
 
 
 

 1

Integrated Machine Learning Approaches Highlight the Heterogeneity of Human Myeloid-
Derived Suppressor Cells in Acute Sepsis 
 
Anthony S. Bonavia1,2*, Abigail Samuelsen1, E. Scott Halstead3 

1 Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, 
Penn State Milton S. Hershey Medical Center, Hershey, PA, USA  

2Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey 
Medical Center, Hershey, PA, USA  

3Division of Pediatric Critical Care Medicine, Department of Pediatrics, Penn State Milton S. 
Hershey Medical Center, Hershey PA  
 

*Corresponding Author: 
Anthony Bonavia 
Email: abonavia@pennstatehealth.psu.edu 
Address: 500 University Dr, Mailbox H-187, Hershey, PA 17033, USA 
Phone: +1 (717)-531-6140 
Fax: (717)-531-0371 
 
Keywords: high parameter flow cytometry, unsupervised clustering, sepsis, clinical immunology, 
myeloid-derived suppressor cells 
 
Abbreviations: 
 
APACHE: Acute Physiology and Chronic Health Evaluation 
e-MDSC: early myeloid-derived suppressor cells 
MDSC: myeloid-derived suppressor cells 
M-MDSC: monocytic myeloid-derived suppressor cells 
PMN-MDSC: neutrophilic myeloid-derived suppressor cells 
SOFA: Sequential Organ Failure Assessment  
UMAP: Uniform Manifold Approximation and Projection  
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278014doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.07.25.22278014


 
 
 

 2

Abstract 
 

Highly heterogeneous cell populations require multiple flow cytometric markers for 
appropriate phenotypic characterization. This exponentially increases the complexity of 2D 
scatter plot analysis and exacerbates human errors due to variations in manual gating of flow 
data. We describe a workflow involving the stepwise integration of several, newly available 
machine learning tools for the analysis of myeloid-derived suppressor cells (MDSCs) in septic 
and non-septic critical illness. Unsupervised clustering of flow cytometric data showed good 
correlation with, but significantly different numbers of, MDSCs as compared with the cell 
numbers obtained by manual gating. However, both quantification methods revealed a 
significant difference between numbers of PMN-MDSC at day 1 in healthy volunteers and 
critically ill patients having septic or non-septic illness. Numbers of PMN-MDSC obtained by 
machine learning positively correlated with 30 days hospital readmission following critical 
illness, whereas manual gating of this cell population distinguished between septic and non-
septic critical illness. Neither gating strategy found a correlation between number of MDSCs and 
30-day mortality or hospital length of stay.  
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Introduction 
 
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid 

cells that suppress T cell and natural killer cell activity. Previously known as “natural 
suppressor” cells, these cells are believed to be central to the pathogenesis of cancer, where they 
cause immune dysfunction and resilience to chemotherapeutic agents (1, 2). More recently, 
MDSCs have also been implicated in the pathophysiology of sepsis, the life-threatening organ 
dysfunction resulting from a dysregulated host immune response to infection (3, 4). However, 
MDSCs may also play a protective role during hyperinflammatory disease processes (5).   

The rapid progression of sepsis leaves a narrow but critical time window in which 
clinicians can potentially intervene to improve patient outcomes. MDSCs have been proposed as 
a therapeutic target in this time window (3), although investigations into their pathophysiology 
have met several challenges. First, the gold standard for quantifying MDSC number and/or 
function involves a T cell proliferation assay which measures their ‘suppressive’ activity over 
several days. This delay impacts our ability to intervene early in sepsis via the administration of 
immune adjuvants to patients who may benefit from this therapy. Second, sepsis is a highly 
heterogeneous syndrome marked predominantly by hyper-inflammation in certain patients, 
immune paralysis in others, but often by both processes in concert (6, 7). It is likely that both 
MDSC number and function are equally heterogeneous in these different sepsis subtypes. Murine 
MDSCs are ubiquitously identified as CD11b+ Ly6G+ Ly6Clo (PMN-MDSC) or CD11b+ Ly6G- 
Ly6Chi (M-MDSC). In contrast, there is tremendous inconsistency in the nomenclature and 
surface markers that characterize human MDSCs. Despite general guidelines designed to 
minimize bias in the presentation and interpretation of flow cytometric data, significant 
variations between individuals and laboratories persist and may affect the conclusions drawn 
from flow cytometry data (8, 9).  

We hypothesized that unsupervised machine learning algorithms would highlight MDSC 
subpopulations, on day 1 of critical illness, that correlate with patient outcomes. We investigated 
our hypothesis by applying a stepwise, unsupervised clustering workflow for quantifying MDSC, 
and we then compared results obtained with those using manual gating alone. We subsequently 
examined the relationship between the number of MDSCs calculated by each method to patient 
outcomes. Our approach was designed with particular attention to minimizing the introduction of 
human bias in the identification of MDSCs, by leveraging machine learning for most of the 
processing of flow cytometric data. The significance of this standardized approach is that it could 
potentially be applied to prospective clinical trials targeting highly heterogeneous cell 
populations, whether sepsis-related or not.  
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Results and Discussion 
   

Our study cohorts consisted of 17 critically ill and septic (CIS) patients, 5 critically ill 
and non-septic (CINS) patients and 5 healthy volunteers (Table 1). The mean age of healthy 
volunteers was 43 years (range 24-63) and 80% were male. One was Asian, another Hispanic 
and three Caucasian. Conventional, manual gating of flow cytometric data was first performed 
(Fig 1A). Machine learning and optimized gating for PMN-MDSC, M-MDSC and eMDSC was 
run in parallel by using the strategy described in Fig 1 B-H. FlowSOM identified a single e-
MDSC metacluster, two M-MDSC metaclusters and ten PMN-MDSC metaclusters (Fig 1D). 
When this data was integrated with dimensionally reduced data produced by UMAP (Fig 1E), 
the integrated model identified one additional M-MDSC metacluster and eliminated two of the 
previously identified PMN-MDSC clusters (Fig 1F).  Each MDSC cluster was then processed in 
Hyperfinder (Fig 1G), which reported gating F-measures of 0.932 for e-MDSC, 0.931 ± 0.039 
for M-MDSC and 0.860 ± 0.065 for PMN-MDSC.  

The numbers of PMN-MDSC as assessed by machine gating correlated with, but were 
significantly different from, those identified by manual gating (P=0.05, paired t-test), as were 
numbers of e-MDSC (P<0.0001) and M-MDSC (P=0.003) (Fig 2A). This data, in conjunction 
with a decreased F score for PMN-MDSC, highlights the difficulty in classifying this latter 
MDSC variant based on surface markers alone. It is probable that a portion of PMN-MDSC thus 
identified are mature neutrophils, since human CD11b+CD15+CD14−CD33+/loCD66b+ markers 
enrich for neutrophils at all maturation stages (10). Gradient centrifugation using 1.077 g l-1 

density has been suggested to separate neutrophils from neutrophilic MDSC, since the latter are 
enriched in low density (mononuclear cell fraction) whereas neutrophils are high density cells. 
However, cross-contamination of fractions is a common, recognized and unavoidable problem 
whether density gradient centrifugation is utilized or not (11). Rather than provide precise 
quantification of PMN-MDSC, our study is intended to illustrate the potential applications of 
machine learning approaches in multiparameter analysis of phenotypically heterogeneous cell 
populations.  

Mixed, main effects analysis of both manual and machine gating of MDSC populations 
identified a significant difference in total PMN-MDSCs between healthy, CIS and CINS patients 
on day 1 of study enrollment (P=0.01 for manual gating, P=0.015 for machine learning) (Fig 2B 
and 2C). There was no significant difference between CIS and CINS in the number of e-MDSC 
or MDSC, or in the total number of PMN-MDSC at 7- and 14-days post-study enrollment. While 
our CINS group consisted of only five patients, this finding suggests that critical illness and 
multi-organ dysfunction (rather than sepsis) may be the primary cause of MDSC expansion. 
Moldawer et al have proposed that sepsis-induced chronic critical illness results from 
proliferation of MDSC (12), and that this cell population drives the persistent inflammation-
immunosuppression and catabolism syndrome that commonly follows prolonged surgical sepsis 
(13). However, it is also possible that stress and inflammation associated with critical illness are 
drivers of this process, perhaps contributing to the elevated rates of nosocomial infections 
observed in patients experiencing prolonged stays in critical care wards. 

In our cohort, none of the MDSC cell populations (PMN-MDSC, M-MDSC or e-MDSC) 
evaluated by manual or machine gating predicted 30-day mortality. Neither did any individual 
sub-population predict mortality, leading us to accept our null hypothesis. MDSC number did not 
correlate with severity of illness by APACHE II, SOFA scores or Charlson Comorbidity Indices. 
The number of PMN-MDSC did correlate with hospital length of stay and risk of secondary 
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infection, although no one sub-population of PMN-MDSC alone could explain this difference 
(Fig 2D). Increased numbers of PMN-MDSC at day 1 predict hospital readmission (machine 
gating, P=0.03) and a diagnosis of sepsis (manual gating, P=0.05) (Fig 2E).  

The main limitation of our study is that we cannot, with certainty, conclude that the 
analyzed cell populations constitute ‘true’ MDSCs without ascertaining that they suppress T cell 
proliferation in vitro. Conversely one cannot quantify suppressive potential without first 
identifying and sorting cells according to their surface markers. The importance of assessing 
suppressive MDSC cell activity may be further obviated by evidence that, while sepsis survivors 
have elevated numbers of MDSCs for at least 6 weeks following infection, only MDSCs that are 
obtained at >14 days post-sepsis suppress T lymphocyte proliferation and IL-2 production (13). 
The latter study suggests that, unlike murine studies or studies in vitro, human MDSCs produced 
early in sepsis may have not yet adopted immunosuppressive properties, further increasing the 
importance of accurate flow cytometric quantification of these cell populations for future 
investigation. 

 
 
Concluding Remarks 
  

The integration of machine learning tools into flow cytometric software minimizes both 
human processing time and intuition-based analysis of data. It also excels in the quantification of 
cell populations with intermediate phenotypes. Sepsis is a syndrome that often has a nebulous 
onset and rapid clinical evolution, and we demonstrate that the proportions PMN-MDSC 
correlate with secondary infection and hospital readmission, although no one sub-population that 
was identified by machine learning can explain these differences. The strategy we describe may 
be particularly useful when employing multiple flow parameters in the investigation of highly 
heterogeneous cell populations. It utilizes readily available tools and thus has a low investigator 
barrier to entry. It may also be applied to the cellular analysis of several, non-sepsis diseases. Its 
stepwise, algorthimic nature may be beneficial in multi-institutional research endeavors as an 
alternative to the transfer of research samples to a centralized facility for standardized analysis. 
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Methods 
 
Study Participants 

This prospective, observational trial was performed on critically ill, adult patients and 
healthy control volunteers, between 11/2021 and 6/2022. All participants provided informed 
consent in accordance with the institutional Human Study Protection Office (#15328,#10357). 
Sepsis was defined as a change in sequential organ failure assessment (SOFA) score of two or 
more in the setting of clinically suspected or microbiologically proven infection (4). Critical 
illness was defined as the need for continuous intravenous infusion of vasopressors to maintain a 
mean arterial pressure of ≥65 mmHg, and/or the need for continuous respiratory support and 
monitoring, and/or the need for continuous renal replacement therapy. Critically ill and non-
septic patients included adult patients who were older than 18 y and fulfilled criteria for critical 
illness but not sepsis. Healthy volunteers included adults who did not fulfil criteria for critical 
illness or sepsis. To minimize the potential or confounding effects, we excluded patients with 
active hematologic malignancies, autoimmune disorders and those who were receiving 
immunomodulating therapies.  
 
Clinical variables 

Patient data for critically ill, septic (CIS) and non-septic (CINS) patients was obtained 
from the electronic medical record. To distinguish between illness severity in patients, we 
utilized the Charlson Comorbidity Index (14), the Acute Physiology and Chronic Health 
Evaluation (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores (15-17). 

 
Processing of blood samples 

Venous blood samples were collected in tubes containing ethylenediamine tetra-acetic 
acid (EDTA), within 24h of the onset of critical illness +/- sepsis (day 1) and on subsequent days 
7-10 and 14, if the patient was still alive and hospitalized at that time. 100µl of whole blood was 
blocked with mouse serum (0.5:1, M5905, Sigma-Aldrich, St. Louis, MO), for 5 minutes at room 
temperature followed by addition of e780 Fixable Viability Dye (1:800, cat #65-0865, 
eBioscience, San Diego, CA). The following antibodies were then added for 20 minutes at room 
temperature, in the dark: anti-CD66b-FITC (1:20, cat #555724, BD Biosciences, San Diego, 
CA), anti-CD115-PerCP-Cy5.5 (1:200, clone 9-4D2-1E4, #347309, Biolegend, San Diego, CA), 
anti-CD16-BV421 (1:80, clone 368, #562874, BD), anti-CD11b-BV605 (1:80, clone ICRF44, 
#301332, Biolegend), anti-HLA-DR-BV650 (1:80, clone L243, #307649, Biolegend), anti-
CD15-BV711 (1:80, clone W6D3, #563142, BD), anti-CD14-BV786 (1:80, clone M5E2, 
#563699, BD), anti-Lineage Cocktail CD3/19/20/56-APC (1:20, #363601, Biolegend), anti-
CD45-AF700 (1:80, clone 2D1, #368513, Biolegend), anti-CD33-PE (1:20, #555450, BD), anti-
CD123-PE-Cy7 (1:80, clone 7G3, #560826, BD). This antibody panel was created following a 
literature search into recently published strategies for identifying human MDSCs (12, 13, 18-20). 
 Following antibody staining, red blood cells were lysed and cells were washed and fixed. 
Counting Beads (Invitrogen, Waltham, MA) were added to a separate sample of lysed, unstained 
cells. Analysis was performed on FACSymphony A3 (Becton Dickinson & Company, Franklin 
Lakes, NJ) and using Flowjo v10.8.1 (BD Biosciences). 
 
Manual gating of flow cytometric data 
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MDSC nomenclature was consistent with recently described minimal phenotypic 
characteristics necessary to identify cells as MDSC (11) and with nomenclature utilized in a 
comparable study of septic patients (20). M-MDSCs were CD11b+, CD15–, CD14+, HLA-DR–; 
PMN-MDSCs were CD15+, CD14–, CD11b+, SSChi; e-MDSCs were CD3–, CD14–, CD15–, 
CD19–, CD56–, HLA-DR–, CD33+, CD11b+. Flow data was analyzed and manual gating 
performed and presented in accordance with guidelines for the use of flow cytometry in 
immunologic studies (8) (Fig 1A). 
 
Machine gating followed by unsupervised clustering of flow cytometric data  

A comprehensive literature search revealed that the only between-study consistency in 
human MDSC characterization is the pan-myeloid, CD11b+ surface marker. Thus, we pre-
processed flow data by applying bead compensation and then manually gating for viable, 
CD11b+ singlets by using Flowjo 10.8.1 (BD Biosciences) (Fig 1B). We employed a ‘lowest 
common denominator’ approach to minimize bias, to preserve integrity of the dataset and to rely 
predominantly on machine learning for subsequent exploration. 2D scatter plots clearly 
delineated between CD11b- and CD11b+ populations in all samples. We then used the Flowjo 
Downsampler tool to export an equal number of normally distributed CD11b+ cells from each 
sample for subsequent processing. 

Unsupervised clustering was performed by two independent methods. PhenoGraph 
discovers subpopulations by using nearest-neighbor graphing, wherein each cell is represented 
by a node (in high-dimensional space), connected by a set of edges, to a neighborhood of its 
most similar cells (21) (Fig 1C). The graph distils the high-dimensional distribution of single 
cells into a compact, information-rich data structure that captures phenotypic relatedness and 
overcomes many pitfalls of standard geometries (21). The strength of PhenoGraph is its rapidity 
and the unsupervised determination of cluster number, although its weakness is the lack of visual 
output that illustrates the relatedness of subpopulations. The number of Phenograph-identified 
metaclusters was inputted into FlowSOM, a self-organizing map algorithm in which each node 
represents a point in the multidimensional input space, and each new point is classified with the 
node that is its nearest neighbor (22) (Fig 1D). The grid contains topological information about 
the relatedness of each point, such that nodes closely connected to each other on the grid 
resemble each other more closely than those connected through a long path. FlowSOM provides 
visual representation of data by using a minimal spanning tree, although it requires the user to 
pre-define a maximum number of metaclusters, leading to potential introduction of user bias. 
Hence the use of Phenograph to identify cluster number, prior to FlowSOM. 

Uniform Manifold Approximation and Projection (UMAP) was used for dimension 
reduction of data and alternate clustering (23) (Fig 1E). UMAP is a recently introduced, scalable 
machine learning algorithm that creates an intuitive, 2-dimensional map wherein spatial 
proximity of clusters implies similar cell marker phenotype. 
 
Comparison of Clusters, Automated Gating and Iterative Application to Samples 
 ClusterExplorer allows the selection and integration of one or more clustering parameters 
(in this case, FlowSOM and Phenograph-generated clusters) with user-defined surface markers 
of interest and dimensionality reduction x and y parameters (in this case, by UMAP), on which 
clusters can be displayed. We selected ClusterExplorer heat map as the primary tool with which 
identify discrete MDSC populations, based on the intensity of different surface markers as they 
relate to characterization of each of the three MDSC types (Fig 1F). However, ClusterExplorer 
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can presents data on profile graphs with relative expression levels of surface markers and 
barcharts showing the relative numbers of events in each cluster. Notably, this step was the only 
one, in the machine gating algorithm, that involveed investigator input, and therefore the 
machine learning algorithm was not completely free from potential investigator error. 

After identifying MDSC subsets by using ClusterExplorer, Hyperfinder was used to 
optimize the gating strategy for each identified cell population (maximum of 8 gates, target F-
measure beta of 1) (Fig 1G). F-measure is the harmonic mean of yield and purity, with a score of 
1 indicating equal contributions of yield and purity. The resulting gating algorithm for each 
MDSC subset was then retroactively applied to the original CD11b+ population from each 
sample (Fig 1H). The number of cells identified by this approach that met criteria for eMDSC, 
M-MDSC and PMN-MDSC was then compared with equivalent populations of cells identified 
by manual gating. 
 
 
Statistical Analyses 
 Analyses were performed in Prism v.9.3.1 (Graphpad Software, San Diego, CA) and JMP 
Pro 16.0.0 (SAS Institute Inc., Cary, NC). Details of each analysis are contained within the table 
and figure legends. 
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Figure Legends 
 
Fig 1. Manual versus machine gating of MDSC populations. (A) Representative manual gating 
strategy used to identify MDSC. M-MDSCs are CD11b+, HLA-DR-, CD15-, CD14+; PMN-
MDSCs are CD15+, CD14-, CD11b+, SSChi; e-MDSCs are CD14-, CD15-, CD3-, CD19-, 
CD20-, CD56-, HLA-DR-, CD33+, CD11b+. (B) Stepwise integration of unsupervised, machine 
learning techniques facilitates the unbiased analysis of high parameter flow cytometry data. 
Rudimentary gating isolates viable singlets, followed by manual gating for the ‘lowest common 
denominator’ (CD11b surface marker, in this case) enriches the population of interest. 
Downsizing to a minimal, common cell count eliminates sampling bias. (C) Phenograph 
identifies the number of metaclusters based on cell markers of interest. (D) This number is then 
inputted into FlowSOM, which generates a minimal spanning tree. PMN-MDSC, M-MDSC and 
e-MDSC are user-defined annotations based on the definitions in A. (E) Dimensionality 
reduction allows two-dimensional visualization while preserving global data structure. Proximal 
clusters on the 2-dimensional plot have closely related surface marker profiles. UMAP allows 
user-directed validation of the clusters identified by FlowSOM and Phenograph. *denotes 
potential M-MDSC, **denotes potential PMN-MDSCs, ***denotes potential e-MDSCs. (F) 
FlowSOM and UMAP data are integrated in Cluster Explorer, allowing in-depth data 
exploration. Heatmap illustrates FlowSOM clusters, sorted by increasing intensity of CD11b+ 
expression. Numeric annotations denote intermediate phenotypes as determined by authors. Note 
that the integration of data generated using different machine learning tools re-defines certain 
MDSC clusters, as compared with results from D or E alone. (G) Hyperfinder optimizes polygon 
gating of populations of interest. (H) The generated algorithm is then iteratively applied to flow 
data generated in B. Displayed is an example of Hyperfinder gating for cluster e-MDSC-1.  
 
 
Fig 2. MDSCs are expanded during septic and non-septic critical illness. (A) Correlation 
between MDSC populations by manual gating versus machine learning. Boxplots (Tukey) 
representing normalized cell counts of PMN-MDSCs, M-MDSCs, and e-MDSCs at different 
time points in critically ill and septic (CIS, N = 17), critically ill and non-septic (CINS, N = 5) 
and in healthy donors (N = 5) by manual gating (B) and machine learning (C). (D) Number of 
PMN-MDSC at day 1 and day 7 are negatively correlated with hospital length of stay and risk of 
secondary infections. Line of fit shows linear regression with confidence intervals. (E) Increased 
numbers of PMN-MDSC at day 1, by machine gating, are associated with 30-day hospital 
readmission (P = 0.03), whereas PMN-MDSC on day 1, by manual quantification, correlate with 
a diagnosis of sepsis (P = 0.05). 
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Table 1: Patient Demographics and Outcomes  
 

 Critically ill, septic 
(n=17) 

Critically ill, non-septic 
(n=5) 

   
Age, mean (range) 71 (31-91) 76 (59-88) 
Female 
Septic shock on admission 

12 (71%) 
3 (18%) 

 

2 (40%) 
NA 

Comorbidities 
Cancer 
Cardiovascular disease 
Peripheral vascular disease 
Diabetes 
Gastrointestinal disease 
Hepatic disease 
Hypertension 
Kidney or Urologic disease 
Cerebrovascular or Neurologic disease 
Obesity 
Respiratory Disease 
Thyroid Disease 

 
6 (35%) 
8 (47%) 
2 (12%) 
7 (41%) 
6 (35%) 

0 
9 (53%) 
4 (24%) 
5 (29%) 
5 (29%) 
4 (24%) 
6 (35%) 

 
1 (20%) 
4 (80%) 
1 (20%) 
1 (20%) 
3 (60%) 
1 (20%) 
4 (80%) 
3 (60%) 
2 (40%) 
1 (20%) 
1 (20%) 
1 (20%) 

 
Severity of Illness   
APACHE II score 24 ± 7 28 ± 5  
SOFA score 7 ± 3 8 ± 4  
Charlson Comorbidity Index 6 ± 3  7 ± 2 
 
Laboratory Values 
Leukocyte Count (x103/µl) 

 
 

21 ± 11 

 
 

16 ± 11 
   Absolute lymphocyte count (x103/µl) 0.8 ± 0.4  1.3  ± 1.2 
   Absolute monocyte count (x103/µl) 0.7 ± 0.8 1.5  ± 0.9 
Lactic acid (mg/dL) on admission 3 ± 2 3 ± 2 
 
Outcomes 
Secondary infection rate 
In-hospital mortality rate 
30-day mortality rate 
Hospital length of stay (days) 
Death-free days until follow-up (days) 
ECOG/Zubrod Score at hospital discharge 
ECOG/Zubrod Score at 30d 
30-day hospital readmission rate 
Culture-positive sepsis rate 
Total days of antibiotics within first month 
(days) 

 
 

4 (23%) 
7 (41%) 
7 (41%) 

11.9 ± 6.4 
60.2 ± 72 
3.4 ± 1.9 
2.7 ± 1.2 
2 (12%) 
15 (88%) 
10.6 ± 7.4 

 
 
0 

1 (20%) 
1 (20%) 

14.6 ± 4.7 
43.8 ± 36.7 
3.8 ± 0.8 
3.0 ± 1.4 

0 
NA 

4.4 ± 5.2 

   

Hospital Discharge Disposition   
Discharged to home 
Discharged to nursing facility or to long-term 

acute care hospital  

7 (41%) 
3 (15%) 

0 
5 (100%) 

   
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278014doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.25.22278014


 
 
 

 12

References 
 
1. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5(1):3-8. 

2. Deng X, Li X, Guo X, Lu Y, Xie Y, Huang X, et al. Myeloid-derived suppressor cells promote 

tumor growth and sorafenib resistance by inducing FGF1 upregulation and fibrosis. Neoplasia. 

2022;28:100788. 

3. Schrijver IT, Theroude C, Roger T. Myeloid-Derived Suppressor Cells in Sepsis. Front 

Immunol. 2019;10:327. 

4. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The 

Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 

2016;315(8):801-10. 

5. Dorhoi A, Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic 

Infections. Front Immunol. 2017;8:1895. 

6. Nakamori Y, Park EJ, Shimaoka M. Immune Deregulation in Sepsis and Septic Shock: 

Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Front Immunol. 

2020;11:624279. 

7. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel 

understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 

2013;13(3):260-8. 

8. Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, et al. Guidelines for 

the use of flow cytometry and cell sorting in immunological studies (third edition). European 

Journal of Immunology. 2021;51(12):2708-3145. 

9. Bashashati A, Brinkman RR. A survey of flow cytometry data analysis methods. Adv 

Bioinformatics. 2009:584603. 

10. Bergenfelz C, Leandersson K. The Generation and Identity of Human Myeloid-Derived 

Suppressor Cells. Front Oncol. 2020;10:109. 

11. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. 

Recommendations for myeloid-derived suppressor cell nomenclature and characterization 

standards. Nat Commun. 2016;7:12150. 

12. Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, et al. 

Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression 

After Severe Sepsis/Septic Shock. Ann Surg. 2017;265(4):827-34. 

13. Hollen MK, Stortz JA, Darden D, Dirain ML, Nacionales DC, Hawkins RB, et al. Myeloid-

derived suppressor cell function and epigenetic expression evolves over time after surgical 

sepsis. Crit Care. 2019;23(1):355. 

14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic 

comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-

83. 

15. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease 

classification system. Crit Care Med. 1985;13(10):818-29. 

16. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation of the SOFA score to 

predict outcome in critically ill patients. Jama-J Am Med Assoc. 2001;286(14):1754-8. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278014doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.25.22278014


 
 
 

 13

17. Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the 

SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results 

of a multicenter, prospective study. Critical Care Medicine. 1998;26(11):1793-800. 

18. Apodaca MC, Wright AE, Riggins AM, Harris WP, Yeung RS, Yu L, et al. Characterization 

of a whole blood assay for quantifying myeloid-derived suppressor cells. J Immunother Cancer. 

2019;7(1):230. 

19. Gustafson MP, Lin Y, Maas ML, Van Keulen VP, Johnston PB, Peikert T, et al. A Method 

for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans. 

Plos One. 2015;10(3). 

20. De Zuani M, Hortova-Kohoutkova M, Andrejcinova I, Tomaskova V, Sramek V, Helan M, 

et al. Human myeloid-derived suppressor cell expansion during sepsis is revealed by 

unsupervised clustering of flow cytometric data. Eur J Immunol. 2021;51(7):1785-91. 

21. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir EAD, Tadmor MD, et al. Data-Driven 

Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 

2015;162(1):184-97. 

22. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. 

FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. 

Cytom Part A. 2015;87a(7):636-45. 

23. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection 

for dimension reduction. arXiv preprint arXiv:180203426. 2018. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278014doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.25.22278014


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278014doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.25.22278014


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278014doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.25.22278014

