additionally, these 6-months are not in sync between patients. For example, one patient
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might have their first appointment 1 month after their 4th birthday and roughly every 6
months afterwards, but another might have their first appointment 3 months after their 4th

birthday (and roughly every 6 months afterwards). Collectively, this influences how we
choose the time step for our model. We might initially want to use a 6-month time step,
but the issues just mentioned make this somewhat imprecise. The perfect time step might
instead then be 1-day, but this would be computationally intractable with this number
of patients. We decided on a 3-month time step, which allows the time steps to roughly
follow the every-6-months that the clinic appointments aim for, but with an additional
level of precision indicating whether each data point is early during a 6-month window,
or late. Additionally, while the aim might have been to have one clinic appointment
every 6-months, from the moment of diagnosis to the moment it stops being practical, in
practice there are lots of missing appointments. This is not a problem with our modelling
framework, as the latent ‘true’ NSAA values (and walk time values, etc.) continue to
exist, they are simply unobserved for some time steps. The age of diagnosis also varies
for each patient, and so when data on each patient begins to appear also varies. This is
also not a problem, as, given a fixed start time for the model, this simply means there are
often no observations for patients early on. This is similarly the case for observations late
in a patient’s progression. Here, we choose the patient at age 3 as the initial time for each
patient, and we stop considering observations after age 20. We could extend this to age 0
and age 30, but the amount of observations outside the 3-20 range is very small (only 25
NSAA observations, out of 5989, are outside this range), but the computational burden
of modelling an extra 13 years would be very high.

Before providing this data to the model, we transform the clinical outcome data to
enforce certain, known, constraints. For example, the NSAA data must be an integer
between 0 and 34, and so we use the transform logit((x+ 0.5)/35), which then scales
the interval [−0.5, 34.5] to (−∞,∞). As such, model predictions after reversing the
transform, and rounding the results, will produce integer values between 0 and 34.
Similarly, walk time must be positive, and so we use the softplus transform, which scales
the interval from (0,∞) to (−∞,∞). After transforming the data, the observational data
is standardised so that it has mean of 0 and standard deviation of 1, and the input xi,t
values are scaled to have a minimum value of 0 and a maximum value of 1.

Within this work, we choose to estimate the hyperparameters via MCMC. Performing
inference in a Bayesian setting provides a full quantification of the various uncertainties.
This is valuable in this setting, as there is a lot of uncertainty regarding the various
parameters, especially on a patient-specific level, with a limited amount of data for
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each patient. This does mean we have to provide prior distributions for the various
hyperparameters. This can be a great benefit, as it allows us to incorporate clinical
knowledge. This is especially useful for the parameters surrounding the healthy state,
as we do not have access to healthy patients in this example. Unless stated otherwise, our
priors are reported with values relevant to the standardised scale.

For the multivariate covariance matrices, we separate the correlation matrix from
individual standard deviation terms24. The correlation matrices are then given LKJ
distributed priors25, with a shape parameter value of 1. This provides a uniform
distribution over the possible correlation matrices.

On the unstandardised scale, the mature state mean for NSAA is given a normal
distributed prior, itself with a mean of 34 on the untransformed scale (so it has a mean
of logit((34 + 0.5)/35), and standard deviation of 0.5, and the mature state standard
deviation is also given a truncated (above 0) normal prior with mean 0 and a standard
deviation of 0.5. This is quite a strong prior, but because of how NSAA is set up, a score
of 34 should be expected for almost any healthy adult. Also on the unstandardised scale,
the mature walk time state mean is given a normal distributed prior with a mean of 2 on
the untransformed scale, and a standard deviation of 1; the mature walk time standard
deviation is also given a truncated normal prior with mean 0 and a standard deviation
of 1. The same priors are used for the rise from floor time mature states. Similar prior
distributions are given for the initial states. The initial NSAA state mean has a prior mean
of 15 on the untransformed scale, with a standard deviation of 1, and the initial NSAA
state standard deviation has a prior mean of 0 with a standard deviation of 1. The initial
walk time state mean has a prior mean of 7 on the untransformed scale, with a standard
deviation of 1, and the initial walk time state standard deviation has a prior mean of 0
with a standard deviation of 1. The same priors are used for the initial rise from floor
time states.

The other parameters in the model are given priors on the standardised scale. t†i ’s
mean and standard deviation are both given N(20, 5) priors (with the standard deviation
prior truncated to be above 0). Treatment covariates are given N(−8, 2) priors for
their mean, which assumes the treatments have little-to-no effect but does allows the
alternate possibility, and truncated N(0, 1) priors are used for their standard deviation.
The innovation mean and standard deviations are both given truncated N(0, 0.1) priors,
as are the observational error mean and standard deviations. These allow for a small range
of values around zero they could take, as we believe most of the variation in the data is
not a result of random noise.
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The mean for the healthy patient shape, µ(k)
α , is given a N(0, 3) prior, which coupled

with the logit transform, provides a fairly uniform prior over the values of α(k)
i between

0 and 1. All other mean parameters are given weakly informative N(0, 1) prior, and all
other standard deviation parameters are given a truncated N(0, 1) priors.

Results

To fit this model, we split the data into training and testing data. The training data is used
to fit the model, learning the posterior distributions for the various parameters, and the
testing data is not given to the model, and therefore can be used to check the quality of
the model’s predictions. To split the dataset into training and testing data, we randomly
choose 200 patients. For these 200 patients, a random amount of clinical appointment
data is held-aside, varying from 80− 20% (removing the most recent appointment data).
This provides a wide range of representative potential scenarios the model may have to
predict in practice, which we can use to assess the performance of the model.

Using the training data, we fit the model via MCMC using nimble26,27. We run two
chains of MCMC, use a burn-in of 200, 000 then sample for a further 800, 000 iterations,
and a thin of 800.

We can then extract predictions from this model, and Figure 2 shows example NSAA
predictions for six patients.

These predictions reflect well on the model, indicating good predictive capability.
The general pattern of NSAA trajectories seem to be present in each case, but each
prediction is also tailored to the specific patient in question. The degree of uncertainty
clearly depends on how much data is available for a specific patient, with Figure 2a
exhibiting a large amount of uncertainty, a result of only having one measurement
of NSAA. Nonetheless, a general decline is still predicted, due to the information
borrowed from other patients about how the disease and NSAA progresses. Similarly,
the predictions forward in Figure 2f are very concentrated, a result of the greater number
of measurements on that patient. This increased confidence might also be because data is
available for this patient after a decline has already been observed, and so the model no
longer needs to predict when this will occur.

The model is also flexible enough to adapt to different clinical behaviours, with the
very late decline of Figure 2e still captured.

The model is not always perfect, as we can see in Figure 2c, where the decline is
sooner and sharper than expected. This is not particularly unexpected, as in this case,
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Figure 2. Predictions of NSAA for six patient. Blue dots are measurements that are provided
to the model, red dots are measurements that were held-aside and were not given to the
model. The central black lines represent the median prediction, with the outer lines
representing the 70% and 95% prediction intervals. The horizontal green lines represent
when a steroid intervention occurred.

the patient only declines just after the last measurement the model is given. Nonetheless,
the 95% prediction interval still almost covers the realised trajectory, indicating that the
model acknowledged the extreme observed outcome was a real possibility.

Of course, these predictions are not only for NSAA, but are paired with predictions for
walk time and rise from floor time. These predictive plots can be found in the appendix.
Additionally, it is worth noting that the ‘spikiness’ of these plots are a result of the
Monte Carlo error from estimating the plotted quantiles from a limited number of MCMC
samples.

Collectively, the testing data lies within the model’s 95% prediction intervals 95.7% of
the time (1573 out of 1644 total validation points). Breaking this down to the individual
clinical output predictions, the NSAA testing data lies within the model’s 95% prediction
intervals 95.5% of the time (634 out of 673), the walk time data lies within the 95%
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prediction intervals 94.9% of the time (517 out of 531), and the rise from floor time
96.8% (429 out of 443). Overall, this suggests the model has good predictive accuracy.
The rise from floor time predictions are somewhat under-confident, and potentially the
NSAA predictions as well, but in general these predictions appear accurate.

It is worth noting that the plots given here provide a visual summary of the predictions
a patient can receive, but other useful summaries can be easily extracted for a patient.
These summaries might include predictions such as “what is the probability that the
patient’s NSAA score drops below 10 before age 12?” or “is this patient expected to
perform better than average at age 15”. Key summaries such as these might be easier to
communicate to patients and their families, but are just as easily obtained from the model
as the trajectory plots.

As a specific note for DMD, the treatment effects of steroids included here appear to
have a small effect on a patient’s progression. The mean beneficial effect of being on
“daily” steroids (i.e the mean value for any corresponding potential Γi entry) is 0.0177,
for “intermittent 10.10” this is 0.0004, “other” 0.0074, and “unknown” 0.0032. When
compared to a mean value for the disease decline (i.e. the mean estimate for any potential
∆i value) of 0.2724, the general impact of the treatments is quite small. This is an
improvement on Goemans et al.28, where steroids are found to have a negative effect, but
it is nonetheless clear that discerning the true effect of steroids is difficult in observational
studies like this. It is reassuring, however, that “daily” steroids are found to have a much
greater benefit than “intermittent 10.10” steroids here, as one might expect29. As such,
the model is learning that steroids have a positive effect, but it can only distinguish a slight
positive effect from the natural variation in patients using the current dataset. The model
should have the potential to learn the impact of treatments, and so this small estimate is
likely due to a limited amount of varied treatment regime data compared to the variation
present in patient outcome, which is a limitation of working with real-world / natural
history data (rather than data from a clinical trial).

Discussion

The model framework outlined here appears capable. It has the ability to predict
forward a patient’s trajectory, including the epistemic and aleatoric uncertainty in these
predictions; it can tailor the structure of these predictions depending on the features of a
specific patient’s clinical history while still borrowing strength from the information in
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the wider dataset; it has the ability to incorporate the effects of interventions; and it can
do so while seamlessly accounting for missing data.

We have presented some preliminary results applying this model to Duchenne
Muscular Dystrophy. The predictive performance of this model is good, despite the
limited data and wide variation in patient outcome. These predictions have can provide
information about how a specific patient is likely to progress, which is valuable given the
wide spread of experiences different patients can have.

Whilst we did find some benefit to prescribing steroids, the impact of this is smaller
than we would have expected. This is likely due to the limitations of the observational
dataset we have, where the variety in when steroids are prescribed is quite low (for
example, most patients are prescribed steroids just as they begin to decline, which makes
it difficult to determine if a slow decline is a result of the steroids, or because the patient
naturally declines slowly). Furthermore, many patients are seemingly to be prescribed
steroids just before their decline (for example, the patient in Figure 2d). This could be
because they failed to reach expected developmental milestones, because a decline was
observed in other clinical outcomes, or because of evolution of standards of care and their
implementation. A more varied dataset, perhaps one that includes healthy individuals as
well, allowing for better estimation of the healthy state parameters, and one that includes
all relevant clinical outcome measurements, would likely improve the model results.

This model framework could be applied to many other degenerative diseases, including
diseases which manifest later in life, due to the inclusion of parameters which control the
delay of symptom onset. In some cases, it might be valuable to include an additional
additive effect in Equation (1) if it is believed that the treatments can also provide an
overall immediate (or with some lag) boost to a patient’s health, rather than only affecting
the change over time, as we have assumed for DMD.

Other improvements to our framework can be imagined by making the innovations (the
random walk ϵ

(k)
i,t ) multivariate, or the observational error variance (τ (k)obs,i) or innovation

variance (τ (k)innov,i) terms themselves multivariate, but that this would be computationally
taxing, and is unlikely to have a substantial impact. Furthermore, for even more complex
diseases, additional latent disease states could be included, allowing for more complex
disease progression to occur. Alternatively, additional β

(k)
i terms could be included,

allowing for polynomial responses to the latent disease state to be modelled.

Another direction for future improvement might revolve around computational time.
Currently, to generate predictions for a new patient, the model needs to be re-fit using
the data from all available patients, which is taxing (although, with long-term chronic
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degenerative diseases, this is not an insurmountable cost). Because all the information
from the other patients is summarised in the group level parameters, such as µα, this
process could be streamlined by extracting these posterior distributions from a previous
fit, and using them as priors for the new patient, avoiding the need to include data from
all patients. How to do this remains future work.

Overall, the model framework presented here is a powerful tool, allowing predictions
to truly be made patient-specifc even when data on that patient is limited. This can
then supplement the expertise of clinicians and aid in their prognosis and treatment
of degenerative diseases, and could also assist in the interpretation of real world data
efficacy of novel therapies.
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Figure 3. Predictions of walk time for six patient. Blue dots are measurements that are
provided to the model, red dots are measurements that were held-aside and were not given
to the model. The central black lines represent the median prediction, with the outer lines
representing the 70% and 95% prediction intervals. The horizontal green lines represent
when a steroid intervention occurred.
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Additional Results plots

Plots of example model predictions for NSAA were provided in Section . Here, these
same predictions are provided but for walk time and rise from floor time.
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Figure 4. Predictions of rise from floor time for six patient. Blue dots are measurements that
are provided to the model, red dots are measurements that were held-aside and were not
given to the model. The central black lines represent the median prediction, with the outer
lines representing the 70% and 95% prediction intervals. The horizontal green lines represent
when a steroid intervention occurred.
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