
   
 

   
 

Visual Transformer and Deep CNN Prediction of High-risk COVID-19 

Infected Patients using Fusion of CT Images and Clinical Data 

Sara Saberi Moghadam Tehrani †1, Maral Zarvani  †1, Paria Amiri 2, Reza Azmi1, Zahra Ghods1, 

Narges Nourozi 1, Masoomeh Raoufi 3, Seyed Amir Ahmad Safavi-Naini 4, Amirali Soheili 5, 

Sara Abolghasemi 6, Mohammad Gharib 7, and Hamid Abbasi*8 

 
1 Faculty of Engineering, Alzahra University, Tehran, Iran, 
2 Pooyandegan Rah Saadat Company, Tehran, Iran, 
3 Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti, 

University of Medical Sciences, Tehran, Iran, 
4 Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of 

Medical Sciences, Tehran, Iran, 
5 School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 
6 Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of 

Medial Sciences, Tehran, Iran, 
7 Auckland City Hospital, Auckland, 1010, New Zealand, 
8 Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand, 

 
 

† Joint first author 
* Corresponding author and the main supervisor of the work 

   E-mail: h.abbasi@auckland.ac.nz 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2022. ; https://doi.org/10.1101/2022.07.26.22278084doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.07.26.22278084
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Abstract 

Despite the globally reducing hospitalization rates and the much lower risks of Covid-19 

mortality, accurate diagnosis of the infection stage and prediction of outcomes are clinically of 

interest. Advanced current technology can facilitate automating the process and help identifying 

those who are at higher risks of developing severe illness. Deep-learning schemes including 

Visual Transformer and Convolutional Neural Networks (CNNs), in particular, are shown to be 

powerful tools for predicting clinical outcomes when fed with either CT scan images or clinical 

data of patients. 

This paper demonstrates how a novel 3D data fusion approach through concatenating CT scan 

images with patients’ clinical data can remarkably improve the performance of Visual 

Transformer and CNN models in predicting Covid-19 infection outcomes. Here, we explore 

and represent comprehensive research on the efficiency of Video Swin Transformers and a 

number of CNN models fed with fusion  datasets and CT scans only vs a set of conventional 

classifiers fed with patients’ clinical data only. A relatively large clinical dataset from 380 

Covid-19 diagnosed patients was used to train/test the models. Results show that the 3D Video 

Swin Transformers fed with the fusion datasets of 64 sectional CT scans+67 (or 30 selected) 

clinical labels outperformed all other approaches for predicting outcomes in Covid-19-infected 

patients amongst all techniques (i.e., TPR=0.95, FPR=0.40, F0.5 score=0.82, AUC=0.77, 

Kappa=0.6). Results indicate possibilities of predicting the severity of outcome using patients’ 

CT images and clinical data collected at the time of admission to hospital. 

 

Keywords: Deep Learning, Visual Transformer, Predictive models, convolutional neural 

network (CNN), Covid-19 detection, CT scan, clinical data, data fusion 
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1. Introduction 

In the late 2019, Covid-19 pandemic was initially reported to rapidly infect residents of Wuhan 

city in China [1]. This previously unknown virus was then labelled as SARS-CoV2 by the 

International Committee on Taxonomy of Viruses (ICTV) and categorized under the family of 

corona viruses [2]. The infection caused by the Covid-19 was reported to be very similar to the 

disease due to the infection by SARS virus and could lead to severe respiratory syndromes and 

death [3, 4]. The fast and large increase in the number of infected individuals before vaccine 

roll-outs had resulted in a large increase in the number of referrals with critical conditions and 

admittance to the hospitals and clinics, imposing a burden on the healthcare sector, globally. 

This important factor could potentially result in an increase in critical human error that could 

lower the diagnosis accuracy, subsequently. Recent analytical enhancements could assist in 

finding practical solutions to the urgent need for developing automated diagnosis platforms that 

can provide prognostic information about the evolution of infection in patients. Clinical 

observations confirm a large variety of symptoms for the infected individuals, where the milder 

initial symptoms could rapidly develop to critical situations. This itself could limit the clinical 

assessments or in more severe cases can eliminate the chances of treatment [5]. Therefore, 

clinical monitoring of patients and accurate prediction of infection development during this 

period and/or even before their initial referrals can play an important role in saving lives [6]. 

Research suggest that the quality of patients’ chest Computerized Tomography (CT) scans are 

interpretably linked to other observations from patients including their clinical examinations, 

laboratory tests, vital signals, patient history, and potential background illnesses [7]. Therefore, 

it is hypothesized that a proper combination of these data could be used for automatic prediction 

of both the severity and the developmental stage of the infection, more accurately [8].  

Various applications of multi-modal data fusion techniques on Covid datasets have been 

addressed in the literature. Studies suggest that chest X-ray images and lung CT scans can be 

fed into deep-learning-based models for diagnosis and classification of Covid-19-related 

conditions [9-12]. Access to larger clinical datasets is currently a major challenge in the 

implementation of these techniques. Thus, various research have considered data augmentation 

techniques to cover these drawbacks [13-15]. Attempts show that predictive models fed with 

patients’ clinical data, demographic/historical conditions and disorders, as well as laboratory 

tests can be used to predict outcomes [15-17]. Literature indicates possibilities of developing 

high-performance algorithms to accurately predict the severity of infection and further diagnose 

healthy individuals from tested-positive cases. Successful algorithms have used combinational 

approaches through fusioning clinical observations data, CT images, vital signals, and 
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background/historical conditions [8, 17-20]. These studies have initially combined features 

extracted from CT images with features from the patients’ clinical data and fed the outputs into 

deep-net classifiers.  For instance, studies show that the extracted features from the images can 

be combined with other available features/data (e.g., clinical observations/measures) to create 

a more robust and consistent dataset that can provide detailed information for the deep-net to 

predict the severity of infection in the high- and low-risk patients [8, 14, 21]. 

In this work, we use data fusion of lung CT scan images and clinical data from a total of 380 

Iranian Covid-19-positive patients to develop deep-learning-based models to predict risk of 

mortality and outcomes in the high- vs low-risk Covid-19 infected individuals. An overall 

schematic of the proposed approaches in this work is shown in Figure 1. The article contributes 

to the field through: 

1- Developing Visual Transformer and 3D Convolutional Neural Network (CNN) 

predictive models fed with a series of fusion datasets from patients’ CT images and their 

clinical data. This includes introducing a novel heuristic concatenation approach, for 

integrating CT scan images with clinical data, which is inferred to have assisted with 

inter-network feature aggregations in the Transformer models. 

2- Developing Visual Transformer and CNN-based predictive models fed with CT scan 

images only, and assessing the capabilities of genetic algorithm (GA) for hyper-

parameter tuning of the 3D-CNN models fed with the fusion data and CT scan images. 

3- Evaluating a series of conventional classifiers for predicting outcomes using patients’ 

clinical data only, and investigating strategies to select a set of proper clinical labels 

from the pool of clinical data for the classification of imbalance data. The paper further 

discusses imputation techniques to deal with missing values in the dataset. 

2. Related work 

2.1. Clinical data-based detection 

Here, only patients’ clinical data, including patients’ history and their lab test results,  are used 

to develop predictive models. Yue et al. have demonstrated that the use of clinical data and 

patients’ condition assessments at the time of admission can help to predict chances of mortality 

at around 20 days [14]. They have achieved promising results by integrating predictive models 

including logistic regression (LR), support vector machine (SVM), gradient boosted decision 

tree (GBDT), and neural networks (NN) to predict the mortality risk (AUC: 0.924-0.976) [14]. 

Dhruv et al., have also shown that patients’ clinical data, blood panel profiles, and socio- 
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Figure 1.  The flow-chart schematic of the proposed predictive machine-learning approaches for the classification 
of high- and low-risk Covid-19 infected patients. “N” denotes the number of total CT scan slices from each patient. 

demographic data can be fed into conventional classification algorithms such as Extra Tree, 

gradient boosting, and  random forest for predicting the severity of Covid-19 [15]. Similar 

works show that clinical parameters in the blood samples can be infused into a combined 

statistical analysis and deep-learning model to predict severity of Covid-19 symptoms and 

classify healthy individuals from tested-positive cases [17]. 

2.2. Image-based detection 

In this approach, only chest X-ray or CT scan images are used for classification of Covid-19 

infected patients. Purohit et al. have proposed an image-based Covid-19 classification algorithm 

and  demonstrated that, among various image sharpening techniques, utilization of certain 

sharpening filters such as canny, sobel, texton gradient and their combinations can help to 

increase training accuracy in multi-image augmented CNN [13]. Research shows that deep 

neural networks are able to automatically diagnose Covid-19 infection in partial X-ray images 

of the lungs [22], or through fusioning deep features of CT images [23-25]. Our team has also 

previously shown that chest X-ray images can be fed into CNNs for Covid detection [26].  

Visual Transformer (ViT) networks, along with the CNN models, have recently shown 

remarkable capability in resulting higher performances in various applications, such as image 

classification, object detection, and semantic segmentation. Recent works show that ViT and in 

particular Video Swin Transformers can competitively achieve better accuracies, compared to 

the CNN-based methods, for the classification and identification of Covid-19 infected patients 

using chest CT scans [27] and X-ray images [28]. Research shows that the feature maps 

extracted from the CT scan images in the output of a ResNet model can be used as inputs to a 

transformer model for the identification of Covid patients (~1934 images, >1000 patients, recall 
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accuracy 0.93) [29]. Transfer-learning in Visual Transformer models, fed with either CT images 

or their combinations with chest X-ray images, shows diagnostic possibilities of Covid-19 

patients and localization of the infected regions in the lungs [28, 30]. A recent work has shown 

that a combination of parallelly extracted features from CT scans through simultaneous 

application of Visual Transformers and CNN can help to accurately classify Covid-19 patients 

[31]. Fan et al. have reported a high recall performance of 0.96 using 194,922 images from 

3745 patients which suggests strong capabilities of combinational approaches [31]. 

2.3. Fusion-based detection 

This approach mainly aims to fuse patients’ clinical data with any other possible information, 

such as chest X-ray and/or CT images, to use as the inputs for predictive models. Using a 

relatively large CT image dataset from multiple institutions across three continents, Gong et al. 

have developed a deep-learning-based image processing approach for diagnosis of Covid-19 

lung infection [18]. In their technique, a deep-learning model initially segments lung infected 

regions by extracting total opacity ratio and consolidation ratio parameters from CT images and 

then combines the outputs with clinical and laboratory data for prognosis purposes using a 

generalized linear model technique (reported AUC range: 0.85–0.93) [18]. Other studies have 

proposed robust 3D CNN predictive models fed with combined data from segmented CT 

images and patients’ clinical data to predict whether a Covid-19-infected-individual belongs to 

the low- or high-risk group [8, 19, 20]. These studies have shown that their proposed approaches 

are independent of demographic information such as age and sex, and other conditions such as 

chronic diseases. Meng et al., have demonstrated that 3D-CNNs can perform much better when 

simultaneously fed with patients’ segmented CT scans and clinical data compared to the 

singular use of clinical data or CT images in CNN-based or logistic regression models [19]. Ho 

et al., have compared performances of three 3D CNNs where each was trained on the 1) raw 

CT images, 2) segmented CT images, and 3) on the long lesion segmented data. They reported 

higher performance from the last approach amongst all [20]. 

A recent study has initially trained a speech identification model for Covid diagnosis using 

Long Short-Term Memory Networks (LSTM) that uses the acoustic aspects of patient's voice, 

their breathing data, coughing patterns, and talking [32]. The patients’ chest X-ray images are 

also fed into general deep-net models, including a VGG16, a VGG19, a Densnet201, a 

ResNet50, a Inceptionv3, a InceptionResNetV2, and a Xception for Covid identification. 

Images and audio features were then combined and used as inputs to a hybrid model to identify 

non-Covid or Covid-positive patients. They have reported a lower accuracy for their hybrid 

model compared to their speech-based or X-ray image-based models [32]. 
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3. Methods and computational approach 

3.1. Dataset 

The dataset used in this research includes both lung CT scan images and their clinical data from 

a total of 380 Covid-19 infected patients. Patients were diagnosed by clinicians according to 

the Iran’s National Health guidelines [33] through clinical assessments of their symptoms and 

lung CT images. The patients were hospitalized in the emergency unit at Imam Hussain 

Hospital, Tehran, Iran, between 22nd Feb 2020 to 22nd March 2020. All ethics of the current 

research have been approved by the Shahid Beheshti University’s ethics committee (Ref: 

IR.SBMU.RETECH.REC.1399.003). All patients have signed and submitted their consent to 

participate in the research and their data privacy has been fully considered [34]. Examples of 

the lung CT scans at different slice locations from a high- and a low-risk patient are shown in 

Figure 2A, 2B and 2C, 2D, respectively.   

 

Figure 2.  Examples of the lung CT scans from the sequence of slices in the high- (A, B) and low-risk (C, D) 
Covid-19 infected patients. Arrows indicate infected regions.  

From the total number of studied patients, 318 individuals have recovered from the illness while 

62 have died. Since our top goal in this research was to correctly predict the severity of 

outcomes (mortality risk) using data collected at or around the time of initial referral, we 

categorized died patients (including ICU-hospitalized deaths) in the high-risk group (class 0) 

and labeled the recovered individuals as the low-risk class (class 1). 
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Our image datasets included a series of lung CT scans ranging between 50 to 70 images/slices 

depending on the length of the patient’s lung. The clinical data used in this research were used 

as sets of numerical data collected for all patients, including demographic data, exposure 

history, background illness or  comorbid diseases, symptoms, presenting vital signs, and 

laboratory tests data. A full list of these parameters as well as their mean and standard deviation 

(mean±std) are tabulated in Table A.1 of Appendix A. 

3.2. Data pre-processing 

An optimal data pre-processing is a critical initial step, prior to the initiation of training process, 

with possible boosting impacts on the overall performance of a model. A variety of pre-

processing strategies can be chosen based on the type of data and/or algorithms used. In the 

following, we detail our pre-processing approaches for the numerical datasets and CT images. 

3.2.1 Pre-processing of clinical data 

Dealing with clinical data are often associated with certain challenges. For example, finding 

appropriate values for the missing data requires strategic imputations or conversion of 

qualitative measurements to numerical formats. Data often holds high dimensionality and 

strategies such as dimension reduction (data/feature/label selection) and feature extraction can 

help to represent data in a simpler format. Initially, we used one-hot encoding [35] approach to 

convert qualitative data such as gender, etc., into numerical representations. In the following, 

we explain our strategies for clinical data trimming and preparation for analysis.  

3.2.1.1 Clinical data trimming 

Initially, we considered a thresholding criterion to remove patients from the original clinical 

dataset, whom at least 55% of their clinical data was missing (59 patients were removed). To 

improve data clarity and robustness, we further trimmed the dataset by removing clinical labels 

with at least 60% missing values for the entire dataset (20 labels were removed). These 

threshold values were chosen based on manual assessments and observations. From the 

remaining 321 patients (total of 380 patients), those who died were categorized as “high-risk” 

(n=57, class 0) and the remaining participants were labeled as “low-risk” (n=264, class 1). 

3.2.1.2 Imputation of missing values 

The intensive work-load of clinical staff or other emergency situations/reasons may lead to 

missing values in patients’ data recordings. Therefore, clinical datasets are often imputed to 

cover the missing information on the sheets. In the machine-learning field, it is also challenging 

to work with the initial format of the imputed datasets. Therefore, it is inevitable to use proper 
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algorithms to fill in for the missing data or remove some [36]. Research shows that statistical 

approaches can be used to estimate the missing data using statistical parameters, such as mean, 

median, etc., from the entire dataset. Also, other machine-learning techniques such as linear 

regression or k-nearest neighbor (KNN) can be used to estimate the missing values [37-41]. 

Here, we used KNN algorithm (k=5) to provide estimations for the missing values in the dataset. 

3.2.1.3 Dimension reduction 

Generally, dimension reduction is performed via feature/label selection or feature extraction 

operations. Feature/label selection approaches are mainly concerned with distinguishing the 

most dominant features/labels while feature extraction strategies are employed to transfer data 

values into a new domain and sometimes define novel features based on the original ones. In 

this research, we investigated the impact of both approaches on the feature-sets and assessed 

outcomes for each, both visually and by implementing a set of conventional classifiers 

explained in the following. The final extracted features as well as the selected clinical labels 

from these attempts were later used in the training process. In this study, we often refer to the 

selected clinical data as “clinical labels”. 

Feature extraction: here, we extracted features from the clinical data by utilizing a commonly 

used dimension reduction technique, namely called principal component analysis (PCA) [42, 

43]. PCA is an unsupervised and linear technique that uses eigen-vectors and eigen-values from 

a matrix of features to project lower dimensions from higher feature dimensions in the original 

matrix [44]. In the current study, an optimal number of required components in the PCA was 

found by using various numbers of extracted features. The output datasets from PCA were then 

fed into seven conventional classifiers including, SVM [38], MLP [46], KNN [47], random 

forest [48], gradient boosting [49], Gaussian naïve bayes [50], and XGBoost [51] to assess 

which number of feature-sets could lead to an optimal performance. This was accordingly found 

to be associated with a set of 25 components. 

Feature/label selection: here we assessed the capabilities of two different approaches, namely 

“SelectKBest” [45, 46] and decision tree-based ensemble learning algorithms [47] to select a 

set of clinical labels from the pool of original clinical data. The SelectKBest algorithm uses 

statistical measures to score input features based on their relation to outputs and chooses the 

most effective features, accordingly. We used an ExtraTree classifier [48] for the decision tree-

based ensemble learning approach where the algorithm randomly selects subsets of features to 

create the associated decision trees and evaluates minimal mathematical measures of each 

feature (typically the Gini Index [49]), while making the forest. Finally, all the extracted 
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features are sorted in a descending order based on their measured Gini Index and user can 

choose to work with an arbitrary top k number of dominant features from the list. An optimal 

number of clinical labels was found by assessing the performance optimality of the 

aforementioned seven conventional classifiers across a set of various numbers for the 

SelectKBest algorithm and ExtraTree classifier. A set of 13 selected clinical labels from the 

SelectKBest and a set of 30 selected clinical labels from the ExtraTree classifier were found to 

result in better performances compared with other combination sets (see Appendix B). 

We further visually assessed the selected features using an unsupervised non-linear technique 

based on manifold learning, called t-distributed stochastic neighbor embedding (t-SNE) [50]. 

The t-SNE is conventionally used for data visualization of large dimension datasets. t-SNE aims 

to find an optimized value for its cost function by measuring embedded similarities within the 

dataset at both higher- and lower- dimensions representations. In the t-SNE approach, a more 

visually separable data represents less complexity. Here, the t-SNE was applied to the 1) main 

dataset including all 67 clinical labels (with no dimension reduction), 2) a dataset including 13 

selected clinical labels from SelectKBest, 2) a dataset including 30 selected clinical labels from 

ExtraTree classifier, and 4) a dataset including 25 extracted features from the PCA. Outputs of 

the t-SNE were then scatter plotted to visualize the complexity within each dataset (see results 

section for the plots). Finally, we chose to carry on with the set of 30 selected clinical labels 

from the ExtraTree classifier approach which were found to lead to better classification results 

and represented less visual complexity in the t-SNE approach.  

3.2.2 Pre-processing of CT images 

CT scan images of lung consist of a sequence of video frames at various sections (slices) along 

the patient’s lung, where the number of frames varies in individuals according to their length 

of lung or device settings. These images can be used as the inputs for predictive/classification 

models where a certain number of input channels, that are compatible with the number of slices, 

must be used in the network’s architecture. Since the number of CT video frames varies across 

patients, an appropriate slice selection approach should be used to shape a uniform volumetric 

3D input size for consistency across all models [51]. Various slice selection strategies consider 

manual selection of frames from the beginning, middle and end of a video set. The major 

problem with such approaches is that they neglect information connectivity across slices which 

can lead to loosing localized information and provide a false representation for the entire video 

set. On the other hand, there are strategies that initially select a fixed number of frames from 

the entire video, and then interpolate data to generate a desired set of frames that provides a 
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more accurate representation of the whole video set [51] compared to the manual approach.  

Here, we chose to work with Spline Interpolated Zoom (SIZ) frame selection technique. An 

arbitrary number of frames (N) is initially selected in this technique to construct a 

volumetrically uniform image-set that consists of a fixed number of CT slices for all individuals 

[51]. Then, depending on whether the patient’s video set contained higher or lower number of 

slices compared to the N, the sequence of slices was evenly sampled using a spacing factor or 

interpolated to construct the missing slices, respectively. Here, the original size of the gray scale 

CT images was provided as 512x512x1, and we chose to work with N=64 that represents the 

average number of frames in the videos from all patients. Therefore, the volumetrically uniform 

3D inputs of the CNNs were re-shaped to the size of 512x512x64 for all patients. 

3.2.3 Data Fusion 

Here, we combined the clinical data/measures with the 3D videos of the CT scan images from 

section 3.2.2 to shape more detailed fusion datasets for each patient. We initially expanded the 

dimension of clinical data through creating an empty 2D matrix with dimensions identical to 

the size of 2D video frames (i.e., 512x512). This 2D matrix was then replicated N times, where 

N is equal to the number of clinical labels. All data arrays of each 2D matrix were then filled 

with the value of the associated clinical label/measure. This 3D matrix of clinical data 

(512x512xN frames) was then added to the CT video (512x512x64 frames) to form a 3D fusion 

dataset of size 512x512x(64+N) frames. This dataset was then used as inputs to the model 

described in section 3.3.3.2, once with N=30 (suggested from 3.2.1.3) and with N=67. 

3.3. Model Training 

The training process for each of the four previously outlined models, in the introduction section 

and Figure 1, are described in the following: 

3.3.1 Approach #1: classification using clinical data only 

Classification of datasets with imbalanced classes is associated with challenges and 

complexities which requires careful considerations. Data clustering is one of the useful 

approaches to handle such complexities and create more balanced datasets [52]. Here, we 

considered the following steps to create balanced datasets for training. Data were initially split 

into train and test sets (80% training, 20% test). The original ratio between class 1 and 0 in the 

clinical dataset is nearly 5 (imbalanced data), hence we used Gaussian mixture clustering 

algorithm [53] to divide the low-risk class in the training sets (n=264, class 1) into five different 

clusters. Each of these clusters were then combined with data from the high-risk class (n=57, 

class 0). This approach helped to create 5 separate balanced datasets which were then fed into 
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seven different conventional classification algorithms, namely the SVM, MLP, KNN, random 

forest, gradient boosting, Gaussian naïve bayes, and XGBoost for classification. Each 

classification algorithm was accordingly trained and tested on the five balanced train/test 

datasets resulting in five classification measures for classifier (e.g., 5x trained/tested random 

forests). A voting approach was then applied to the outputs of these five blocks to determine 

the winning class. The class (e.g., 0 or 1) with a larger number of votes (i.e., 3, 4, 5) from all 

blocks were chosen as the winning class. 

3.3.2 Approach #2: training on CT images only 
3.3.2.1 3D-CNN CT model 

Since the CT scan images are sequences of frames taken at different slices, therefore, they can 

be technically considered as 3D video data. Therefore, here we designed and trained a 3D-CNN 

with 3 convolutional layers on the training datasets. Here, inputs of the 3D-CNN classifiers are 

matrices of 512x512x64 dimension from the pre-processing stage, where 64 is the number of 

CT scan frames (slices) for each patient. We further used Genetic Algorithm (GA) to 

automatically find and assign optimal values for the CNNs’ hyperparameters [54]. The 

specified hyperparameters included the number of layers, number of neurons in each layer, 

learning-rate, optimization function, dropout size, and kernel size. The population size and the 

number of generation were set to 10 and 5, respectively. We also used Roulette wheel algorithm 

for parent selection followed by crossover mechanism. The GA were trained over 20 epochs 

and fitness values with lower FPRs were chosen, accordingly. The selected hyperparameters 

for the 3D-CNN-based models in this work are shown in Table C.1 in Appendix C. 

3.3.2.2 3D Swin Transformer CT model 

Visual Transformers (ViT) are classes of deep neural networks that have been initially used for 

natural language processing (NLP) and sought as improved alternatives to other classes of deep-

nets (i.e., CNNs) with competitive performances for multi-modal inputs [55]. An input image 

to a ViT is initially shaped as a set of image-patches (equivalent to the set of words in NLP) 

which is then embedded with the localized information of the image to form inputs to an 

encoder network within the Transformer. The encoder unit consists of a multi-head self-

attention layer [56], which highly improves features learning such as long-range dependencies 

and aggregation of global information [57]. The multi-head self-attention layer therefore 

aggregates spatial locations’ information where global and local information are combined, 

accordingly. This operation is expected to help with inter-network feature extractions and lead 

to better outcomes compared to the CNN networks, where the receptive field sizes are fixed 
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[58]. In CNNs, this can be equivalently achieved by increasing convolutional kernels which 

largely increases the computations. While ViT generally require 4 times lower computational 

facilities, they can extraordinary outperform the ordinary CNNs if trained on satisfactory data. 

Transformers generally require larger datasets for training, where transfer-learning and self-

supervised techniques could greatly help to largely overcome such challenges. On the other 

hand, high-resolution input images can increase the computational burden and lower the 

computational speed, subsequently. To overcome this challenge, Swin Transfomer models have 

been introduced to deal with higher resolution data in computer vision applications [59]. Video 

Swin Transformer (VST) models have been further introduced to work with 3D datasets such 

as videos [60], where the application of transfer learning and pre-trained models have been 

helpful. In this work, we normalized and augmented the CT scan images of each patient from 

section 3.2.2 to form 3D inputs for a 3D Swin Transformer. With the aid of transfer-learning, 

we used a pre-trained model, Kinetics-400 [60], to set our model’s initial weights. We trained 

the 3D Swin Transformer over 50 epochs using an Adam optimizer with a 0.02 learning rate 

and 0.02 weight decay. 

3.3.3 Approach #3: training on fusion data 

3.3.3.1 3D-CNN models on fusion data 

Here, we considered a terminal data fusion (on CTs+30 clinical labels) and a medial data fusion 

approach (on CTs+67 clinical labels) to combine the data. In the first approach, the terminal 

3D-CNN, CT scans are initially fed into the 3D-CNN to extract their features-vector. The output 

features-vector were then terminally combined with the numerical data from dimension-

reduction stage including 30 selected clinical labels for each patient to shape the final features-

vector. The final features-vectors along with the labels were fed into the Naïve Bayes network 

[61] for training/classification. The schematic of this approach is shown in Figure 3. 

 

Figure 3.  Schematic of network architucure for the terminal 3D-CNN fusion model (on CTs+30 clinical labels). 
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In the medial 3D-CNN approach, the extracted features-vectors of CT scans using the 3D-CNN 

in the previous structure were medially combined with extracted features from the original 

clinical data (67 clinical labels from each patient) using a 1D-CNN to create a more 

comprehensive features-set (Figure 4). Two fully-connected layers were finally used at the end 

of this structure and the output was fed into a final classification layer.  

 
Figure 4.  Schematic of network architucure for the medial 3D-CNN fusion model (on CTs+67 clinical labels). 

3.3.3.2 3D Swin Transformer models on fusion data 

The complementary 3D fusion data from section 3.2.3 were used as inputs (512x512x(64+N) 

frames) to the 3D Video Swin Transformer to assess effectivity of data fusion approach. The 

schematic of our proposed data-fusion-based approach fed into the 3D Swin Transformer 

models is shown in Figure 5. We tested the performance of the 3D Swin Transformer model 

under two different scenarios for N=30 (associated with the selected clinical labels in section 

3.2.1.3) and N=67 (associated with all clinical labels).  

 

Figure 5.  Schematic of the 3D Swin Transformer model fed with the fusion of CT scan images and clinical data. 
“N” denotes the number of cliniacl labels. 
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4. Performance measure 

4.1. Performance measure selection and assessments 

A k-fold cross-validation approach (k=5) was used for overall performance assessments of all 

models. We also used the StratifiedKFold, a stratified cross-validator algorithm, to split the 

imbalanced dataset into train/test sets across 5 folds. 

Performance measures such as Kappa and F0.5 score could provide better validation 

evaluations for the classification of imbalanced datasets compared to the standard conventional 

measures such as “accuracy” and/or “precision/recall”. In fact, the later measures may not be 

reliable criteria when classification is performed on un-balanced data or when data is not 

normally distributed [62, 63]. AUC measure, however, includes the proportional impacts of the 

precision and recall metrics in validation assessments. Also, false positive rate (FPR) is 

clinically a critical measure (e.g., compared to true positive rate (TPR)); this is mainly because 

this measure indicates how many of high-risk labels have been incorrectly classified in the low-

risk class. Clinically, a high FPR rate is not acceptable as the misidentification of high-risk 

labels can be dangerous for patients who require treatments. Due to these reasons, our 

performance evaluation policy was focused on models that simultaneously achieved a minimal 

FPR, a higher TPR, a higher AUC, and higher F0.5 score and Kappa. This “trade-off” strategy 

was mainly targeted to find a model with the lowest missed/wrong identifications for the high-

risk class. These performance measures are described in the following. 

4.1.1 Kappa 
Kappa statistic is a performance measure that penalizes all positive or all negative predictions 

in its scoring regime. This approach is especially useful in multi-class imbalanced data 

classification and has been therefore commonly used in datasets with imbalanced classes [64, 

65]. Moreover, Kappa has been shown to provide better insights than other metrics on detecting 

performance variations due to drifts in the distributions of the data classes. Kappa statistic 

ranges between -100 (total disagreement) through 0 (default probabilistic classification) to 100 

(total agreement): 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐

𝑖𝑖=1 −∑ 𝑥𝑥𝑖𝑖.𝑐𝑐
𝑖𝑖=1 𝑥𝑥.𝑖𝑖

𝑛𝑛2 − ∑ 𝑥𝑥𝑖𝑖.𝑐𝑐
𝑖𝑖=1 𝑥𝑥.𝑖𝑖

× 100                    (𝐸𝐸𝐸𝐸. 1) 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is the count of cases in the main diagonal of the confusion matrix (successful 

predictions), 𝑛𝑛 is the number of examples, c is the number of classes, and 𝑥𝑥.𝑖𝑖, 𝑥𝑥𝑖𝑖. are the column 

and row total counts, respectively.  
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4.1.2 TPR, FPR, and Precision  

The TPR (also called sensitivity or recall), in this article, indicates how many of the data are 

correctly classified in the low-risk group (class 1) while the FPR indicates how many of the 

data in the high-risk group are incorrectly classified in the low-risk group (class 1). Also, 

precision (or positive predictive value (PPV)) evaluates the number of TPs out of the total 

number of positive predictions which indicates how good the model was able to make positive 

predictions.  

𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇  +  𝐹𝐹𝐹𝐹
                              (𝐸𝐸𝐸𝐸. 2) 

𝐹𝐹𝑇𝑇𝑇𝑇 =  
𝐹𝐹𝑇𝑇 

𝐹𝐹𝑇𝑇  +  𝑇𝑇𝐹𝐹
                              (𝐸𝐸𝐸𝐸. 3) 

𝑇𝑇𝑇𝑇𝑃𝑃 =  
𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇  +  𝐹𝐹𝑇𝑇
                              (𝐸𝐸𝐸𝐸. 4) 

4.1.3 F0.5 score  

F0.5 score is the weighted version of F1 score where more weight is considered to precision 

than to recall (Equation 5). This is particularly important where more weight needs to be 

assigned to PPV for situations where FPs are considered worse than FNs.  

1.25 �
𝑇𝑇𝑇𝑇𝑃𝑃 × 𝑇𝑇𝑇𝑇𝑇𝑇

0.25𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇
�                      (𝐸𝐸𝐸𝐸. 5) 

5. Computing infrastructure 

We used New Zealand eScience Infrastructure (NeSI) high-performance computing facilities’ 

Cray CS400 cluster for training and testing the models. The training process was executed using 

enhanced NVIDIA Tesla A100 PCIe GPUs with 40 GB HBM2 stacked memory bandwidth at 

1555 GB/s. Intel Xeon Broadwell CPUs (E5-2695v4, 2.1 GHz) were used on the cluster for 

handling the GPU jobs. The algorithms were run under Python environments (Python 3.7) using 

Pytorch deep learning framework (Pytorch 1.11). 
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6. Results 

This section provides the obtained results for the pre-processing, clinical-data-only trained 

models, CT scans-only trained models, as well as the fusion approaches for both CNNs and 

Transformer models. 

6.1 Pre-processed clinical data 

Full results from the feature selection and feature extraction in section 3.2.1.3 using the seven 

conventional classification algorithms for the 1) 67 original clinical labels, 2) 13 selected 

clinical labels from SelectKBest algorithm, 3) 30 selected clinical labels from ExtraTree 

classifier, and 4) 25 extracted features from PCA algorithm are shown in Tables D.1 to D.4 in 

Appendix D, respectively. A trade-off performance criterion for a lower FPR and a higher TPR, 

F0.5 score, and Kappa in these tables showed that the Gaussian Naïve bays (NB) performed 

much better across the four approaches above. The abstracted results in Table 1 further confirm 

that the classification of the clinical data using Gaussian NB fed with 30 selected clinical labels 

from the ExtraTree classifier has led to better performances compared to other approaches.  

In addition, features-space assessments using the t-SNE algorithm on the four above schemes 

are shown in Figure 6A to 6D, respectively. The features-space plots in this figure hold high-

complexity and a visual binary classification seems to be a challenging due to the negligible 

differences between the images. Nevertheless, the application of t-SNE on the 30 selected labels 

from ExtraTree classifier in Figure 6C seems to provide a much better visually classifiable data. 

Due to the above reasons, the dataset containing the 30 selected clinical labels from ExtraTree 

classifier were used as the clinical dataset for models in section 3.3.1 and 3.3.3, where this data 

were further fused with the CT images to shape the fusion datasets. 

Table 1.  Comparison between the dimension reduction methods on the clinical data 

Classifier Dimension reduction 

method 

Number of 

clinical labels 

/components 
FPR TPR F0.5 

score Kappa 

Gaussian 

Naïve Bays 

N/A Raw data 67 labels 0.33 0.85 0.71 0.45 

Clinical labels 

selection 
SelectKBest 13 labels 0.47 0.89 0.71 0.41 

Clinical labels 

selection ExtraTree 30 labels 0.37 0.89 0.75 0.51 

Feature 

extraction PCA 
25 

components 0.51 0.94 0.74 0.46 
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Figure 6.  Visual representations from the t-SNE approach using A: the main dataset including all 67 clinical labels 
(with no dimension reduction), B: 13 selected clinical labels from SelectKBest, C: 30 selected clinical labels from 
ExtraTree classifier, and D: 25 extracted features from PCA. blue: high-risk (class 0), orange: low-risk (class 1). 

6.2 Models on the clinical data only 

Results from the seven classification algorithms in 3.3.1 are shown in Table 2. Each classifier 

was assessed using the 30 selected clinical labels from ExtraTree classifier. As shown, here the 

gradient boosting algorithm has outperformed the other algorithms. 

6.3 Models trained on CT images only 

Results of the 5-fold cross-validation from the 3D-CNN and 3D Swin Transformer models in 

section 3.3.2 (trained on the CT-images only) are shown in Table 2.  Results from the 

Transformer model on the CT images only shows improvement for all measures including FPR 

(0.45 lower), Kappa (0.27 higher), and F0.5 score (0.11 higher) compared to the 3D-CNN.  

6.4 Models trained on fusion data  

Results of the 5-fold cross-validation for each of the data-fusion approaches in sections 3.3.3 

are also shown in Table 2. As shown, the Transformer fusion models as well as the Terminal 

3D-CNN have resulted in improved overall scores, across all measures, compared to the medial 

3D-CNN fusion approach. 

ROC curves of the top performing models from each section as well as the top performing 3D-

CNN on the fusion data are shown in Figure 7. 

A                                                   B 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
C                                                   D 
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Table 2.  Performance results of the classifiers  

Model 
category Model name FPR TPR F0.5 

score 
ROC/ 
AUC* Recall Precision Kappa  

(-1, 1) 

Section  
3.3.1  

Clinical 
data only 

(on the set of 
30 selected 

clinical 
labels from 
ExtraTree 
classifier) 

Gaussian NB 0.49 0.70 0.57 0.60 0.61 0.59 0.19 

Random Forest 0.07 0.56 0.60 0.74 0.74 0.64 0.27 

Gradient Boosting 0.14 0.70 0.66 0.78 0.78 0.68 0.37 

XGBRF 0.16 0.65 0.62 0.72 0.73 0.64 0.28 

k-nearest neighbors 0.47 0.58 0.50 0.55 0.56 0.52 0.05 

SVM 0.18 0.18 0.32 0.50 0.50 0.42 0 

MLP 0.40 0.40 0.22 0.50 0.50 0.20 0 

Section  
3.3.2 

CTs only 

3D-CNN 0.83 0.84 0.63 0.57 0.57 0.78 0.22 

3D Swin Transformer  0.38 0.89 0.75 0.75 0.75 0.75 0.49 

Section  
3.3.3 

Data fusion 

Terminal 3D-CNN  
on CTs+30 labels 0.36 0.90 0.75 0.76 0.76 0.76 0.51 

Medial 3D-CNN 
on CTs+67 labels 0.65 0.98 0.70 0.66 0.66 0.67 0.37 

3D Swin Transformer 
on CTs+30 labels 0.35 0.91 0.78 0.78 0.78 0.80 0.55 

3D Swin Transformer 
on CTs+67 labels 0.40 0.95 0.82 0.77 0.77 0.83 0.60 

*ROC: Receiver Operating Characteristics Curve, AUC: Area under the ROC Curve 

 

Figure 7.  Mean ROC curves from the top performing models. Bold line: 3D Swin Transformer on fusion data 
(CT+67 labels), dashed-dotted line: 3D Swin Transformer on CTs only, dotted line: Gradient Boosting, dashed 
line: Terminal 3D-CNN fusion (CT+30 labels). 
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7. Discussion and conclusion 

This paper, for the first time, demonstrated how a 3D data fusion approach of combining CT 

scan images and patients’ clinical data can help to improve the performance of Visual 

Transformer and CNN models for predicting high-risk Covid-19 infection. Other studies have 

mainly focused on feeding such networks with either CT scan images or patients’ clinical data. 

The paper explored a comprehensive set of strategies to evaluate optimal predictive model 

across a number of classifiers tested on a relatively large dataset of 380 patients. This research 

demonstrates the superiority of data-fusion approaches used in 3D Swin Transformers for better 

identification of high-risk Covid-19 infected patients. 

Here we showed that the performance of a 3D Swin Transformer model tested on the fusion of 

CT scan images and the original set of 67 clinical labels outperformed all other strategies in this 

work (FPR=0.40, TPR=0.95, F0.5 score = 0.82, AUC=0.77, Kappa=0.60) where the models 

were fed with fusion-type datasets, CT scan images only, and clinical data only. Here, we 

formed 3D fusion datasets by re-shaping the clinical data into 512x512x’number of clinical 

labels’ format and combined them with CT scan images of size 512x512x64 to create our fusion 

dataset. It is inferred that our strategy for the dimension expansion of clinical data and fusing 

them with the CT scan images has successfully helped the self-attention layers within the Swin 

Transformer model to effectively rate interconnectivity between the clinical data and the CT 

images for better classifications.  

We further tested and compared the performance of a terminal 3D-CNN model (on the CT+30 

clinical labels), a medial 3D-CNN (on the CT+67 clinical labels), 3D Swin Transformers (on 

the CT+30 clinical labels and on the CT+67 clinical labels, respectively) to the original 

approach. Results from Table 2 indicates that our selected set of 30 clinical labels from the 

original pool of 67 clinical labels fused with the patients’ CT scan images has been consistently 

and effectively helpful to achieve competitive performances compared to the 3D Swin 

Transformer on the CT+67 clinical labels. Here, the 3D Swin Transformer model on the fusion 

of CT+30 clinical labels achieved FPR=0.35, TPR=0.91, F0.5 score = 0.78, AUC=0.78, 

Kappa=0.55, and the terminal 3D-CNN model on the fusion of CT+30 clinical labels achieved 

FPR=0.36, TPR=0.90, F0.5 score = 0.75, AUC=0.76, Kappa=0.51. These closer performance 

measures from the selected set of 30 clinical labels suggest that these dominant labels may hold 

clinical values in the clinical settings for a better identification of the illness and could be looked 

at in details in future studies. These clinical labels have been listed in Table A.1 of appendix A. 

We also assessed classification capabilities of a 3D-CNN model and a Video Swin Transformer 
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on sets of 3D CT scan images only. Here, the 3D Swin Transformer achieved much better 

results (FPR=0.38, TPR=0.89, F0.5 score = 0.75, AUC=0.75, Kappa=0.49) compared to the 

3D-CNN with higher FPR, lower AUC and Kappa (FPR=0.83, TPR=0.84, F0.5 score = 0.63, 

AUC=0.57, Kappa=0.22).  

Our assessments also showed that conventional classifiers, fed with patients’ clinical data only, 

poorly classified the data compared to the other two approaches above, namely the fusion and 

CT-only strategies (see Table 2). Amongst the conventional classifiers, Gradient boosting was 

found to outperform the other ones when only fed with the clinical data (FPR=0.14, TPR=0.70, 

F0.5 score = 0.66, AUC=0.78, Kappa=0.37).  

An overall trade-off assessment shows that the 3D Swin Transformer fed with the fusion of CT 

scan images and the full set of 67 clinical labels identified high-risk patients from the low-risk 

class more accurately compared to the other approaches. This was closely followed by 3D Swin 

Transformer model fed with a fusion of CT images and the set of 30 selected clinical labels 

from ExtraTree classifier. The 3D Swin Transformer again demonstrated superiority compared 

to the 3D-CNN approach, even when both models were fed with CT images only; however, the 

overall performance was found to be lower than the data-fusion approach. Classification 

performances remarkably decreased across all the seven conventional models when only the 

clinical data were used. The mean ROC curves in Figure 6 from the top performing models in 

each section demonstrate how the 3D Swin Transformer on fusion data (CT+67 labels) 

outperformed the other approaches. We have also provided the ROC curve of the top 

performing 3D-CNN model on the fusion data, namely the Terminal 3D-CNN fusion (CT+30 

labels) to show how the choice of 30 selected clinical labels could also help our proposed CNN-

based model to achieve competitive performances compared to the 3D Swin Transformer on 

the fusion data. 

Overall, we expect potential clinical utility for the proposed 3D Video Swin Transformer fed 

with fusion datasets from patients’ CT images and clinical data for reliable prediction of 

outcomes in Covid-19-infected patients. The improved performances of the Transformer 

models show robust capability for a future validation study on larger datasets. We encourage 

readers to apply the proposed fusion scheme in this work to larger clinical datasets for further 

validity assessments. Results from this research highlight the possibilities of predicting the 

severity of Covid-19 infection, at the time of admission to the clinical centers, when effectivity 

of early treatments is evident. 
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Conclusion 

This paper demonstrated how the performance of Visual Transformers, namely a 3D Swin 

Transformer, could remarkably improve for predicting Covid-19 outcomes when fed with a 

novel 3D data fusion approach of integrating CT scan images with patients’ clinical data. The 

paper further explored and compared capabilities of a series of models including Transformers 

(on CT images only), 3D-CNNs (both on the fusion dataset and on CT images only) as well as 

conventional classifiers (on the clinical data only). Results showed that the use of fusion dataset 

provided opportunity for the 3D Swin Transformer model to better aggregate globally and 

locally interconnected features of the data and perform better compared to all other models. 

Results confirmed that this was valid for the larger fusion dataset of 64 CT scans + 67 clinical 

labels and the 64 CT scans + 30 selected clinical labels. The paper further discussed how genetic 

algorithm (GA) is a suitable choice for hyper-parameter tuning of the 3D-CNN models. We 

also investigated a series of strategies to find and select a proper set of clinical labels from the 

pool of clinical data for the classification of imbalance data. The paper further discusses 

imputation techniques to deal with missing values in the dataset. Overall, this paper 

demonstrates possibilities of predicting the severity of outcome in Covid-19 infected 

individuals at or around the time of admission to hospital using fusion datasets from patients’ 

CT images and clinical data. 
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Supplementary material 

Appendix A 

Table A.1. Patients’ clinical measurements (mean±std). X(Y%): X represents the label counts 
in the population, and the associated % of the label in the population is shown with Y. Italic 
labels represent the excluded labels previouly explained in section 3.2.1.1. 

Clinical variable/label Total (n=380) 

Gender 
Female 133(35%) 
Male 247(65%) 
Age 
Mean ± SD 53.82±17.92 
Exposure history 
EHF * 57(15%) 
HOT * 29(7.63%) 
ESP * 83(21.84%) 
CIH * 50(13.16%) 
Comorbid disease 
Diabetes Mellitus 77(20.26%) 
Vascular disease 59(15.53%) 
Obesity 49(12.89%) 
Smoking 24(6.32%) 
Kidney 19(5.00%) 
Asthma 13(3.42%) 
Other lung diseases 23(6.05%) 
Malignancy 12(3.16%) 
Hematic 10(2.63%) 
Rheumatology 10(2.63%) 
Neurological 14(3.68%) 
Hypertension 47(12.37%) 
UCC* 12(3.16%) 
Clinical manifestations 
Fever 225(59.21%) 
Cough 234(61.58%) 
Dyspnea 196(51.58%) 
Myalgia 179(47.11%) 
Headache 128(33.68%) 
Chest pain 81(21.32%) 
Nausea  101(26.58%) 
Sputum 83(21.84%) 
Chills 174(45.79%) 
Hemoptysis  13(3.42%) 
Sore Throat 15(3.95%) 
Anorexia 198(52.11%) 
Rhinorrhea  47(12.37%) 
Anosmia  54(14.21%) 
Weakness 207(54.47%) 
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Loss of consciousness 22(5.79%) 
Diarrhea 70(18.42%) 
Earache 13(3.42%) 
Wheezing 0(0%) 
Arthralgia 31(8.16%) 
Respiratory distress 5(1.32%) 
Dizziness  63(16.58%) 
Convulsion  6(1.58%) 
Abdominal pain 32(8.42%) 
Conjunctivitis 23(6.05%) 
Rash 3(0.79%) 
Skin lesion 1(0.26%) 
Lymphadenopathy 0(0%) 
Sweating 19(5.00%) 
Hematochezia 2(0.53%) 
Cold sweating 14(3.68%) 
Venous blood gas analysis 
WBC (109/L) 7.19±5.18 
Hemoglobin (g/dl) 13.04±1.20 
Hematocrit (%) 38.87±5.14 
Platelet (109/L) 194.42±83.32 
Lymphocyte (%) 21.39±11.75 
Neutrophil (%) 71.63±12.99 
Lactate Dehydrogenase (LDH) 640.125±382.65 
Complete blood count 
pH 7.41±0.1 
PO2 (mm Hg) 35.19±19.42 
PCO2 (mm Hg) 41.62±10.33 
HCO3 (mEq/L) 26.31±7.10 
O2satVBG 58.87±22.15 
Kidney enzymes 
Urea (mg/dL) 47.40±38.33 
Creatinine (mg/dL) 1.46±1.33 
Others 
Sodium (mEq/L) 136.90±7.75 
CRP (mg/L) * 53.00±48.54 
Potassium (mEq/L) 4.06±0.68 
Calcium (mg/dL) 8.27±1.08 
Magnesium (mg/dL) 3.01±9.35 
ESR (mm/hr) * 49.42±27.28 
CPK (U/L) * 317.18±743.51 
Blood sugar(mg/dL) 153.97±70.74 
Bill Total 7.07±38.02 
Procalcitonin (ng/ml) 1.05±1.88 
PCR * 94(92.16%) 
Presenting vital sign 
Temperature (c) 36.91±3.31 
Systolic BP (mmHg) 86.46±32.69 
Diastolic BP (mmHg) 106.90±25.06 
Respiratory rate (/min) 18.69±4.46 
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Heart rate (/min) 90.05±18.00 
Saturation O2 (%) 92.15±7.67 
Coagulation profile 
PT (s)* 12.99±3.12 
PTT (s)* 28.85±11.86 
INR (IU)* 2.01±8.86 
Liver enzymes 
AST (U/L) * 66.52±204.179 
ALT (U/L) * 38.95±35.60 

*Exposure to healthcare facilities (EHF) 
history of traveling (HOT) 

exposure to the suspected patient (ESP) 
covid-19 infection in household (CIH) 

Use of corticosteroid for comorbidities (UCC) 
c-reactive protein (CRP) 

erythrocyte sedimentation rate (ESR) 
Creatine phosphokinase (CPK) 

polymerase chain reaction (PCR) 
Prothrombin time (PT) 

Partial thromboplastin time (PTT) 
international normalized ratio (INR) 

aspartate aminotransferase (AST) 
alanine transaminase (ALT) 
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Appendix B 

 
Figure B.1. The suggested set of 30 selected clinical labels from ExtraTree classifier. 

 

 
 

Figure B.2. The suggested set of 13 clinical labels from SelectKbest algorithm. 
 

       

 
 

Set of 30 clinical labels 
from SelectKbest 
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Appendix C 

 
Table C.1. Selected hyperparameters from the Genetic Algorithm for the 3D-CNN CT model     
(section 3.3.2.1) and the medial 3D-CNN fusion model (section 3.3.3.1). 

 
Hyperparameter 
for the 3D-CNN 
CT model 

Range 
Hyperparameter for the 
medial 3D-CNN fusion 
model 

Range 

Number of neurons 
of first layer 32,64,128 Number of neurons of first 

layer for CT images network  32,64,128 

Number of neurons 
of second layer 64,128,256 Number of neurons of second 

layer for CT images network 64,128,256 

Number of neurons 
of third layer 128,256,512 Number of neurons of third 

layer for CT images network 128,256,512 

Drop out  round(uniform(0.1, 0.5), 1) Drop out  round(uniform(0.1, 0.5), 1) 

Optimization 
Adamax, 
Adadelta, 

Adam,  
Adagrad 

Optimization 
Adamax, 
Adadelta, 

Adam,  
Adagrad 

Learning rate  0.000002, 
0.000001 Learning rate  0.000002, 

0.000001 

Number of layers 1,2,3 Number of layers  
for CT images network 1,2,3 

Kernel size 3,5 Kernel size 2,4,8 

 
 Number of neurons of first 

layer for clinical network  67, 30, 15, 10 

  Number of neurons of second 
layer for clinical network  10, 8 
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Appendix D 

Table D.1. Results of the seven conventional algorithms in section 3.2.1  
on the 67 original clinical labels. 

 
Classifier FPR TPR Recall Precision F0.5 

score Kappa  Training 
accuracy 

Test 
accuracy 

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82 

MLP 0.62 0.95 0.67 0.76 0.73 0.4 0.99 0.85 

KNN 0.56 0.81 0.63 0.62 0.61 0.23 0.92 0.75 

Gaussian 
NB 0.33 0.85 0.76 0.71 0.71 0.45 0.83 0.82 

XGBoost 0.6 0.95 0.68 0.78 0.73 0.41 0.89 0.89 

Random 
Forest 0.65 0.97 0.66 0.79 0.73 0.39 1 0.86 

Gradient 
Boosting 0.54 0.92 0.69 0.72 0.71 0.39 0.97 0.97 

AVG 0.61 0.92 0.65 0.68 0.66 0.32 0.92 0.85 

 
 
 
 

Table D.2. Results of the seven conventional algorithms in section 3.2.1  
on the 13 selected clinical labels from SelectKBest algorithm. 

 

Classifier FPR TPR Recall Precision F0.5 
score Kappa  Training 

accuracy 
Test 

accuracy 

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82 

MLP 0.57 0.92 0.68 0.71 0.7 0.37 0.94 0.83 

KNN 0.58 0.81 0.62 0.61 0.6 0.21 0.92 0.74 

Gaussian 
NB 0.47 0.89 0.71 0.71 0.71 0.41 0.85 0.83 

XGBoost 0.6 0.96 0.68 0.81 0.75 0.42 1 0.86 

Random 
Forest 0.67 0.96 0.65 0.81 0.71 0.35 1 0.85 

Gradient 
Boosting 0.58 0.94 0.68 0.75 0.72 0.4 0.98 0.98 

AVG 0.64 0.92 0.64 0.69 0.66 0.31 0.93 0.84 
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Table D.3. Results of the seven conventional algorithms in section 3.2.1  

on the 30 selected clinical labels from ExtraTree classifier. 
 

Classifier FPR TPR Recall Precision F0.5 
score Kappa  Training 

accuracy 
Test 

accuracy 

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82 

MLP 0.53 0.92 0.7 0.75 0.72 0.42 0.94 0.84 

KNN 0.54 0.81 0.64 0.63 0.62 0.24 0.92 0.75 

Gaussian 
NB 0.37 0.89 0.76 0.75 0.75 0.51 0.86 0.83 

XGBoost 0.56 0.96 0.7 0.8 0.76 0.46 1 0.87 

Random 
Forest 0.67 0.97 0.65 0.83 0.73 0.37 1 0.86 

Gradient 
Boosting 0.58 0.92 0.67 0.72 0.7 0.37 0.97 0.97 

AVG 0.61 0.92 0.66 0.7 0.67 0.34 0.93 0.85 

 
 
 
 

Table D.4. Results of the seven conventional algorithms in section 3.2.1  
on the 25 extracted features from PCA algorithm. 

 
Classifier FPR TPR Recall Precision F0.5 

score Kappa  Training 
accuracy 

Test 
accuracy 

SVM 1 1 0.5 0.41 0.43 0 0.82 0.82 

MLP 0.62 0.94 0.66 0.77 0.72 0.38 0.99 0.84 

KNN 0.56 0.81 0.63 0.62 0.61 0.23 0.92 0.75 

Gaussian 
NB 0.51 0.94 0.71 0.76 0.74 0.46 0.87 0.86 

XGBoost 0.74 0.97 0.62 0.8 0.7 0.31 1 0.85 

Random 
Forest 0.82 0.99 0.58 0.87 0.66 0.24 1 0.85 

Gradient 
Boosting 0.77 0.95 0.59 0.69 0.64 0.22 1 0.82 

AVG 0.72 0.94 0.61 0.7 0.64 0.26 0.94 0.83 
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