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Abstract

Despite the globally reducing hospitalization rates and the much lower risks of Covid-19
mortality, accurate diagnosis of the infection stage and prediction of outcomes are clinically of
interest. Advanced current technology can facilitate automating the process and help identifying
those who are at higher risks of developing severe illness. Deep-learning schemes including
Visual Transformer and Convolutional Neural Networks (CNNs), in particular, are shown to be
powerful tools for predicting clinical outcomes when fed with either CT scan images or clinical

data of patients.

This paper demonstrates how a novel 3D data fusion approach through concatenating CT scan
images with patients’ clinical data can remarkably improve the performance of Visual
Transformer and CNN models in predicting Covid-19 infection outcomes. Here, we explore
and represent comprehensive research on the efficiency of Video Swin Transformers and a
number of CNN models fed with fusion datasets and CT scans only vs a set of conventional
classifiers fed with patients’ clinical data only. A relatively large clinical dataset from 380
Covid-19 diagnosed patients was used to train/test the models. Results show that the 3D Video
Swin Transformers fed with the fusion datasets of 64 sectional CT scans+67 (or 30 selected)
clinical labels outperformed all other approaches for predicting outcomes in Covid-19-infected
patients amongst all techniques (i.e., TPR=0.95, FPR=0.40, F0.5 score=0.82, AUC=0.77,
Kappa=0.6). Results indicate possibilities of predicting the severity of outcome using patients’

CT images and clinical data collected at the time of admission to hospital.

Keywords: Deep Learning, Visual Transformer, Predictive models, convolutional neural

network (CNN), Covid-19 detection, CT scan, clinical data, data fusion
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1. Introduction

In the late 2019, Covid-19 pandemic was initially reported to rapidly infect residents of Wuhan
city in China [1]. This previously unknown virus was then labelled as SARS-CoV2 by the
International Committee on Taxonomy of Viruses (ICTV) and categorized under the family of
corona viruses [2]. The infection caused by the Covid-19 was reported to be very similar to the
disease due to the infection by SARS virus and could lead to severe respiratory syndromes and
death [3, 4]. The fast and large increase in the number of infected individuals before vaccine
roll-outs had resulted in a large increase in the number of referrals with critical conditions and
admittance to the hospitals and clinics, imposing a burden on the healthcare sector, globally.
This important factor could potentially result in an increase in critical human error that could
lower the diagnosis accuracy, subsequently. Recent analytical enhancements could assist in
finding practical solutions to the urgent need for developing automated diagnosis platforms that
can provide prognostic information about the evolution of infection in patients. Clinical
observations confirm a large variety of symptoms for the infected individuals, where the milder
initial symptoms could rapidly develop to critical situations. This itself could limit the clinical
assessments or in more severe cases can eliminate the chances of treatment [5]. Therefore,
clinical monitoring of patients and accurate prediction of infection development during this
period and/or even before their initial referrals can play an important role in saving lives [6].
Research suggest that the quality of patients’ chest Computerized Tomography (CT) scans are
interpretably linked to other observations from patients including their clinical examinations,
laboratory tests, vital signals, patient history, and potential background illnesses [7]. Therefore,
it is hypothesized that a proper combination of these data could be used for automatic prediction

of both the severity and the developmental stage of the infection, more accurately [8].

Various applications of multi-modal data fusion techniques on Covid datasets have been
addressed in the literature. Studies suggest that chest X-ray images and lung CT scans can be
fed into deep-learning-based models for diagnosis and classification of Covid-19-related
conditions [9-12]. Access to larger clinical datasets is currently a major challenge in the
implementation of these techniques. Thus, various research have considered data augmentation
techniques to cover these drawbacks [13-15]. Attempts show that predictive models fed with
patients’ clinical data, demographic/historical conditions and disorders, as well as laboratory
tests can be used to predict outcomes [15-17]. Literature indicates possibilities of developing
high-performance algorithms to accurately predict the severity of infection and further diagnose
healthy individuals from tested-positive cases. Successful algorithms have used combinational

approaches through fusioning clinical observations data, CT images, vital signals, and
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background/historical conditions [8, 17-20]. These studies have initially combined features
extracted from CT images with features from the patients’ clinical data and fed the outputs into
deep-net classifiers. For instance, studies show that the extracted features from the images can
be combined with other available features/data (e.g., clinical observations/measures) to create
a more robust and consistent dataset that can provide detailed information for the deep-net to

predict the severity of infection in the high- and low-risk patients [8, 14, 21].

In this work, we use data fusion of lung CT scan images and clinical data from a total of 380
Iranian Covid-19-positive patients to develop deep-learning-based models to predict risk of
mortality and outcomes in the high- vs low-risk Covid-19 infected individuals. An overall
schematic of the proposed approaches in this work is shown in Figure 1. The article contributes

to the field through:

1- Developing Visual Transformer and 3D Convolutional Neural Network (CNN)
predictive models fed with a series of fusion datasets from patients’ CT images and their
clinical data. This includes introducing a novel heuristic concatenation approach, for
integrating CT scan images with clinical data, which is inferred to have assisted with
inter-network feature aggregations in the Transformer models.

2- Developing Visual Transformer and CNN-based predictive models fed with CT scan
images only, and assessing the capabilities of genetic algorithm (GA) for hyper-
parameter tuning of the 3D-CNN models fed with the fusion data and CT scan images.

3- Evaluating a series of conventional classifiers for predicting outcomes using patients’
clinical data only, and investigating strategies to select a set of proper clinical labels
from the pool of clinical data for the classification of imbalance data. The paper further

discusses imputation techniques to deal with missing values in the dataset.

2. Related work

2.1. Clinical data-based detection

Here, only patients’ clinical data, including patients’ history and their lab test results, are used
to develop predictive models. Yue et al. have demonstrated that the use of clinical data and
patients’ condition assessments at the time of admission can help to predict chances of mortality
at around 20 days [14]. They have achieved promising results by integrating predictive models
including logistic regression (LR), support vector machine (SVM), gradient boosted decision
tree (GBDT), and neural networks (NN) to predict the mortality risk (AUC: 0.924-0.976) [14].

Dhruv et al., have also shown that patients’ clinical data, blood panel profiles, and socio-
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Figure 1. The flow-chart schematic of the proposed predictive machine-learning approaches for the classification
of high- and low-risk Covid-19 infected patients. “N” denotes the number of total CT scan slices from each patient.

demographic data can be fed into conventional classification algorithms such as Extra Tree,
gradient boosting, and random forest for predicting the severity of Covid-19 [15]. Similar
works show that clinical parameters in the blood samples can be infused into a combined
statistical analysis and deep-learning model to predict severity of Covid-19 symptoms and

classify healthy individuals from tested-positive cases [17].

2.2. Image-based detection

In this approach, only chest X-ray or CT scan images are used for classification of Covid-19
infected patients. Purohit et al. have proposed an image-based Covid-19 classification algorithm
and demonstrated that, among various image sharpening techniques, utilization of certain
sharpening filters such as canny, sobel, texton gradient and their combinations can help to
increase training accuracy in multi-image augmented CNN [13]. Research shows that deep
neural networks are able to automatically diagnose Covid-19 infection in partial X-ray images
of the lungs [22], or through fusioning deep features of CT images [23-25]. Our team has also
previously shown that chest X-ray images can be fed into CNNs for Covid detection [26].
Visual Transformer (ViT) networks, along with the CNN models, have recently shown
remarkable capability in resulting higher performances in various applications, such as image
classification, object detection, and semantic segmentation. Recent works show that ViT and in
particular Video Swin Transformers can competitively achieve better accuracies, compared to
the CNN-based methods, for the classification and identification of Covid-19 infected patients
using chest CT scans [27] and X-ray images [28]. Research shows that the feature maps
extracted from the CT scan images in the output of a ResNet model can be used as inputs to a

transformer model for the identification of Covid patients (~1934 images, >1000 patients, recall
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accuracy 0.93) [29]. Transfer-learning in Visual Transformer models, fed with either CT images
or their combinations with chest X-ray images, shows diagnostic possibilities of Covid-19
patients and localization of the infected regions in the lungs [28, 30]. A recent work has shown
that a combination of parallelly extracted features from CT scans through simultaneous
application of Visual Transformers and CNN can help to accurately classify Covid-19 patients
[31]. Fan et al. have reported a high recall performance of 0.96 using 194,922 images from

3745 patients which suggests strong capabilities of combinational approaches [31].

2.3. Fusion-based detection

This approach mainly aims to fuse patients’ clinical data with any other possible information,
such as chest X-ray and/or CT images, to use as the inputs for predictive models. Using a
relatively large CT image dataset from multiple institutions across three continents, Gong et al.
have developed a deep-learning-based image processing approach for diagnosis of Covid-19
lung infection [18]. In their technique, a deep-learning model initially segments lung infected
regions by extracting total opacity ratio and consolidation ratio parameters from CT images and
then combines the outputs with clinical and laboratory data for prognosis purposes using a
generalized linear model technique (reported AUC range: 0.85-0.93) [18]. Other studies have
proposed robust 3D CNN predictive models fed with combined data from segmented CT
images and patients’ clinical data to predict whether a Covid-19-infected-individual belongs to
the low- or high-risk group [8, 19, 20]. These studies have shown that their proposed approaches
are independent of demographic information such as age and sex, and other conditions such as
chronic diseases. Meng et al., have demonstrated that 3D-CNNs can perform much better when
simultaneously fed with patients’ segmented CT scans and clinical data compared to the
singular use of clinical data or CT images in CNN-based or logistic regression models [19]. Ho
et al., have compared performances of three 3D CNNs where each was trained on the 1) raw
CT images, 2) segmented CT images, and 3) on the long lesion segmented data. They reported

higher performance from the last approach amongst all [20].

A recent study has initially trained a speech identification model for Covid diagnosis using
Long Short-Term Memory Networks (LSTM) that uses the acoustic aspects of patient's voice,
their breathing data, coughing patterns, and talking [32]. The patients’ chest X-ray images are
also fed into general deep-net models, including a VGG16, a VGG19, a Densnet201, a
ResNet50, a Inceptionv3, a InceptionResNetV2, and a Xception for Covid identification.
Images and audio features were then combined and used as inputs to a hybrid model to identify
non-Covid or Covid-positive patients. They have reported a lower accuracy for their hybrid

model compared to their speech-based or X-ray image-based models [32].
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3. Methods and computational approach

3.1. Dataset

The dataset used in this research includes both lung CT scan images and their clinical data from
a total of 380 Covid-19 infected patients. Patients were diagnosed by clinicians according to
the Iran’s National Health guidelines [33] through clinical assessments of their symptoms and
lung CT images. The patients were hospitalized in the emergency unit at Imam Hussain
Hospital, Tehran, Iran, between 22nd Feb 2020 to 22nd March 2020. All ethics of the current
research have been approved by the Shahid Beheshti University’s ethics committee (Ref:
IR.SBMU.RETECH.REC.1399.003). All patients have signed and submitted their consent to
participate in the research and their data privacy has been fully considered [34]. Examples of
the lung CT scans at different slice locations from a high- and a low-risk patient are shown in

Figure 2A, 2B and 2C, 2D, respectively.

Figure 2. Examples of the lung CT scans from the sequence of slices in the high- (A, B) and low-risk (C, D)
Covid-19 infected patients. Arrows indicate infected regions.

From the total number of studied patients, 318 individuals have recovered from the illness while
62 have died. Since our top goal in this research was to correctly predict the severity of
outcomes (mortality risk) using data collected at or around the time of initial referral, we
categorized died patients (including ICU-hospitalized deaths) in the high-risk group (class 0)

and labeled the recovered individuals as the low-risk class (class 1).
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Our image datasets included a series of lung CT scans ranging between 50 to 70 images/slices
depending on the length of the patient’s lung. The clinical data used in this research were used
as sets of numerical data collected for all patients, including demographic data, exposure
history, background illness or comorbid diseases, symptoms, presenting vital signs, and
laboratory tests data. A full list of these parameters as well as their mean and standard deviation

(meanzstd) are tabulated in Table A.1 of Appendix A.

3.2. Data pre-processing

An optimal data pre-processing is a critical initial step, prior to the initiation of training process,
with possible boosting impacts on the overall performance of a model. A variety of pre-
processing strategies can be chosen based on the type of data and/or algorithms used. In the

following, we detail our pre-processing approaches for the numerical datasets and CT images.

3.2.1 Pre-processing of clinical data

Dealing with clinical data are often associated with certain challenges. For example, finding
appropriate values for the missing data requires strategic imputations or conversion of
qualitative measurements to numerical formats. Data often holds high dimensionality and
strategies such as dimension reduction (data/feature/label selection) and feature extraction can
help to represent data in a simpler format. Initially, we used one-hot encoding [35] approach to
convert qualitative data such as gender, etc., into numerical representations. In the following,

we explain our strategies for clinical data trimming and preparation for analysis.

3.2.1.1 Clinical data trimming

Initially, we considered a thresholding criterion to remove patients from the original clinical
dataset, whom at least 55% of their clinical data was missing (59 patients were removed). To
improve data clarity and robustness, we further trimmed the dataset by removing clinical labels
with at least 60% missing values for the entire dataset (20 labels were removed). These
threshold values were chosen based on manual assessments and observations. From the
remaining 321 patients (total of 380 patients), those who died were categorized as “high-risk”

(n=57, class 0) and the remaining participants were labeled as “low-risk” (n=264, class 1).

3.2.1.2 Imputation of missing values

The intensive work-load of clinical staff or other emergency situations/reasons may lead to
missing values in patients’ data recordings. Therefore, clinical datasets are often imputed to
cover the missing information on the sheets. In the machine-learning field, it is also challenging

to work with the initial format of the imputed datasets. Therefore, it is inevitable to use proper
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algorithms to fill in for the missing data or remove some [36]. Research shows that statistical
approaches can be used to estimate the missing data using statistical parameters, such as mean,
median, etc., from the entire dataset. Also, other machine-learning techniques such as linear
regression or k-nearest neighbor (KNN) can be used to estimate the missing values [37-41].

Here, we used KNN algorithm (k=5) to provide estimations for the missing values in the dataset.

3.2.1.3 Dimension reduction

Generally, dimension reduction is performed via feature/label selection or feature extraction
operations. Feature/label selection approaches are mainly concerned with distinguishing the
most dominant features/labels while feature extraction strategies are employed to transfer data
values into a new domain and sometimes define novel features based on the original ones. In
this research, we investigated the impact of both approaches on the feature-sets and assessed
outcomes for each, both visually and by implementing a set of conventional classifiers
explained in the following. The final extracted features as well as the selected clinical labels
from these attempts were later used in the training process. In this study, we often refer to the

selected clinical data as “clinical labels”.

Feature extraction: here, we extracted features from the clinical data by utilizing a commonly

used dimension reduction technique, namely called principal component analysis (PCA) [42,
43]. PCA is an unsupervised and linear technique that uses eigen-vectors and eigen-values from
a matrix of features to project lower dimensions from higher feature dimensions in the original
matrix [44]. In the current study, an optimal number of required components in the PCA was
found by using various numbers of extracted features. The output datasets from PCA were then
fed into seven conventional classifiers including, SVM [38], MLP [46], KNN [47], random
forest [48], gradient boosting [49], Gaussian naive bayes [50], and XGBoost [51] to assess
which number of feature-sets could lead to an optimal performance. This was accordingly found

to be associated with a set of 25 components.

Feature/label selection: here we assessed the capabilities of two different approaches, namely

“SelectKBest” [45, 46] and decision tree-based ensemble learning algorithms [47] to select a
set of clinical labels from the pool of original clinical data. The SelectKBest algorithm uses
statistical measures to score input features based on their relation to outputs and chooses the
most effective features, accordingly. We used an ExtraTree classifier [48] for the decision tree-
based ensemble learning approach where the algorithm randomly selects subsets of features to
create the associated decision trees and evaluates minimal mathematical measures of each

feature (typically the Gini Index [49]), while making the forest. Finally, all the extracted
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features are sorted in a descending order based on their measured Gini Index and user can
choose to work with an arbitrary top &£ number of dominant features from the list. An optimal
number of clinical labels was found by assessing the performance optimality of the
aforementioned seven conventional classifiers across a set of various numbers for the
SelectKBest algorithm and ExtraTree classifier. A set of 13 selected clinical labels from the
SelectKBest and a set of 30 selected clinical labels from the ExtraTree classifier were found to

result in better performances compared with other combination sets (see Appendix B).

We further visually assessed the selected features using an unsupervised non-linear technique
based on manifold learning, called t-distributed stochastic neighbor embedding (t-SNE) [50].
The t-SNE is conventionally used for data visualization of large dimension datasets. t-SNE aims
to find an optimized value for its cost function by measuring embedded similarities within the
dataset at both higher- and lower- dimensions representations. In the t-SNE approach, a more
visually separable data represents less complexity. Here, the t-SNE was applied to the 1) main
dataset including all 67 clinical labels (with no dimension reduction), 2) a dataset including 13
selected clinical labels from SelectKBest, 2) a dataset including 30 selected clinical labels from
ExtraTree classifier, and 4) a dataset including 25 extracted features from the PCA. Outputs of
the t-SNE were then scatter plotted to visualize the complexity within each dataset (see results
section for the plots). Finally, we chose to carry on with the set of 30 selected clinical labels
from the ExtraTree classifier approach which were found to lead to better classification results

and represented less visual complexity in the t-SNE approach.

3.2.2 Pre-processing of CT images

CT scan images of lung consist of a sequence of video frames at various sections (slices) along
the patient’s lung, where the number of frames varies in individuals according to their length
of lung or device settings. These images can be used as the inputs for predictive/classification
models where a certain number of input channels, that are compatible with the number of slices,
must be used in the network’s architecture. Since the number of CT video frames varies across
patients, an appropriate slice selection approach should be used to shape a uniform volumetric
3D input size for consistency across all models [51]. Various slice selection strategies consider
manual selection of frames from the beginning, middle and end of a video set. The major
problem with such approaches is that they neglect information connectivity across slices which
can lead to loosing localized information and provide a false representation for the entire video
set. On the other hand, there are strategies that initially select a fixed number of frames from

the entire video, and then interpolate data to generate a desired set of frames that provides a
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more accurate representation of the whole video set [51] compared to the manual approach.

Here, we chose to work with Spline Interpolated Zoom (SIZ) frame selection technique. An
arbitrary number of frames (N) is initially selected in this technique to construct a
volumetrically uniform image-set that consists of a fixed number of CT slices for all individuals
[51]. Then, depending on whether the patient’s video set contained higher or lower number of
slices compared to the N, the sequence of slices was evenly sampled using a spacing factor or
interpolated to construct the missing slices, respectively. Here, the original size of the gray scale
CT images was provided as 512x512x1, and we chose to work with N=64 that represents the
average number of frames in the videos from all patients. Therefore, the volumetrically uniform

3D inputs of the CNNs were re-shaped to the size of 512x512x64 for all patients.

3.2.3 Data Fusion

Here, we combined the clinical data/measures with the 3D videos of the CT scan images from
section 3.2.2 to shape more detailed fusion datasets for each patient. We initially expanded the
dimension of clinical data through creating an empty 2D matrix with dimensions identical to
the size of 2D video frames (i.e., 512x512). This 2D matrix was then replicated N times, where
N is equal to the number of clinical labels. All data arrays of each 2D matrix were then filled
with the value of the associated clinical label/measure. This 3D matrix of clinical data
(512x512xN frames) was then added to the CT video (512x512x64 frames) to form a 3D fusion
dataset of size 512x512x(64+N) frames. This dataset was then used as inputs to the model
described in section 3.3.3.2, once with N=30 (suggested from 3.2.1.3) and with N=67.

3.3. Model Training
The training process for each of the four previously outlined models, in the introduction section

and Figure 1, are described in the following:

3.3.1 Approach #1: classification using clinical data only

Classification of datasets with imbalanced classes is associated with challenges and
complexities which requires careful considerations. Data clustering is one of the useful
approaches to handle such complexities and create more balanced datasets [52]. Here, we
considered the following steps to create balanced datasets for training. Data were initially split
into train and test sets (80% training, 20% test). The original ratio between class 1 and 0 in the
clinical dataset is nearly 5 (imbalanced data), hence we used Gaussian mixture clustering
algorithm [53] to divide the low-risk class in the training sets (n=264, class 1) into five different
clusters. Each of these clusters were then combined with data from the high-risk class (n=57,

class 0). This approach helped to create 5 separate balanced datasets which were then fed into
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seven different conventional classification algorithms, namely the SVM, MLP, KNN, random
forest, gradient boosting, Gaussian naive bayes, and XGBoost for classification. Each
classification algorithm was accordingly trained and tested on the five balanced train/test
datasets resulting in five classification measures for classifier (e.g., 5x trained/tested random
forests). A voting approach was then applied to the outputs of these five blocks to determine
the winning class. The class (e.g., 0 or 1) with a larger number of votes (i.e., 3, 4, 5) from all

blocks were chosen as the winning class.

3.3.2 Approach #2: training on CT images only

3.3.2.1 3D-CNN CT model

Since the CT scan images are sequences of frames taken at different slices, therefore, they can
be technically considered as 3D video data. Therefore, here we designed and trained a 3D-CNN
with 3 convolutional layers on the training datasets. Here, inputs of the 3D-CNN classifiers are
matrices of 512x512x64 dimension from the pre-processing stage, where 64 is the number of
CT scan frames (slices) for each patient. We further used Genetic Algorithm (GA) to
automatically find and assign optimal values for the CNNs’ hyperparameters [54]. The
specified hyperparameters included the number of layers, number of neurons in each layer,
learning-rate, optimization function, dropout size, and kernel size. The population size and the
number of generation were set to 10 and 5, respectively. We also used Roulette wheel algorithm
for parent selection followed by crossover mechanism. The GA were trained over 20 epochs
and fitness values with lower FPRs were chosen, accordingly. The selected hyperparameters

for the 3D-CNN-based models in this work are shown in Table C.1 in Appendix C.

3.3.2.2 3D Swin Transformer CT model

Visual Transformers (ViT) are classes of deep neural networks that have been initially used for
natural language processing (NLP) and sought as improved alternatives to other classes of deep-
nets (i.e., CNNs) with competitive performances for multi-modal inputs [55]. An input image
to a ViT is initially shaped as a set of image-patches (equivalent to the set of words in NLP)
which is then embedded with the localized information of the image to form inputs to an
encoder network within the Transformer. The encoder unit consists of a multi-head self-
attention layer [56], which highly improves features learning such as long-range dependencies
and aggregation of global information [57]. The multi-head self-attention layer therefore
aggregates spatial locations’ information where global and local information are combined,
accordingly. This operation is expected to help with inter-network feature extractions and lead

to better outcomes compared to the CNN networks, where the receptive field sizes are fixed
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[58]. In CNNs, this can be equivalently achieved by increasing convolutional kernels which
largely increases the computations. While ViT generally require 4 times lower computational
facilities, they can extraordinary outperform the ordinary CNNss if trained on satisfactory data.
Transformers generally require larger datasets for training, where transfer-learning and self-
supervised techniques could greatly help to largely overcome such challenges. On the other
hand, high-resolution input images can increase the computational burden and lower the
computational speed, subsequently. To overcome this challenge, Swin Transfomer models have
been introduced to deal with higher resolution data in computer vision applications [59]. Video
Swin Transformer (VST) models have been further introduced to work with 3D datasets such
as videos [60], where the application of transfer learning and pre-trained models have been
helpful. In this work, we normalized and augmented the CT scan images of each patient from
section 3.2.2 to form 3D inputs for a 3D Swin Transformer. With the aid of transfer-learning,
we used a pre-trained model, Kinetics-400 [60], to set our model’s initial weights. We trained
the 3D Swin Transformer over 50 epochs using an Adam optimizer with a 0.02 learning rate

and 0.02 weight decay.

3.3.3 Approach #3: training on fusion data

3.3.3.1 3D-CNN models on fusion data

Here, we considered a terminal data fusion (on CTs+30 clinical labels) and a medial data fusion
approach (on CTs+67 clinical labels) to combine the data. In the first approach, the terminal
3D-CNN, CT scans are initially fed into the 3D-CNN to extract their features-vector. The output
features-vector were then terminally combined with the numerical data from dimension-
reduction stage including 30 selected clinical labels for each patient to shape the final features-
vector. The final features-vectors along with the labels were fed into the Naive Bayes network

[61] for training/classification. The schematic of this approach is shown in Figure 3.

CT scans <128 Flatten
¥ o C ! L |
’/(( e s “ Con?gggr]latloﬂ
2x2x2 2x2x2 Conv | | P
3x3x1 353x1 P o
512x512x64 3x3x1 x3x1 || P -
IR Naive Bayes High risk (0)
Algorithm Low risk (1)
Selected
clinical labels

X E

321x30

Figure 3. Schematic of network architucure for the terminal 3D-CNN fusion model (on CTs+30 clinical labels).


https://doi.org/10.1101/2022.07.26.22278084
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.26.22278084; this version posted July 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

In the medial 3D-CNN approach, the extracted features-vectors of CT scans using the 3D-CNN
in the previous structure were medially combined with extracted features from the original
clinical data (67 clinical labels from each patient) using a 1D-CNN to create a more
comprehensive features-set (Figure 4). Two fully-connected layers were finally used at the end

of this structure and the output was fed into a final classification layer.

CT scans x128 Fldtten Fully
’ ! . connected
i Concatenation
’{( 3D COIIV 3D Conv l 3D ’_ ' ----- |
2x2x2 2x2x2 Conv ;
512x512x64 3x3x1 3x3x1 3x3x1 L High risk (0)
Low risk (1)
Clinical labels
X 0 , 1D 1D 3x3x128x64
- — Conv Conv
321x67 67x10 10x8

Figure 4. Schematic of network architucure for the medial 3D-CNN fusion model (on CTs+67 clinical labels).

3.3.3.2 3D Swin Transformer models on fusion data

The complementary 3D fusion data from section 3.2.3 were used as inputs (512x512x(64+N)
frames) to the 3D Video Swin Transformer to assess effectivity of data fusion approach. The
schematic of our proposed data-fusion-based approach fed into the 3D Swin Transformer
models is shown in Figure 5. We tested the performance of the 3D Swin Transformer model

under two different scenarios for N=30 (associated with the selected clinical labels in section

3.2.1.3) and N=67 (associated with all clinical labels).

3D fusion of CT scans
T .H W w
and clinical frames %x%x%xc %x %x% x2C X 165761 4C %x%xix 8C
T H H o Stage 1 Stage 3 Stage 4
2 44
o0
¢ g 2 2
F _,3Dpatch §_, § Video Swin . 2’ Video Swin ) 2’ Video Swin L, High risk (0)
partltlon Q_E) Transformer E Transformer E Transformer Low risk (1)
2xdxd § Block 5«3 Block :é Block
512x5 12x(64+N) =
x2 x2 x6 x2
(( ( Convert each Ma81321151§ to
Clinical «—— parameter to +— )
frames p numerical
image I
CT scans SCAlC
512x512x64 512x512xN

Figure 5. Schematic of the 3D Swin Transformer model fed with the fusion of CT scan images and clinical data.
“N” denotes the number of cliniacl labels.
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4. Performance measure

4.1. Performance measure selection and assessments
A k-fold cross-validation approach (k=5) was used for overall performance assessments of all
models. We also used the StratifiedKFold, a stratified cross-validator algorithm, to split the

1mbalanced dataset into train/test sets across 5 folds.

Performance measures such as Kappa and F0.5 score could provide better validation
evaluations for the classification of imbalanced datasets compared to the standard conventional
measures such as “accuracy” and/or “precision/recall”. In fact, the later measures may not be
reliable criteria when classification is performed on un-balanced data or when data is not
normally distributed [62, 63]. AUC measure, however, includes the proportional impacts of the
precision and recall metrics in validation assessments. Also, false positive rate (FPR) is
clinically a critical measure (e.g., compared to true positive rate (TPR)); this is mainly because
this measure indicates how many of high-risk labels have been incorrectly classified in the low-
risk class. Clinically, a high FPR rate is not acceptable as the misidentification of high-risk
labels can be dangerous for patients who require treatments. Due to these reasons, our
performance evaluation policy was focused on models that simultaneously achieved a minimal
FPR, a higher TPR, a higher AUC, and higher F0.5 score and Kappa. This “trade-off” strategy
was mainly targeted to find a model with the lowest missed/wrong identifications for the high-

risk class. These performance measures are described in the following.

4.1.1 Kappa

Kappa statistic is a performance measure that penalizes all positive or all negative predictions
in its scoring regime. This approach is especially useful in multi-class imbalanced data
classification and has been therefore commonly used in datasets with imbalanced classes [64,
65]. Moreover, Kappa has been shown to provide better insights than other metrics on detecting
performance variations due to drifts in the distributions of the data classes. Kappa statistic
ranges between -100 (total disagreement) through 0 (default probabilistic classification) to 100

(total agreement):

TlZf:l Xij —Zle Xi X
~—— X% 100 Eq.1
n2—2f=1xi.x.i (Eq-1)

Kappa =

where x;; is the count of cases in the main diagonal of the confusion matrix (successful
predictions), n is the number of examples, c is the number of classes, and x ;, x; are the column

and row total counts, respectively.
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4.1.2 TPR, FPR, and Precision

The TPR (also called sensitivity or recall), in this article, indicates how many of the data are
correctly classified in the low-risk group (class 1) while the FPR indicates how many of the
data in the high-risk group are incorrectly classified in the low-risk group (class 1). Also,
precision (or positive predictive value (PPV)) evaluates the number of TPs out of the total

number of positive predictions which indicates how good the model was able to make positive

predictions.
TP
TPR = TP T FN (Eq.2)
FP
PPR=FpsTn (Eq-3)
TP
PPV = Th ¥ P (Eq-4)

4.1.3 F0.5 score
F0.5 score is the weighted version of F1 score where more weight is considered to precision
than to recall (Equation 5). This is particularly important where more weight needs to be

assigned to PPV for situations where FPs are considered worse than FNs.

PPV X TPR
125( )

>\025PPV + TPR (Eq.5)

5. Computing infrastructure

We used New Zealand eScience Infrastructure (NeSI) high-performance computing facilities’
Cray CS400 cluster for training and testing the models. The training process was executed using
enhanced NVIDIA Tesla A100 PCle GPUs with 40 GB HBM2 stacked memory bandwidth at
1555 GB/s. Intel Xeon Broadwell CPUs (E5-2695v4, 2.1 GHz) were used on the cluster for
handling the GPU jobs. The algorithms were run under Python environments (Python 3.7) using
Pytorch deep learning framework (Pytorch 1.11).
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6. Results
This section provides the obtained results for the pre-processing, clinical-data-only trained
models, CT scans-only trained models, as well as the fusion approaches for both CNNs and

Transformer models.

6.1 Pre-processed clinical data

Full results from the feature selection and feature extraction in section 3.2.1.3 using the seven
conventional classification algorithms for the 1) 67 original clinical labels, 2) 13 selected
clinical labels from SelectKBest algorithm, 3) 30 selected clinical labels from ExtraTree
classifier, and 4) 25 extracted features from PCA algorithm are shown in Tables D.1 to D.4 in
Appendix D, respectively. A trade-off performance criterion for a lower FPR and a higher TPR,
F0.5 score, and Kappa in these tables showed that the Gaussian Naive bays (NB) performed
much better across the four approaches above. The abstracted results in Table 1 further confirm
that the classification of the clinical data using Gaussian NB fed with 30 selected clinical labels

from the ExtraTree classifier has led to better performances compared to other approaches.

In addition, features-space assessments using the t-SNE algorithm on the four above schemes
are shown in Figure 6A to 6D, respectively. The features-space plots in this figure hold high-
complexity and a visual binary classification seems to be a challenging due to the negligible
differences between the images. Nevertheless, the application of t-SNE on the 30 selected labels

from ExtraTree classifier in Figure 6C seems to provide a much better visually classifiable data.

Due to the above reasons, the dataset containing the 30 selected clinical labels from ExtraTree
classifier were used as the clinical dataset for models in section 3.3.1 and 3.3.3, where this data

were further fused with the CT images to shape the fusion datasets.

Table 1. Comparison between the dimension reduction methods on the clinical data

Number of
Dimension reduction F0.5
Classifier clinical labels FPR TPR Kappa
method score
/components
N/A Raw data 67 labels 0.33 0.85 0.71 0.45
Clinical labels
) SelectKBest 13 labels 0.47 0.89 0.71 0.41
Gaussian  selection
i Clinical labels
Naive Bays , ExtraTree 30 labels 037 089 075 0.51
selection
Feature 25
PCA 0.51 0.94 0.74 0.46

extraction components
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Figure 6. Visual representations from the t-SNE approach using A: the main dataset including all 67 clinical labels
(with no dimension reduction), B: 13 selected clinical labels from SelectKBest, C: 30 selected clinical labels from
ExtraTree classifier, and D: 25 extracted features from PCA. blue: high-risk (class 0), orange: low-risk (class 1).
6.2 Models on the clinical data only

Results from the seven classification algorithms in 3.3.1 are shown in Table 2. Each classifier

was assessed using the 30 selected clinical labels from ExtraTree classifier. As shown, here the

gradient boosting algorithm has outperformed the other algorithms.

6.3 Models trained on CT images only

Results of the 5-fold cross-validation from the 3D-CNN and 3D Swin Transformer models in
section 3.3.2 (trained on the CT-images only) are shown in Table 2. Results from the
Transformer model on the CT images only shows improvement for all measures including FPR

(0.45 lower), Kappa (0.27 higher), and F0.5 score (0.11 higher) compared to the 3D-CNN.

6.4 Models trained on fusion data

Results of the 5-fold cross-validation for each of the data-fusion approaches in sections 3.3.3
are also shown in Table 2. As shown, the Transformer fusion models as well as the Terminal
3D-CNN have resulted in improved overall scores, across all measures, compared to the medial

3D-CNN fusion approach.

ROC curves of the top performing models from each section as well as the top performing 3D-

CNN on the fusion data are shown in Figure 7.
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Table 2. Performance results of the classifiers

Model F0.5 ROC/ . Kappa
category Model name FPR TPR score AUCY Recall Precision 1, 1)
Gaussian NB 0.49 0.70 0.57 0.60 0.61 0.59 0.19
Section Random Forest 0.07 0.56 0.60 0.74 0.74 0.64 0.27
3.3.1
Clinical  Gradient Boosting 0.14 070  0.66 0.78 0.78 0.68 0.37
data only
(on the set of
XGBRF 0.16 0.65 0.62 0.72 0.73 0.64 0.28
30 selected
clinical
labels from  k-nearest neighbors 0.47 0.58 0.50 0.55 0.56 0.52 0.05
ExtraTree
classifier) SVM 0.18 0.18 0.32 0.50 0.50 0.42 0
MLP 0.40 0.40 0.22 0.50 0.50 0.20 0
Section 3D-CNN 0.83 0.84 0.63 0.57 0.57 0.78 0.22
332
CTsonly 3D Swin Transformer 038 0.89  0.75 0.75 0.75 0.75 0.49
Terminal 3D-CNN
on CTs130 labels 0.36 0.90 0.75 0.76 0.76 0.76 0.51
Medial 3D-CNN
Section on CTs167 labels 0.65 0.98 0.70 0.66 0.66 0.67 0.37
333
Data fusion 3D Swin Transformer
on CTs+30 labels 0.35 0.91 0.78 0.78 0.78 0.80 0.55
3D Swin Transformer 45 95 82 0.77 0.77 0.83 0.60

on CTs+67 labels

*ROC: Receiver Operating Characteristics Curve, AUC: Area under the ROC Curve

True Positive Rate

------ Gradient Boosting(AUC = 0.78 )

—-:= 3D Swin Transformer on CT_only(AUC = 0.62 )

—-- Terminal 3D CNN fusion(CT+30 labels}{AUC = 0.76 )
3D Swin Transformer fusion{CT+67 labels)(AUC = 0.77 }

00 0.2 0.8 10

o4 0.6
False Positive Rate

Figure 7. Mean ROC curves from the top performing models. Bold line: 3D Swin Transformer on fusion data
(CT+67 labels), dashed-dotted line: 3D Swin Transformer on CTs only, dotted line: Gradient Boosting, dashed
line: Terminal 3D-CNN fusion (CT+30 labels).


https://doi.org/10.1101/2022.07.26.22278084
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.26.22278084; this version posted July 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

7. Discussion and conclusion

This paper, for the first time, demonstrated how a 3D data fusion approach of combining CT
scan images and patients’ clinical data can help to improve the performance of Visual
Transformer and CNN models for predicting high-risk Covid-19 infection. Other studies have
mainly focused on feeding such networks with either CT scan images or patients’ clinical data.
The paper explored a comprehensive set of strategies to evaluate optimal predictive model
across a number of classifiers tested on a relatively large dataset of 380 patients. This research
demonstrates the superiority of data-fusion approaches used in 3D Swin Transformers for better

identification of high-risk Covid-19 infected patients.

Here we showed that the performance of a 3D Swin Transformer model tested on the fusion of
CT scan images and the original set of 67 clinical labels outperformed all other strategies in this
work (FPR=0.40, TPR=0.95, F0.5 score = 0.82, AUC=0.77, Kappa=0.60) where the models
were fed with fusion-type datasets, CT scan images only, and clinical data only. Here, we
formed 3D fusion datasets by re-shaping the clinical data into 512x512x number of clinical
labels’ format and combined them with CT scan images of size 512x512x64 to create our fusion
dataset. It is inferred that our strategy for the dimension expansion of clinical data and fusing
them with the CT scan images has successfully helped the self-attention layers within the Swin
Transformer model to effectively rate interconnectivity between the clinical data and the CT

images for better classifications.

We further tested and compared the performance of a terminal 3D-CNN model (on the CT+30
clinical labels), a medial 3D-CNN (on the CT+67 clinical labels), 3D Swin Transformers (on
the CT+30 clinical labels and on the CT+67 clinical labels, respectively) to the original
approach. Results from Table 2 indicates that our selected set of 30 clinical labels from the
original pool of 67 clinical labels fused with the patients’ CT scan images has been consistently
and effectively helpful to achieve competitive performances compared to the 3D Swin
Transformer on the CT+67 clinical labels. Here, the 3D Swin Transformer model on the fusion
of CT+30 clinical labels achieved FPR=0.35, TPR=0.91, F0.5 score = 0.78, AUC=0.78,
Kappa=0.55, and the terminal 3D-CNN model on the fusion of CT+30 clinical labels achieved
FPR=0.36, TPR=0.90, F0.5 score = 0.75, AUC=0.76, Kappa=0.51. These closer performance
measures from the selected set of 30 clinical labels suggest that these dominant labels may hold
clinical values in the clinical settings for a better identification of the illness and could be looked

at in details in future studies. These clinical labels have been listed in Table A.1 of appendix A.

We also assessed classification capabilities of a 3D-CNN model and a Video Swin Transformer
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on sets of 3D CT scan images only. Here, the 3D Swin Transformer achieved much better
results (FPR=0.38, TPR=0.89, F0.5 score = 0.75, AUC=0.75, Kappa=0.49) compared to the
3D-CNN with higher FPR, lower AUC and Kappa (FPR=0.83, TPR=0.84, F0.5 score = 0.63,
AUC=0.57, Kappa=0.22).

Our assessments also showed that conventional classifiers, fed with patients’ clinical data only,
poorly classified the data compared to the other two approaches above, namely the fusion and
CT-only strategies (see Table 2). Amongst the conventional classifiers, Gradient boosting was
found to outperform the other ones when only fed with the clinical data (FPR=0.14, TPR=0.70,
F0.5 score = 0.66, AUC=0.78, Kappa=0.37).

An overall trade-off assessment shows that the 3D Swin Transformer fed with the fusion of CT
scan images and the full set of 67 clinical labels identified high-risk patients from the low-risk
class more accurately compared to the other approaches. This was closely followed by 3D Swin
Transformer model fed with a fusion of CT images and the set of 30 selected clinical labels
from ExtraTree classifier. The 3D Swin Transformer again demonstrated superiority compared
to the 3D-CNN approach, even when both models were fed with CT images only; however, the
overall performance was found to be lower than the data-fusion approach. Classification
performances remarkably decreased across all the seven conventional models when only the
clinical data were used. The mean ROC curves in Figure 6 from the top performing models in
each section demonstrate how the 3D Swin Transformer on fusion data (CT+67 labels)
outperformed the other approaches. We have also provided the ROC curve of the top
performing 3D-CNN model on the fusion data, namely the Terminal 3D-CNN fusion (CT+30
labels) to show how the choice of 30 selected clinical labels could also help our proposed CNN-
based model to achieve competitive performances compared to the 3D Swin Transformer on

the fusion data.

Overall, we expect potential clinical utility for the proposed 3D Video Swin Transformer fed
with fusion datasets from patients’ CT images and clinical data for reliable prediction of
outcomes in Covid-19-infected patients. The improved performances of the Transformer
models show robust capability for a future validation study on larger datasets. We encourage
readers to apply the proposed fusion scheme in this work to larger clinical datasets for further
validity assessments. Results from this research highlight the possibilities of predicting the
severity of Covid-19 infection, at the time of admission to the clinical centers, when effectivity

of early treatments is evident.
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Conclusion

This paper demonstrated how the performance of Visual Transformers, namely a 3D Swin
Transformer, could remarkably improve for predicting Covid-19 outcomes when fed with a
novel 3D data fusion approach of integrating CT scan images with patients’ clinical data. The
paper further explored and compared capabilities of a series of models including Transformers
(on CT images only), 3D-CNNs (both on the fusion dataset and on CT images only) as well as
conventional classifiers (on the clinical data only). Results showed that the use of fusion dataset
provided opportunity for the 3D Swin Transformer model to better aggregate globally and
locally interconnected features of the data and perform better compared to all other models.
Results confirmed that this was valid for the larger fusion dataset of 64 CT scans + 67 clinical
labels and the 64 CT scans + 30 selected clinical labels. The paper further discussed how genetic
algorithm (GA) is a suitable choice for hyper-parameter tuning of the 3D-CNN models. We
also investigated a series of strategies to find and select a proper set of clinical labels from the
pool of clinical data for the classification of imbalance data. The paper further discusses
imputation techniques to deal with missing values in the dataset. Overall, this paper
demonstrates possibilities of predicting the severity of outcome in Covid-19 infected
individuals at or around the time of admission to hospital using fusion datasets from patients’

CT images and clinical data.
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Supplementary material
Appendix A
Table A.1. Patients’ clinical measurements (mean+tstd). X(Y%): X represents the label counts

in the population, and the associated % of the label in the population is shown with Y. Italic
labels represent the excluded labels previouly explained in section 3.2.1.1.

Clinical variable/label Total (n=380)

Gender

Female 133(35%)
Male 247(65%)
Age

Mean + SD | 53.82+17.92
Exposure history

EHF * 57(15%)
HOT * 29(7.63%)
ESP * 83(21.84%)
CIH " 50(13.16%)
Comorbid disease

Diabetes Mellitus 77(20.26%)
Vascular disease 59(15.53%)
Obesity 49(12.89%)
Smoking 24(6.32%)
Kidney 19(5.00%)
Asthma 13(3.42%)
Other lung diseases 23(6.05%)
Malignancy 12(3.16%)
Hematic 10(2.63%)
Rheumatology 10(2.63%)
Neurological 14(3.68%)
Hypertension 47(12.37%)
ucc” 12(3.16%)

Clinical manifestations

Fever 225(59.21%)
Cough 234(61.58%)
Dyspnea 196(51.58%)
Myalgia 179(47.11%)
Headache 128(33.68%)
Chest pain 81(21.32%)
Nausea 101(26.58%)
Sputum 83(21.84%)
Chills 174(45.79%)
Hemoptysis 13(3.42%)
Sore Throat 15(3.95%)
Anorexia 198(52.11%)
Rhinorrhea 47(12.37%)
Anosmia 54(14.21%)
Weakness 207(54.47%)
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Loss of consciousness 22(5.79%)
Diarrhea 70(18.42%)
Earache 13(3.42%)
Wheezing 0(0%)
Arthralgia 31(8.16%)
Respiratory distress 5(1.32%)
Dizziness 63(16.58%)
Convulsion 6(1.58%)
Abdominal pain 32(8.42%)
Conjunctivitis 23(6.05%)
Rash 3(0.79%)
Skin lesion 1(0.26%)
Lymphadenopathy 0(0%)
Sweating 19(5.00%)
Hematochezia 2(0.53%)
Cold sweating 14(3.68%)

Venous blood gas analysis

WBC (10°/L) 7.19+5.18
Hemoglobin (g/dl) 13.04+1.20
Hematocrit (%) 38.87£5.14
Platelet (10°/L) 194.42+83.32
Lymphocyte (%) 21.39+11.75
Neutrophil (%) 71.63+£12.99

Lactate Dehydrogenase (LDH)

640.125+382.65

Complete blood count

pH 7.41+0.1

PO, (mm Hg) 35.19£19.42
PCO; (mm Hg) 41.62+10.33
HCO3 (mEg/L) 26.31+£7.10
0,5atVBG 58.87+22.15
Kidney enzymes

Urea (mg/dL) 47.40+38.33
Creatinine (mg/dL) 1.46+1.33
Others

Sodium (mEg/L) 136.90+7.75
CRP (mg/L) " 53.00+48.54
Potassium (mEq/L) 4.06+0.68
Calcium (mg/dL) 8.27+1.08
Magnesium (mg/dL) 3.01£9.35
ESR (mm/hr) " 49.42+27.28
CPK (U/L)" 317.18+743.51
Blood sugar(mg/dL) 153.97+70.74
Bill Total 7.07+38.02
Procalcitonin (ng/ml) 1.05+1.88
PCR™ 94(92.16%)
Presenting vital sign

Temperature (c) 36.91+3.31
Systolic BP (mmHg) 86.46+32.69
Diastolic BP (mmHg) 106.90+25.06
Respiratory rate (/min) 18.69+4.46



https://doi.org/10.1101/2022.07.26.22278084
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.26.22278084; this version posted July 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Heart rate (/min) 90.05+18.00
Saturation O3 (%) 92.15+7.67
Coagulation profile

PT (s)" 12.9943.12
PTT (s)" 28.85+11.86
INR (1U)" 2.01+8.86
Liver enzymes

AST (U/L)* 66.524+204.179
ALT (U/L) " 38.954+35.60

*Exposure to healthcare facilities (EHF)
history of traveling (HOT)

exposure to the suspected patient (ESP)
covid-19 infection in household (CIH)
Use of corticosteroid for comorbidities (UCC)
c-reactive protein (CRP)

erythrocyte sedimentation rate (ESR)
Creatine phosphokinase (CPK)
polymerase chain reaction (PCR)
Prothrombin time (PT)

Partial thromboplastin time (PTT)
international normalized ratio (INR)
aspartate aminotransferase (AST)
alanine transaminase (ALT)
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Appendix B

Figure B.1. The suggested set of 30 selected clinical labels from ExtraTree classifier.
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Figure B.2. The suggested set of 13 clinical labels from SelectKbest algorithm.
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Appendix C

Table C.1. Selected hyperparameters from the Genetic Algorithm for the 3D-CNN CT model
(section 3.3.2.1) and the medial 3D-CNN fusion model (section 3.3.3.1).

Hyperparameter Hyperparameter for the
for the 3D-CNN Range medial 3D-CNN fusion Range
CT model model
Number of neurons Number of neurons of first
of first layer 32,64,128 layer for CT images network 32,64,128
Number of neurons 64,128,256 Number of neurons of second 64,128,256
of second layer layer for CT images network
Number of neurons Number of neurons of third
of third layer 128,256,512 layer for CT images network 128,256,512
Drop out round(uniform(0.1, 0.5), 1)  Drop out round(uniform(0.1, 0.5), 1)
Adamax, Adamax,
L Adadelta, L Adadelta,
Optimization Adam, Optimization Adam,
Adagrad Adagrad
Learning rat 0.000002, Learning rat 0.000002,
I 0.000001 I 0.000001
Number of layers
Number of layers 1,2,3 for CT images network 1,2,3
Kernel size 3,5 Kernel size 2,48
Number of.njcurons of first 67.30, 15, 10
layer for clinical network
Number of neurons of second 10,8

layer for clinical network
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Appendix D

Table D.1. Results of the seven conventional algorithms in section 3.2.1
on the 67 original clinical labels.

Classifier FPR TPR Recall Precision F0.5 Kappa Training Test
score accuracy accuracy

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82
MLP 062 095 067 0.76 0.73 0.4 0.99 0.85
KNN 056 081 0.63 0.62 0.61 0.23 0.92 0.75
g%uman 033 085 0.76 0.71 0.71 0.45 0.83 0.82
XGBoost 0.6 095 0.68 0.78 0.73 0.41 0.89 0.89
Random ) o5 097 0.66 0.79 0.73 0.39 1 0.86
Forest

Gradient 50 97 (.69 0.72 0.71 0.39 0.97 0.97
Boosting

AVG 0.61 092 0.65 0.68 0.66 0.32 0.92 0.85

Table D.2. Results of the seven conventional algorithms in section 3.2.1
on the 13 selected clinical labels from SelectKBest algorithm.

Classifier FPR TPR Recall Precision F0.5 Kappa Training Test
score accuracy accuracy

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82
MLP 057 092 0.68 0.71 0.7 0.37 0.94 0.83
KNN 058 081 0.62 0.61 0.6 0.21 0.92 0.74
IiaBuSSIan 047 089 0.71 0.71 0.71 0.41 0.85 0.83
XGBoost 0.6 096 0.68 0.81 0.75 0.42 1 0.86
Random ¢ 096 0.65 0.81 0.71 0.35 1 0.85
Forest

Gradient — se 194 .68 0.75 0.72 0.4 0.98 0.98
Boosting

AVG 0.64 092 0.64 0.69 0.66 0.31 0.93 0.84
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Table D.3. Results of the seven conventional algorithms in section 3.2.1
on the 30 selected clinical labels from ExtraTree classifier.

Classifier FPR TPR Recall Precision F0.5 Kappa Training Test
score accuracy accuracy

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82
MLP 053 092 07 0.75 0.72 0.42 0.94 0.84
KNN 0.54 0.81 0.64 0.63 0.62 0.24 0.92 0.75
IiaBuSSIan 037 089 0.76 0.75 0.75 0.51 0.86 0.83
XGBoost  0.56 096 0.7 0.8 0.76 0.46 1 0.87
Random 7 097  0.65 0.83 0.73 0.37 1 0.86
Forest

Gradient ) s¢ 97 (.67 0.72 0.7 0.37 0.97 0.97
Boosting

AVG 0.61 092 0.66 0.7 0.67 0.34 0.93 0.85

Table D.4. Results of the seven conventional algorithms in section 3.2.1
on the 25 extracted features from PCA algorithm.

Classifier FPR TPR Recall Precision F0.5 Kappa Training Test
score accuracy accuracy

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82
MLP 062 094 0.66 0.77 072 038 0.99 0.84
KNN 0.56 081 0.63 0.62 0.61 0.23 0.92 0.75
IiaBuSSIan 051 094 0.71 0.76 0.74 0.46 0.87 0.86
XGBoost 0.74 097  0.62 0.8 0.7 0.31 1 0.85
Random ¢ 099  0.58 0.87 0.66 0.24 1 0.85
Forest

Gradient ) . 95 (.59 0.69 0.64 0.22 1 0.82
Boosting

AVG 0.72 094 0.61 0.7 0.64 0.26 0.94 0.83
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