Abstract
With the exponential development and exploitation of social media sites and platforms such as facebook, twitter and instagram, a diversity type of news are reached to the users,resulting in a major influence on human health and safety.Spreading misinformation and disinformation during the Covid-19 pandemic has become increasingly significant. Although it is usually not a criminal act, it can cause serious endangerment to public health. Such infodemic movement is often lead to advance geopolitical interests by the states, to achieve some sort of profit by some opportunists and individuals or discredit official sources. Hence,it has become crucial to automate the detection of fake news in order to shield people from any harmful repercussions. In this paper, the importance of semantics in Covid-19 fake news detection is highlighted based on a convolutional neural network classifier and a hashmap color-based technique. The experiments are performed with CoAID(Covid-19 heAlthcare mIsinformation Dataset),and the results prove that the loss of semantics yields to a poor performance of the classifier. This implicates additional constraints to the training images,with focus on creating a CNN-based color hashmap classifier that includes anterior and posterior neighbors.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
https://github.com/cuilimeng/CoAID
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.