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Abstract  1 

Late-life depression (LLD) is a major source of global morbidity and mortality, 2 
influenced by multiple risk factors. Yet, a major challenge is to quantify the 3 
degree of resilience or vulnerability to LLD at the individual level, which could 4 
offer neurobiological insight and ultimately inform future interventions and 5 
treatment. Here, applying a non-parametric regression model to the UK Biobank 6 
data (N=1,988), we quantified brain-based resilience and vulnerability to LLD and 7 
tested whether risk factors could explain individual differences in the estimated 8 
magnitude of such neural resilience and vulnerability. Our results show that 9 
social isolation was positively associated with the median magnitude of neural 10 
vulnerability whereas material deprivation was negatively associated with the 11 
greatest neural resilience (top 10 percentile). These results together highlight the 12 
importance of social interaction and access to sufficient resources and services 13 
in diminishing neural vulnerability and promoting neural resilience to LLD, 14 
respectively. Our findings therefore provide insights into preventive strategies for 15 
LLD, and thus are of importance for policy makers as well as the broader society.  16 
 17 
 18 
 19 
  20 
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Introduction (529) 21 
Late life depression (i.e., depression in older adults aged 60+; LLD) has been 22 
associated with increased risks of disability and mortality (Schulz et al., 2000). It 23 
is intertwined with conditions and factors that are primarily ageing-related, 24 
yielding distinctive and complex etiological and clinical profiles in contrast to 25 
depression in younger age groups (Blazer, 2003; Alexopoulos, Schultz and 26 
Lebowitz, 2005). Previous work has shown that risk factors such as physical 27 
disability, medical illness, cognitive impairment, worse socioeconomic status, 28 
greater exposures to traumatic events, less social support, and living an 29 
unhealthy lifestyle contribute to higher chances of depression (Blazer, 2003; 30 
Chang-Quan et al., 2010; Chang et al., 2016). However, these studies did not 31 
investigate individual variation in LLD vulnerability and/or resilience and how 32 
such variation may be linked to various risk factors. Quantifying LLD resilience 33 
and vulnerability in patients is of great clinical relevance as it may ultimately 34 
inform future interventions. Here we employed a novel approach to evaluate 35 
neural resilience and vulnerability to LLD at the individual level and determined 36 
whether known risk factors of LLD explain individual differences in such neural 37 
resilience and vulnerability.  38 
In previous studies, LLD has been associated with abnormalities in structural and 39 
functional properties (Manning and Steffens, 2018). It has also been associated 40 
with accelerated brain age, the magnitude of which further showed a correlation 41 
with declined cognitive performance (Christman et al., 2020). These findings 42 
demonstrate the potential of proxy measures that capture the neural 43 
underpinnings of the disorder. Here, we build on this prior work to assess 44 
resilience and vulnerability to depressive symptom severity, using similar 45 
aggregate neural measures. Specifically, we sought to quantify such resilience 46 
and vulnerability from neuroanatomical patterns that are related to recent 47 
depressive symptoms and to examine whether LLD risk factors could explain 48 
individual differences in the quantified neural resilience and vulnerability. 49 
Specifially, here we focused on a vulnerable group of older adults who have 50 
experienced at least one depression episode before the assessment in this 51 
study. This provides an opportunity to enhance the variance in depression 52 
symptom severity by including individuals along the spectrum of potential LLD. 53 
Inspired by brain-age models that predict the age of the brain based on 54 
neuroanatomical features in healthy individuals (Franke and Gaser, 2019), here 55 
we predicted the individual-level brain-based depression score (BDS) from 56 
multimodal neuroimaging features (n=4,632; see more details in Materials and 57 
Methods). The difference between the predicted BDS and the original symptom 58 
score (delta BDS; ∆BDS) was calculated to index “neural resilience” or “neural 59 
vulnerability” to LLD and then linked to a set of LLD risk factors that covered a 60 
wide range of sociopsychological, medical and lifestyle variables (see variable 61 
full list in Materials and Methods). We specifically focused on individuals with 62 
highest neural resilience or vulnerability (i.e., top 10% negative and positive 63 
∆BDS respectively) that represent older adults with the greatest clinical 64 
relevance. In practice, the focus on these highly resilient and vulnerable 65 
individuals also minimized the correlations between ∆BDS and original symptom 66 
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score (i.e., similar to correlations between brain-age delta and chronological age 67 
in brain-age literature; (Franke and Gaser, 2019; Smith et al., 2019). This 68 
enabled us to identify risk factors showing unique associations with neural 69 
resilience and/or vulnerability.  70 
 71 
Materials and Methods  72 
 73 
Participants 74 
 75 
Participants from the UK Biobank (UKB) dataset aged 60 or above at the time of 76 
imaging acquisition with a history of probable major depression status (i.e., prior 77 
experiences in single or recurrent depression episodes; (Smith et al., 2013)) 78 
were included to ensure sufficient variance in depression symptomatology 79 
(Mage=66.35; 60.3% female). Approximately 70% (N=1,405) of the resulting 80 
sample (N=1,988) had a status of recurrent major depression. Due to missing 81 
data in risk factor variables, a sub-sample of N=1,464 participants were included 82 
in partial correlation and quantile regression analyses with similar demographic 83 
characteristics and prior depression histories as in the full sample (Mage=66.18; 84 
59.4% female; 70% recurrent MDD). All participants in this study provided 85 
informed consent. UK Biobank has ethical approval from the North West Multi-86 
Centre Research Ethics Committee (MREC). Data access was obtained under 87 
UK Biobank application ID 47267. 88 
 89 
Data acquisition and measurement 90 
 91 
Depressive symptoms 92 
A touchscreen questionnaire was implemented to collect information on 93 
sociodemographic characteristics and mental health. Recent depressive 94 
symptoms were measured using four items (RDS-4) that assess depressed 95 
mood, disinterest, restlessness, and tiredness in the past two weeks (Dutt et al., 96 
2022). This continuous measure is highly comparable to several standardized 97 
self-report depression scales including PHQ-9, CES-D, and MASQ-30 (Dutt et 98 
al., 2022), and shows an area under the curve of 0.79 for its correlation with 99 
depression diagnosis (Khubchandani et al., 2016). In response to each of these 100 
four questions, participants indicated their experiences from “not at all” (scoring 101 
1) to “nearly every day” (scoring 4) such that the total symptom score ranged 102 
from 4 to 16. 103 
 104 
Imaging preprocessing and multimodal imaging features 105 
All brain imaging data from the UKB were acquired using standard Siemens 106 
Skyra 3T scanners with a standard Siemens 32-channel RF receive head coil. 107 
Detailed information for UKB imaging acquisition can be found in the UK Biobank 108 
Imaging Documentation, hosted on the Oxford FMRIB UK Biobank resource 109 
page (https://www.fmrib.ox.ac.uk/ukbiobank/). A fully automated processing and 110 
QC pipeline was developed for UKB brain imaging data, which included T1, T2, 111 
FLAIR, susceptibility-weighted MRI, resting-state MRI, task-evoked MRI and 112 
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diffusion MRI (Alfaro-Almagro et al., 2018). Additionally, this pipeline also 113 
generated a set of imaging-derived phenotypes (IDPs) such as cortical and 114 
subcortical structure volumes, microstructural measures in major tracts, and 115 
functional connectivity metrics. In this study, a total of 4,632 IDPs was included 116 
as multimodal imaging features in the prediction models for estimating brain-117 
depression score (see section 3.1). Approximately three quarters of these 118 
features were derived from the resting-state and task-evoked fMRI data, and the 119 
remaining from structural and diffusion MRI data: 120 

- Resting-state fMRI features: Amplitude of ICA100 nodes and ICA25 121 
nodes; Edges of full correlation matrix from ICA100 and ICA25; Edges of 122 
partial correlation matrix from ICA100  123 

- Task-evoked fMRI features: Median and 90th percentile BOLD signals for 124 
shapes and faces, as well as shape-face contrasts using a group mask 125 
and an amygdala mask respectively; Median and 90th percentile Z-126 
statistics for shapes and faces, as well as shape-face contrasts using a 127 
group mask and an amygdala mask respectively 128 

- Structural MRI features: Volumes of cortical and subcortical (including 129 
sub-segments) structures; Total volume of white matter hyperintensities 130 

- Diffusion MRI features: Mean FA, MD, MO, L1-L3, ICVF, OD, ISOVF 131 
based on Standardized FA Skeleton; Weighted-mean FA, MD, MO, L1-L3, 132 
ICVF, OD, ISOVF in White-matter tracts 133 

 134 
Late-life Depression Risk factors 135 
A list of risk factors for late-life depression (LLD) was curated based on the 136 
literature that covers information on demographics, lifestyle, medical conditions, 137 
adverse experiences, and psychosocial factors. Measures of these variables 138 
were collected from participants either via a touchscreen questionnaire or a 139 
verbal medical history interview on the same day of imaging acquisition. 140 
Specifically, several variables such as self-reported health, long-standing illness 141 
and Townsend deprivation index, which is a census-based index of material 142 
deprivation calculated by the combination of four indicators of deprivation: non-143 
home ownership, non-car ownership, unemployment and overcrowding 144 
(Townsend, Phillimore and Beattie, 1988) were available directly from the UKB, 145 
whereas aggregate measures for healthy lifestyle, sleep quality, vascular risk 146 
factors, adverse or traumatic experiences, social isolation and loneliness were 147 
derived using multiple items as follows: 148 

- A healthy lifestyle score was constructed based on smoking status, 149 
physical activity, diet, and alcohol consumption that are well documented 150 
as depression risk factors (Sarris et al., 2020; van Lee et al., 2020; Kang 151 
et al., 2021). Based on national recommendations, participants were given 152 
1 for healthy, and 0 for unhealthy behaviors. Detailed coding information 153 
can be found in (Lourida et al., 2019).  154 

- A sleep (low) risk score was calculated using five sleep questions. Low-155 
risk sleep factors were defined as a) having an early chronotype, b) 156 
sleeping 7–8 hours per day, c) never having or rarely having insomnia 157 
symptoms, d) not reporting snoring, and e) not reporting frequent daytime 158 
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sleepiness (Fan et al., 2020). Participants received a score of 1 if their 159 
behaviors were classified as low risk for that factor and a sum score was 160 
calculated across five factors, where higher scores represent healthier 161 
sleep patterns or low risks of sleep issues (Hepsomali and Groeger, 162 
2021). 163 

- An aggregate measure of vascular risk factors was calculated for each 164 
participant by counting instances of having a high BMI (>25), having a 165 
high waist-hip ratio (WHR>0.85 for females and WHR>0.90 for males), 166 
having ever smoked, and a self-reported diagnosis of hypertension, 167 
diabetes, or hypercholesterolemia (Cox et al., 2019). The resulting sum 168 
score of instances represent potential vascular risks, where higher scores 169 
indicating higher risks. 170 

- scores were calculated separately for childhood, adulthood, and lifetime 171 
experiences with dichotomization of responses to each individual question 172 
(Yapp et al., 2021). Specifically, responses of “never true” to negative 173 
experiences (e.g., hit hard) scored a 0 and responses of “rarely true” and 174 
more often (i.e., “sometimes true”, “often”, “very often true”) scored a 1, 175 
which was reversed for positive experiences (e.g., in a confiding 176 
relationship). Binary responses (“yes”, “no”) were scored 1 and 0 177 
respectively. Separate sum scores were calculated to indicate the 178 
magnitude of traumatic experiences in different time periods and included 179 
as separate predictors in the models. 180 

- Psychosocial factors comprised two measures: loneliness and social 181 
isolation. Participants were classified as lonely if they reported feeling 182 
lonely often and if they could confide to someone close only occasionally 183 
(e.g., less than once every few months), and socially isolated if they met at 184 
least two criteria of 1) living alone, 2) visiting their family or friends less 185 
than once a month, and 3) participating in none of the listed leisure/social 186 
activities (Mutz, Roscoe and Lewis, 2021). These psychosocial factors 187 
were included in statistical models as separate predictors. 188 

  189 
 190 
Statistical analysis 191 
 192 
Estimating the delta of brain-depression score  193 
Our approach was inspired by the estimation of brain-age delta from 194 
neuroimaging features that is defined as the difference between the estimated 195 
brain age and chronological age in a given individual, which has been used to 196 
indicate underlying problems in outwardly healthy people and related to the risk 197 
of cognitive ageing or age-associated brain disease (Franke et al., 2010; Cole 198 
and Franke, 2017; Baecker et al., 2021). In this study, we employed Multivariate 199 
Adaptive Regression Splines models (Friedman and Roosen, 1995; Friedman, 200 
2007) to estimate the brain-depression score (BDS) as informed by multimodal 201 
imaging features and quantified the difference between the estimated and the 202 
actual depression symptom scores (i.e., ∆BDS), with a positive ∆BDS indicating 203 
neural vulnerability to depression (i.e., actual reported symptom score higher 204 
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than BDS)  and negative ∆BDS indicating neural resilience to depression (i.e., 205 
actual symptom score lower than BDS). 206 

Multivariate Adaptive Regression Splines (MARS) is a flexible regression 207 
technique that can capture the intrinsic nonlinear and multidimensional 208 
relationship of variables with an ensemble of linear functions joined together by 209 
one or more spline basis functions, where the number of basis functions and the 210 
parameters associated with each function (e.g., product degree and knot 211 
locations) are determined by the data (Friedman and Roosen, 1995; Friedman, 212 
2007). Specifically, MARS builds a model in two phases: the forward pass and 213 
the backward pruning, similar to growing and pruning of tree models. In the 214 
forward pass, MARS starts with a model consisting of just the intercept term (i.e., 215 
the mean of the response values), followed by the assessment of every single 216 
predictor to find a basis function pair that produces the maximum improvement in 217 
the model error. This process iterates until either the model reaches a predefined 218 
limit number of terms, or the error improvement reaches a predefined limit. The 219 
result of the forward pass is a MARS basis matrix with rows of observations and 220 
columns of basis functions (e.g., hinge functions). To avoid overfitting by the full 221 
terms in the basis matrix from the forward pass, the backward pass is to find the 222 
subset of these terms that gives the best generalized cross validation (GCV) via 223 
a stepwise term deletion procedure. This backward pruning process continues 224 
until only one term remains (the intercept term) and the final model with the best 225 
GCV is selected (Friedman and Roosen, 1995; Friedman, 2007).  226 

In this study, IDPs from multimodal imaging data and depressive symptom 227 
sum scores were included in MARS models as independent (X) and dependent 228 
(Y) variables. Additionally, age, sex, head size, head motion (i.e., the averaged 229 
head motion across space and time points) during fMRI acquisition (i.e., for both 230 
the resting-state and task-evoked fMRI), scanner site, scanner table position and 231 
data acquisition dates were included in all MARS models as confounding 232 
variables. Per partition of the full data in the nested cross-validations (see details 233 
below), principal component analysis (PCA) was employed to decompose high-234 
dimensional X and components collectively explaining more than 50% variance 235 
were retained. As the outcome measure Y (i.e., symptom sum score) in our study 236 
is highly skewed with a long tail, transformation of Y was performed per data 237 
partition before modeling to enforce Gaussianity. This was realized by using a 238 
data-drive approach that finds the optimal normalization method from a suite of 239 
possible transformation options including the Box-Cox transformation, Yeo-240 
Johnson transformation, the ordered quantile technique, Arcsinh transformation, 241 
exponential transformation, square root transformation and the Lambert W x F 242 
transformation (Peterson, 2021). We also applied dummy coding for all factorial 243 
variables such as sex and scanner site before data partitioning to ensure the 244 
same number of predictors across models. 245 

Nested cross-validations were applied to increase robustness and 246 
generalizability of our MARS estimations, with 3 iterations in the outer loop and 247 
10 folds per iteration in the inner loop. As mentioned earlier, data processing 248 
including PCA (on � ) and transformation (on � ) was performed within each 249 
iteration of the outer loop and parameters obtained from the training and 250 
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validating set were applied to the held-out testing set. Per training fold, a grid 251 
search was performed to identify the optimal combination of two parameters: the 252 
maximum degree of interactions among terms (ndegree) and the number of 253 
terms retained in the final model (nprune). Given the available data points and 254 
the empirical evidence that 3rd-degree interactions never benefited model fit 255 
using a subset of data, expansion of interaction degree was restricted to 2 (e.g., 256 
testing ndegree = 1 and = 2) and nprune up to 5 times of the predictor numbers 257 
(i.e., varied between 690 and 695 due to changing numbers of principal 258 
components in each fold). Per prediction model on the testing set, we further 259 
partitioned data to estimate prediction uncertainty as the noise and model 260 
variance of the out-of-fold predicted values over 5 iterations of 50 cross-261 
validations, using variance models of MARS (Milborrow, 2015), and an averaged 262 
r-squared of 0.19 in contrast to 0.09 from the training models. 263 

For each participant, we quantified ∆BDS as the difference between the 264 
predicted BDS (��) and the reported symptom sum score (�) while accounting for 265 
the prediction uncertainty including irreducible “aleatoric” or noise variance (���) 266 
and model variance of prediction or “epistemic” uncertainty ( ��� ) such that 267 

∆��	 

����

�	
�

� ��	
�

�

 ).By definition, the resulting ∆BDS for each participant indexed 268 

less depressed or resilient brain patterns if the quantity was negative, and more 269 
depressed or vulnerable brain patterns if positive. Here, we focused on 270 
individuals with high neural resilience (i.e., top 10 percentile of the negative 271 
∆BDS) and individuals with high neural vulnerability (i.e., top 10 percentile of the 272 
positive ∆BDS). This was determined to drive a good balance between sufficient 273 
statistical power (i.e., n= 144 with 11 regressors) and high clinical relevance, and 274 
to reduce dependency of BDS as a function of original symptom score (i.e., 275 
minimize high correlation between ∆��	 and original symptom score).    276 
 277 
Testing risk factor effects 278 
All analyses were conducted for individuals with high neural resilience and 279 
vulnerability separately. We first conducted partial rank correlation analyses to 280 
test the associations between each risk factor and the ∆BDS while controlling for 281 
the reported symptom sum score (i.e., resulting in effects not influenced by the 282 
sum score). This is a common practice to deconfound the associative effects 283 
driven by chronological age rather than the brain-age delta in the brain age 284 
literature (Smith et al., 2019). False Discover Rate (FDR) corrections were 285 
applied to adjust for multiple testing. We further conducted quantile regression 286 
analyses to identify unique contributions of individual risk factors, while 287 
accounting for the effects of reported symptom sum score.  288 
 289 
 290 
Results (289) 291 
For each participant, we estimated the BDS using the Multivariate Adaptive 292 
Regression Splines (MARS) model (Figure 1). Our model yielded successful 293 
prediction of the BDS from the held-out sample via nested cross validations 294 
(RMSE=0.90, R2=0.09), with a comparable effect size to recent brain-wide 295 
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association studies that had sufficiently large sample sizes (Dick et al., 2021; 296 
Marek et al., 2022). Importantly, our MARS model captures information about 297 
brain structural and functional features associated with LLD symptoms and thus 298 
indicates the disorder manifestation at the neurobiological level (i.e., a proxy of 299 
how “depressed” an individual’s brain is).  300 
 301 

 302 
 303 
Figure 1. Prediction Models for Brain-depression Score. (A) Multimodal imaging features 304 
including cortical thickness, functional connectivity, gray matter volume, task activity and white 305 
matter microstructure measures including fractional anisotropy (FA), mean diffusivity (MD) and 306 
intracellular volume fraction (ICVF), as well as late-life depressive (LLD) symptom score and 307 
nuisance covariates were included into multivariate adaptive regression splines models. (B) In 308 
each model, multimodal imaging features (X) were used to predict symptom sum score (Y) while 309 
controlling for sex, age, in-scanner motion, head size, scanner site, scanner table position and data 310 
acquisition dates (Cov), via nested cross-validations. In the outer loop, full data were partitioned 311 
into 3 splits and in the inner loop, each split of training and validating set (TRAIN+VAL) was fed 312 
into a 10-fold cross-validation to validate the model.  313 
 314 
 315 
In this study sample, about 58% (n=1,144) participants appeared to possess a 316 
resilient brain as their BDS was lower than their reported depressive symptom 317 
scores (i.e., negative ∆BDS), and 42% showed the opposite pattern with a 318 
vulnerable brain (i.e., positive ∆BDS). Results from partial correlation analyses 319 
show that the Townsend deprivation index was negatively correlated with the 320 
magnitude of neural resilience after FDR corrections (r=-0.26, FDR corrected 321 
p=0.018). Findings from quantile regression analyses further show that this effect 322 
is mostly robust in participants with the highest level of neural resilience (e.g., top 323 
10 percentile with the largest negative ∆BDS) when all risk factors were 324 
considered in one model (t=3.72, p<0.001; Figure 2). Interestingly, this 325 
association with the material deprivation was not observed for individuals with the 326 
highest neural vulnerability (i.e., top 10 percentile with the largest positive ∆BDS). 327 
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Neither did we observe this associative effect for the self-reported depressive 328 
symptom scores from individuals with the most resilient or vulnerable neural 329 
patterns. These findings together suggested a specific effect of material 330 
deprivation on the LLD-related neural resilience. Additionally, we observed a 331 
positive association between social isolation and the median quantile magnitude 332 
of neural vulnerability with adjustment for all other risk factors (t=2.01, p<0.05). 333 
This associative effect was absent in participants showing resilient patterns at the 334 
neuroanatomical level.  335 
 336 

 337 
Figure 2. Impact of Risk factors on Brain-depression Index. (A) The dot-and-whisker plot 338 
compares the estimated coefficient and its standard error for each risk factor from separate 339 
multiple linear regression models for high neural resilience and vulnerability. (B) Material 340 
deprivation was significantly associated with the delta of brain-depression score (∆BDS) only for 341 
individuals with high neural resilience. 342 
 343 
 344 
Discussion (312) 345 
In this study, we quantified individual-specific neural resilience and vulnerability 346 
to LLD using multimodal imaging features and linked known risk factors of LLD to 347 
such neural resilience and vulnerability. Our findings provide empirical evidence 348 
that risk factors may exert varying impact on the neurobiological manifestation of 349 
LLD. Specifically, we found a negative association between material deprivation 350 
and the ∆BDS in individuals with high neural resilience. This result indicated a 351 
beneficial effect of sufficient material resources on neural resilience to LLD. 352 
Interestingly, on the other hand, more material deprivation was not associated 353 
with neural vulnerability, suggesting that insufficient material resources alone 354 
may not adequately contribute to the differential patterns of brain structure and 355 
function that put individuals at increased risks of depression. Additionally, we 356 
observed a positive association between neural vulnerability to LLD and social 357 
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isolation, which was absent in participants showing neuroanatomically resilient 358 
patterns. These findings are consistent with the observations that older adults 359 
with sufficient resources to age successfully are relatively healthy, active, 360 
independent and maintain high levels of mental well-being (Terraneo, 2021), and 361 
that increases in socioeconomic status decreases the odds for depression 362 
(Freeman et al., 2016; Zhou et al., 2021). Furthermore, our results also resonate 363 
with previous findings that social isolation and/or loneliness in older adults is 364 
associated with increased risk of all-cause mortality (Holt-Lunstad et al., 2015), 365 
as well as clinically significant depression and anxiety (Schwarzbach et al., 2014; 366 
Taylor et al., 2018; Domènech-Abella et al., 2019; Donovan and Blazer, 2020). 367 
It is however, important to note that the BDS was estimated from the symptom 368 
sum score in the current study and thus might fail to capture subtleties in 369 
neuroanatomical features associated with specific clinical subtypes. It is highly 370 
likely that the disorder manifests in a heterogenous manner and the presentation 371 
of vulnerability at the neuroanatomical level can vary across individuals. Future 372 
studies may consider using individual symptom-level or dimensional measures of 373 
LLD to estimate BDS and test risk factor effects on those potential subtypes.  374 
In conclusion, our results demonstrate a link between material deprivation and 375 
neural resilience, as well as between social isolation and neural vulnerability to 376 
LLD. These results are of importance for policy makers as well as the broader 377 
society, as they provide evidence that sufficient material resources can improve 378 
neural resilience to depression for older adults and that compensational solutions 379 
to improve human interactions are in urgent need to offset the potential 380 
vulnerability to LLD when in-person social contacts are restricted.  381 
 382 
 383 
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