
An Agent-Based Model for COVID-19 in

Bangladesh

Farhanaz Farheen∗1,2, Md Salman Shamil∗1,2, Sheikh Saifur
Rahman Jony∗1, Zafar Ahmad3, Kawsar Hosain Sojib†6,7, Anir
Chowdhury7, SM Niaz Arifin†1,4, Ayesha Sania†5, and M. Sohel

Rahman‡†1

1Department of CSE, BUET, ECE Building, West Palasi,
Dhaka-1230, Bangladesh

2Department of CSE, United International University, Dhaka,
Bangladesh

3Department of CS, Stony Brook University, New York
4Independent Researcher

5Department of Psychiatry, Columbia University Irving Medical
Center, New York, NY 10032

6Department of Economics, Jahangirnagar University, Dhaka,
Bangladesh

7Aspire to Innovate (a2i), ICT Division, Bangladesh

Abstract

Background: The COVID-19 pandemic, that has resulted in millions of
deaths and hundreds of millions of cases worldwide, continues to affect
the lives, health and economy of various countries including Bangladesh.
Despite the high proportion of asymptomatic cases and relatively low
mortality, the virus’s spread had been a significant public health problem
for densely populated Bangladesh. With the healthcare system at stress,
understanding the disease dynamics in the unique Bangladesh context be-
came essential to guide policy decisions.
Methods: With a goal to capture the COVID-19 disease dynamics, we
developed two stochastic Agent-Based Models (ABMs) considering the
key characteristics of COVID-19 in Bangladesh, which vastly differ from
the developed countries. We have implemented our ABMs extending the
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popular (but often inadequate) SIR model, where the infected popula-
tion is sub-divided into Asymptomatic, Mild Symptomatic and Severe
Symptomatic populations. One crucial issue in Bangladesh is the lack of
enough COVID-19 tests as well as unwillingness of people to do the tests
resulting in much less number of official positive cases than the actual
reality. Although not directly relevant to the epidemiological process, our
model attempts to capture this crucial aspect while calibrating against
official daily test-positive cases. Our first model, ABM-BD, divides the
population into age-groups that interact among themselves based on an
aggregated Contact Matrix. Thus ABM-BD considers aggregate agents
and avoids direct agent level interactions as the number of agents are pro-
hibitively large in our context. We also implement a scaled down model,
ABM-SD, that is capable of simulating agent level interactions.
Results: ABM-BD was quite well-calibrated for Dhaka: the Mean Abso-
lute Percentage Error (MAPE) between official and forecasted cases was
1.845 approximately during the period between April 4, 2020 and March
31, 2021. After an initial model validation, we conducted a number of
experiments - including retrospective scenario analysis, and hypotheti-
cal future scenario analysis. For example, ABM-BD has demonstrated
the trade off between a strict lockdown with low infections and a relaxed
lockdown with reduced burden on the economy. Leveraging the true agent
level interaction capability of ABD-SD, we have also successfully analyzed
the relative severity of different strains thereby (confidently) capturing the
effect of different virus mutations.
Conclusions: Our models have adequately captured the COVID-19 dis-
ease transmission dynamics in Bangladesh. This is a useful tool to forecast
the impact of interventions to assist policymakers in planning appropri-
ate COVID response. Our models will be particularly useful in a resource
constrained setting in countries like Bangladesh where the population size
is huge.

1 Introduction

Disease modeling became an important part of the decision-making process to
tackle or respond to the COVID-19 pandemic in many countries. However,
while there was a need for accurate and fast predictions, models had to rely on
limited and/or noisy data, especially in resource limited settings, where systems
to provide real time accurate data were not in place. Many countries, including
Bangladesh, have relied on policy dashboards showing epidemiological indicators
for decision making. Realistic models could aid in resource allocation and prior-
itization based on forecasts on confirmed cases and hospitalization and under-
standing the efficiency of different interventions, including non-pharmacological
interventions (NPI), such as, mask wearing, social distancing, mobility restric-
tions and school closures. Such a model could be utilized in understanding
the underlying disease dynamics. This is however, challenging as, arguably,
due to various (non-)epidemiological and other parameters, COVID-19 spread
has taken different pathways in different regions. Some of these pathways or
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pandemic trends are correlated while they can also have no similarity at all [1].
Two broad types of modeling approaches have been used for COVID-19

modeling so far. Traditional compartmental models with different variants have
been used for forecasting and to evaluate the role of various interventions (or
lack thereof) in multiple countries including Bangladesh, Italy, Egypt, Japan,
Belgium, Nigeria, Germany and among specific populations (e.g., [2], [3], [4]).
These models, however, are limited in their ability to capture the stochastic
effects and complex interactions among and behaviour of the underlying entities
and environment of the model. Agent-Based Models (ABMs) on the other
hand are more flexible for dynamic transmission modeling [5]. A handful of
simulations using ABMs for COVID-19 have been reported from Australia, USA
and Latin America in the literature (e.g., [6]), and a recent model has been
applied to countries in sub–Saharan Africa and India (e.g. [7]). In this paper,
we describe an ABM that incorporates the specific population dynamics and
key epidemiological characteristics of the COVID-19 pandemic in Bangladesh,
thereby capturing the complex and arguably unique disease dynamics therein.
Such unique characteristics have arguably shaped the pandemic in Bangladesh.

Following the detection of the first COVID-19 case on March 8, 2020 [8],
Bangladesh experienced the first wave of the pandemic during June-August,
2020 with test confirmed symptomatic cases reaching up to 4000 per day. Sub-
sequently, there was a declining trend with a slight increase between October
and December of 2020. The Government imposed a lockdown (referred to as
“general holiday”) from March 26, 2020 to May 30, 2020, along with a nation-
wide school closure since March 2020 which was in force till September 14, 2021
[9]. Following the lifting of the nation-wide lockdown, mask wearing and social
distancing were only loosely followed; still, a declining trend in daily confirmed
cases was noticed until the end of January, 2021. Vaccination of the elderly
(which allowed registration for ages 55 and above but was later lowered to ages
40 and above [10]) population and front-line workers started in February, 2021,
which likely contributed to further reduction in mask wearing and social distanc-
ing. Despite the steadily declining trend till January 2021, suggesting a rather
controlled pandemic, suddenly February/March 2021 onward, an exponential
rise in daily reported cases was experienced along with a rapid increase in test
positivity indicating the appearance of a second wave. Although the number of
cases gradually reduced towards the second half of 2021, the beginning of 2022
saw another massive increase and a large number of reinfections.

We have implemented our ABM on top of a compartmental framework,
where the infected population is sub-divided into Asymptomatic, Mild Symp-
tomatic and Severe Symptomatic populations. One crucial issue in Bangladesh
is the lack of enough COVID-19 tests as well as reluctance of people to do the
tests arguably resulting in much less number of official positive cases than the
actual reality. Interestingly, while the lacking mentioned above was largely over-
come with time to a great extent, the unwillingness to test continued through-
out. Although not directly relevant to the epidemiological process, our model
attempts to capture this crucial aspect while calibrating it against official daily
test-positive cases (details will be discussed in the Methods Section). We worked
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with a policy support organization to access COVID-19 incidence data, who
served as a liaison between the scientists and the policy makers. In the first
phase, we calibrated our ABM successfully and the model captured the in-
ternal transmission dynamics quite adequately. Subsequently, at the wake of
the increasing case numbers, we updated our model (a) to capture the current
state of transmission by revising some epidemiological parameters (e.g., infec-
tivity, transmissivity etc.) based on the current knowledge-base about different
variants prevailing in Bangladesh [11]; and (b) to reflect the reduced social dis-
tancing measures. We also developed a scaled down model that is capable of
mimicking the disease dynamics due to different variants/strains given some
strain-wise estimations of the relevant parameters.

2 Methods

2.1 Overview

With a goal to capture the COVID-19 disease dynamics, we have developed two
stochastic Agent-Based Models (ABMs) considering the key characteristics of
COVID-19 in Bangladesh. The first one, which we refer to as ABM-BD, is an
aggregation (group-based) model designed to handle a group of agents based
on their age and other demographics, without direct agent-to-agent interaction.
The second one, which we refer to as ABM-SD, among some other salient fea-
tures, addresses the missing agent-level interaction, albeit with the important
constraint that it is a scaled down model (‘SD’ refers to ‘scaled-down’). The
motivation behind an aggregated (group-wise) agents interaction in ABM-BD
and for developing a separate scaled down version (ABM-SD) will be clear as
we proceed.

Given the enormous size of the human population of Bangladesh (or even
her capital, Dhaka), building an ABM with agent-level interaction for the en-
tire country would require huge computational resources. Also, some of the
scenarios dealt in this study can be adequately handled without agent-level in-
teraction. While the group-based ABM-BD allows us to adequately model these
aggregated scenarios, the agent-level ABM-SD model, which deals with a scaled-
down version of the population, gives us the flexibility to deal with scenarios
which do require such details. The fundamentals of the models are described in
the following sections.

2.2 Agents, Environment and Transitions

The core elements of ABM-BD include its main agent, human modeled according
to their characteristics and behavior, the agents’ environments (house, school,
hospital, etc.), which have been modeled implicitly, and the rules by which the
former interact with the latter. All of these elements are designed to capture
the required degree of realism as being defined and demanded by the specific
research problem of COVID-19 pandemic transmission and control modeling,
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particularly in the context of Bangladesh and keeping in mind the computa-
tional resource constraints. Throughout this research, the computer resource
constraint has been a crucial factor, often determining the design parameters.

We have implemented the ABM extending the popular (but often inade-
quate) SIR (Susceptible, Infectious, Recovered) model, where the infected pop-
ulation is subdivided into Asymptomatic, Mild Symptomatic and Severe Symp-
tomatic populations. Thus, in our ABMs, individuals are assumed to be in 1
of 6 health states at any given time: Susceptible (S), Asymptomatic (A), Mild
Symptomatic (MS), Severely Symptomatic (SS), Recovered (R) and Dead (D)
(Figure 1).

The model determines the proportion of the total population that is going to
be susceptible and exposed to other infected patients every day. Once an agent
becomes susceptible (S), it will move to the Asymptomatic (A) state after a
few days. This essentially means that any agent infected with COVID-19 in our
model must enter state A. The path here splits into two branches from A - one
leading to Mild Symptomatic (MS) state and the other to Recovered (R) state.
Once an agent begins to show mild symptoms (in MS state), (s)he can either
move directly to state R after a certain period of time or do so after passing
an intermediate Severely Symptomatic (SS) state in between. Therefore, an
agent can also recover after showing severe symptoms. Alternatively, an agent
from state SS may die and, thus, enter state Death (D). No other state in the
model can lead to state D apart from state SS. An agent may spread COVID-19
infection if (s)he is in any one of the following states - A, MS, or SS. We do
not allow any path from R to S. This means that our model assumes that once
someone recovers from COVID-19 infection, (s)he will not be susceptible to the
disease once again. Consequently, our model rules out the possibility of rein-
fection. Studies show that reinfection rates are very low [12]. The transmission
dynamics and state duration parameters for each state are described in tables
A1-A2 of the Supplementary file.

2.3 Transmission Dynamics

2.3.1 Age groups and Contact Matrix

Understandably, the transmission dynamics in our two models are handled
differently. In ABM-BD, the agents are divided into ‘Age-Groups’. Each of
these age groups acts as a single unit while interacting and spreading/receiving
COVID-19 infections. A total of 8 age groups are included in our study, namely,
Ages 0 to 9, 10 to 19, 20 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69, and 70 and
above. At the beginning of the simulation, a few random agents are forcefully
sent into state M. This number is fixed and corresponds to the initial cases from
the real data.

To model interactions between agents, we employed a contact matrix to
approximate the age-specific intensity of contacts among people. It is a two-
dimensional matrix M where each element M [i][j] represents the number of
interactions between age groups i and j per day. The total ‘number of inter-
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Figure 1: Model structure depicting health states and transitions for our agent-
based models. For state durations and percentages of agents moving from one
state to another, see the Supplementary file.

actions’ can simply be visualized as the average number of people in one age
group who meet people from another age group on a daily basis. The values of
M have been taken from [13], [14]. The model determines the final pool of sus-
ceptible people each day after certain mathematical operations and processing
conducted on the contact matrix.

2.3.2 Reduction Parameters and Infectivity

Three kinds of ‘reduction parameters’ have been used in the model - age-group
reduction parameters, state reduction parameters and a single global reduction
parameter, which are used to reduce the level of interactions of the agents from
different angles at different levels. This is described in detail below.

The first one is a collection of 8 reduction parameters, each corresponding
to a particular age group. This reduction parameter is applied to the contact
matrix entries, i.e., M [i], 1 ≤ i ≤ 8. The significance of such an operation is to
ensure that different age groups have different degrees of exposure to the disease.
For example, in order to model the fact that all schools and colleges have been
closed, the reduction parameters for the relevant age groups have been kept
very low and consequently, they don’t come into contact with as many people
as other age groups do.

The second one, i.e., state reduction parameters, is a collection of multipliers
where each parameter corresponds to a particular state in our model. The
relevance of having such a parameter is directly related to the premise that if
an infected agent shows more severe symptoms, (s)he is less likely to spread the
infection as (s)he will be treated and isolated. Therefore, this parameter allows
us to prevent severely symptomatic agents from coming into contact with as
many agents as a mildly symptomatic or asymptomatic agent can interact with.
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In a similar spirit, this parameter allows us to implement the scenario that the
asymptomatic agents spread the disease more than the symptomatic agents as
the latter are more likely to get tested and stay in isolation.

The global reduction parameter is a single parameter that controls the overall
contact of agents every day. This is mainly used to model interventions such
as a lockdown. A stronger lockdown automatically means less contact among
agents and a weaker lockdown would mean more interaction among them. This
is controlled by the global reduction parameter.

Each age group has an attribute known as ‘infectivity’ that is related to the
possibility of the agents in that particular age group becoming infected. This
parameter is utilized along with all the reduction parameters to determine the
actual susceptible proportion of the population at the end of each day. This is
how the infection is allowed to spread in our model. Once an agent is infected,
(s)he follows the state transitions according to the model diagram shown in
1. The infectivity values for different age groups are shown in table A6 of the
Supplementary file. These values have been obtained via extensive experimen-
tation. The reduction parameters were tweaked during model validation and
are reported in table A3 of the Supplementary file.

2.3.3 Agent level interactions

As has been mentioned earlier, we have developed ABM-SD to simulate agent
level interactions. While ABM-SD follows the same transition diagram and
uses the same set of parameters, it applies those on individual agents (as op-
posed to aggregate agents based on age groups) to simulate true agent to agent
interactions. This in turn allows the model to incorporate the concept of dif-
ferent strains as well. The model attempts to provide (confident) outputs from
a smaller sample size (to avoid handling agent to agent interaction for a pro-
hibitively large population like 13 million for Dhaka) that can capture the orig-
inal transmission dynamics. We use Cochran’s Formula [15] to estimate the
required sample size to get an output with 95% statistical significance and 0.2%
confidence interval. Informatively, for 20 million population this calculates to
approximately 153.66 thousand; we simulate for 200 thousand agents for Dhaka
having around 13 million population.

In ABM-SD, each strain will, in some sense, continue the disease progression
in its own way with its own sets of parameter values, while the overall cumula-
tive effect is recorded in the model output. The model is of course capable of
providing strain-specific outputs as well. For any new variant, all we need to
do is to set the right values for the relevant parameters. If the parameters are
not known, then we can calibrate with the official cases to get the parameters’
values. Additionally, we can conduct scenario analyses by comparing and con-
trasting the new variant against the variants already in the model, i.e., setting
the parameters of the new variant by adjusting the relevant parameters of the
existing variants (some example simulations are shown in the Results section).
In ABM-SD simulation, the Kent variant was introduced from Feb 13, 2021, to
March 10, 2021, with 5% probability (i.e., during that interval, the newly in-
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fected agents will be assigned to Kent variant with 5% probability), Beta variant
was introduced from March 10 to March 25, 2021, with 50% probability, and
the Delta variant was introduced during May 08, 2021, to May 19, 2021, with
50% probability. For further details please see Section 2 of the Supplementary
file.

2.4 Model Calibration

2.4.1 Calibration of ABM-BD

The model is calibrated against the official confirmed cases as collected from
the data. Relevant Dhaka demography data are shown in table A4 of the Sup-
plementary file. As has been discussed earlier, during calibration, our model at-
tempts to capture the crucial (non-epidemiological) phenomenon, namely, lack
of enough COVID-19 tests at an early stage as well as unwillingness of people
to do the tests throughout the pandemic period. To capture this phenomenon
the model uses a variable parameter, X that represents the percent of model’s
symptomatic agents going for tests and becoming test-positive. So, in effect,
we ignore the chance for an asymptomatic patient to be tested and recorded as
officially positive as this is presumably very low (if not zero). To capture the
varying level of reporting of symptomatic cases over time, the value of X is esti-
mated and updated at different time intervals based on the knowledge gathered
through different sources (e.g., news media) while calibrating the model.

Below we provide details with regards to calibrating the model during the
first two waves of the pandemic. All the parameter values mentioned in the
following two paragraphs have been obtained through extensive experiments
and parameter tuning by simulating ABM-BD.

• Wave 1: In the simulation of the first wave, initially, the global reduction
parameter is allowed to reduce (i.e., the contact among individuals was
reduced overall) at a steady rate for almost two months to reflect the first
country-wide lockdown that was imposed on Bangladesh in March 2020.
The simulation began from April 4, 2020. After the first lockdown is over,
the decrement of the global reduction parameter is halted (i.e., reduction
of contact is stopped). After a few months, the global reduction parameter
is increased very slightly to model the gradual increase in the interaction
of people since as time went by, people began going out more. The rate
at which the global reduction was taking place was 0.8 every 5 days, i.e.,
the value of the global reduction parameter was allowed to fall to 80% of
its previous value at an interval of 5 days. However, this parameter was
allowed to increase by 0.5% every 30 days during September-October.

• Wave 2: To simulate the second wave, two changes were brought in.
Firstly, since the second wave resulted due to the introduction of a new
strain of virus in the population, the infectivity attribute of each of the
age groups was updated. The new infectivity is allowed to be 1.05 times
of the previous one for each age groups. Please recall that, ABM-BD does
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not simulate agent to agent interaction and hence is incapable of direct
strain-wise simulation. The second change is that, to model the severe
increase in the movement of people, the transmission of the disease was
increased as well. The global reduction parameter was increased for a
number of weeks for this purpose. This value corresponds to 1.005.

2.4.2 Calibration of ABM-SD

The scaled down version, ABM-SD, was calibrated against the real official cases
as well as the output of ABM-BD in a similar fashion. During this calibration,
we use 10% as the value of X. Recall that X represents the percent of model’s
symptomatic agents going for tests and becoming test-positive. Through exten-
sive simulation we attempted to identify a scaling factor, F to adjust the values
of M (i.e., our contact matrix) to match the official cases. For the case when
there is no lockdown, we finally adopted F = 1

6 and to calibrate for different
degrees of lockdown (as well as to simulate the effect of different variants), we
used the following range: 1

12 ≤ F ≤ 1
9 .

2.5 Modeling the Impact of Interventions

While modeling the first wave, we implemented lockdown within the city to
reflect the real country-wide lockdown that was declared in March 2020. We
did so by manipulating the global reduction parameter. As has been mentioned
previously, this parameter was decreased to 80% of its previous value every 5
days. For various scenario analyses in both the models, similar strategy is taken,
i.e., manipulating various reduction parameters.

2.6 Data

For the calibration purposes in this paper we primarily used the official test pos-
itive cases up to April 30, 2021. The daily COVID-19 cases reported in several
districts of Bangladesh were obtained from the government data maintained by
Aspire to Innovate (a2i), ICT Division, Bangladesh, and simulations were run
for Dhaka city and some other districts. In this paper we only focus on Dhaka
city.

3 Results

3.1 Modeling the Course of Pandemic in Dhaka with
ABM-BD

Figure 2a presents the course of the pandemic in Dhaka from the beginning of
the pandemic till April 30, 2021. We show the curves for symptomatic infec-
tions (yellow line) as well as all infections (the green line), which includes all
asymptomatic and symptomatic infections. The daily forecasted test positive
cases (blue line) is in fact a subset of the symptomatic cases (recall the use
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of parameter X in Section 2.4.1) and is actually used to calibrate the model
against the official confirmed cases (red line). This is meaningful as only a sub-
set of the symptomatic patients are presumably represented in the official total
case counts and the proportion of the total symptomatic cases who were tested
daily was influenced by various factors: access to PCR testing was very lim-
ited in the beginning of the pandemic and although the number of laboratories
with capacity to conduct PCR tests expanded over time, many did not have
financial access to testing as the Government imposed a fee for testing in May
2020 and add to that, noticeably, there were unwillingness among people to do
test throughout. Recall that, to capture the varying level of reporting of symp-
tomatic cases over time, our assumption of the fraction of total cases tested and
found positive (i.e., X) were varied during the calibration of the model. We
assumed three different values for this proportion during three time periods of
the pandemic (see Supplementary table A5).

The total infection line is an unobserved phenomenon but estimating this
value is important to understand the level of the immunity in the population at
any given time. Based on the estimated total infection (green line), we observe
two peaks in Dhaka, one in August 2020 (17,412 cases) and another in March
2021 (25,553 cases). These estimates correspond well with the proportion of the
population infected reported from seroprevalence studies [16], [17]. Figure 2b
shows a closer look at the official report of daily cases (red line) and forecasted
daily cases (blue line) from our model. Our calibrated models performed well
for Dhaka, for example, the Mean Absolute Percentage Error (MAPE) between
official and forecasted cases was 1.845 approximately during the period between
April 4, 2020 and March 31, 2021. Although not reported in this paper, we also
calibrated our model to forecast cases in five other divisional districts, where
they performed quite well.

3.2 Retrospective Scenario Analysis with ABM-BD

In this section, we present two interesting retrospective analysis use cases that
show the usefulness of the model.

3.2.1 Impact of a reduced lockdown

While modeling the first wave, we evaluated the effects of what could have hap-
pened if the degree of intervention had been less (Figure 3). We experimented
with reduced degrees of lockdown, and observed that, for a reduced level of in-
tervention, the number of simulated daily cases is higher. Recall that in reality,
the lockdown existed from March 26, 2020.

In Figure 3, the red and blue curves represent the same scenario as illustrated
in Figures 2a and 2b, albeit for a shorter interval. We use Degree i, 1 ≤ i ≤ 4 to
denote four levels of lockdown with higher (lower) values of i indicating a stricter
(more relaxed) lockdown. Relaxing the lockdown slightly results in the green
curve (Degree 4) according to our simulation. A Degree 1 lockdown indicates a
highly relaxed lockdown (pink curve). For a relaxed lockdown, there are more
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(a) (b)

Figure 2: (a) Daily total cases according to our model (green), Daily symp-
tomatic cases according to our model (yellow), official reported cases (red) and
forecasted cases from the model (blue). (b) Validation of the model - compar-
ing the percentage of people who tested positive with the output of our model
(daily total cases). Real data vs simulation is shown in red vs blue. This figure
amplifies the predicted and officially confirmed cases shown in Figure 2a.

Figure 3: Retrospective Analysis of the model. We examined what course the
pandemic would have taken if different levels of lockdown were implemented.
The red curve gives the official confirmed cases, whereas, the other curves show
the hypothetical impact of a reduced lockdown towards the beginning of the
pandemic. The blue curve gives the forecasted cases if the statusquo prevailed.
The other curves show different degrees of lockdown. Degree 4 lockdown gives a
slightly relaxed lockdown compared to the statusquo, while a degree 1 lockdown
demonstrates an extremely relaxed lockdown.
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(a) (b)

Figure 4: Course of the pandemic is simulated with (a) schools remaining closed,
and (b) schools reopening from December 1, 2020. According to the results
obtained, the number of daily cases would start to increase in January 2021 and
would continue to do so in the later months if schools were reopened.

infected cases on a daily basis and the respective curve also reached a higher
peak.

3.2.2 Impact of school re-opening

Educational institutions were closed in Bangladesh since the first lockdown was
imposed in March 2020. Policymakers were interested to know how reopening
of schools would impact the daily case numbers and the course of the pandemic.
Figure 4 shows simulation with and without school opening on December 1,
2020. According to our model, school opening at that time would have led to a
rise in the number of cases altering the course of the pandemic (Figure 4b).

3.3 Modeling multiple virus strains with ABM-SD

The variant Alpha (B.1.1.7) that emerged in the UK was first detected in
Bangladesh on 31 December 2020, whilst the variant Beta (B.1.35) that emerged
in South Africa was first detected on 24 January 2021 [18], [19]. During February
and March 2021 the Beta variant became the predominant variant in Bangladesh,
which caused the surge of cases peaking in April, 2021. As the second wave was
declining the Delta (B.1.617.2) variant was detected in Bangladesh on May 8,
2021. We incorporated these three variants in the simulation of our scaled down
model, ABM-SD. Figure 5 shows the validation of ABM-SD against the official
cases as well as the ABM-BD output.
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Figure 5: Validation of ABM-SD - the scaled down model is validated against
the official case as well as the ABM-BD output. Real data is shown in red,
ABM-BD output is shown in blue and ABM-SD output in green.

3.3.1 Course of pandemic following the introduction of the Delta
variant

Using the ABM-SD, we examined the course of the pandemic under varying
assumptions of infectivity of the Delta variant. There was no data available
regarding how much immunity the recent infection of the Beta variant would
provide, and whether the Delta variant would be similar or more transmissible
compared to the previous variants. We assumed that the population would be
protected from prior immunity and then simulated the course of the pandemic
under different assumptions of transmissibility of the Delta variant (Figure 6).
Depending on the degree of transmissibility we assumed, there was large varia-
tion in the simulated course of the pandemic. If the Delta variant was assumed
to be as transmissible as the Beta variant the pandemic progresses in a con-
trolled way, however if the transmissibility is assumed to be 1.5 times or higher,
our model predicted a rapidly rising case count.

3.3.2 Further scenario Analyses with the Delta variant

We used ABM-SD to examine various scenarios with the Delta variant assuming
it to be 1.5 times more severe than the Beta variant. In Figure 7, we simulated
various scenarios, namely, (i) if the relaxed lockdown (which started on April
07, 2021) would continue; (ii) if that is lifted on June 1; and (iii) if the status
quo is continued. Both total cases ((a) and (b)) and severe cases ((c) and (d))
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(a) (b)

Figure 6: Course of the pandemic after introduction of the Delta variant with
different transmissibility assumptions in comparison to the Beta variant (1.25x,
1.5x, 1.7x severe than Beta Variant). a) model predicted number of infections
per day for three different severity of Delta Variant b) model predicted number
of severe cases per day for different severity of Delta Variant

have been reported in Figure 7. Model output (in Figure 7) suggests a grave
scenario with continued status quo and a controlled scenario even with a relaxed
lockdown, an earlier lifting of which would again aggravate the pandemic, albeit
somewhat slowly. The severity of the Delta variant (i.e., any change therein)
does not affect the pattern, but clearly aggravates the count. Finally, ABM-SD
is capable of providing strain-wise statistics which is presented in Figure 8.

3.3.3 Hypothetical Future Scenario Analysis

We put ABM-SD to the task of some interesting hypothetical scenario analysis
utilizing and manipulating the existing parameters. In particular, we wanted
to investigate what would happen if the pandemic re-surges with one or two
new variants along with all the existing variants. In the absence of any specific
knowledge of different parameters, ABM-SD can simulate the behaviour of a
new strain by assuming its degree of severity with respect to another known
strain. We first continued the simulation done in Figure 6 for the blue curve
till Day 650 of that simulation (i.e., January 14, 2022; only shown upto July
23, 2021 in that figure). Then the current simulation starts (Day 0 of current
simulation), when it is assumed that the total case count has come down to
(virtually) 0. Then we conduct two separate simulations as follows.

In one simulation, we introduced a new strain, Variant-X and in another
we introduced an additional strain, Variant-Y (i.e., two new strains). The new
strains are introduced at Day 0 (i.e., Day 650 of the ABM-SD simulation pre-
sented in Figure 6). Figure 9 illustrates the results of such an analysis where
the simulation has been carried out for the next 250 days.

In figure 9a, we see that when Variant-X is as strong as Delta, virtually no
re-surge is noticed (green curve). However, if Variant-X is 1.5 (2) times stronger,
as is represented by the orange (blue) curve the total cases per day reaches a
peak of around 6000 (15000, which could be fatal).
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(a) (b)

(c) (d)

Figure 7: Various scenario analyses with the Delta variant having different
virulence in comparison to the Beta variant. (a) Total Cases where Delta Variant
is 1.5 times severe (b) Total Cases where Delta Variant is 1.7 times severe (c)
Severe Cases where Delta Variant is 1.5 times severe (d) Severe Cases where
Delta Variant is 1.7 times severe.

Interestingly, in figure 9b we see that introducing two new variants, namely,
Variant-X and variant-Y, where the latter is as severe as Delta and the former is
1.5 times more severe than the same, and both are equally likely to contaminate,
also don’t show any peak (red curve). On the contrary, when only Variant-X
(1.5 times more severe than Delta) is introduced, it does reach a peak of around
6000 infections per day. This apparent anomaly can be explained easily when we
notice that in the latter case, the more severe variant is playing alone whereas
in the former it is only effective with 50% probability.

4 Discussions

ABM-BD seems to follow the pattern of the official test positive cases (red curve
in Figure 2b) reasonably closely. We deliberately did not attempt to follow the
red curve more closely to avoid overfitting by the model particularly because
the data is perceived to be quite noisy and inaccurate for various reasons. This
also helped the model to remain more flexible and open to various changes in
predictive (and retrospective) situational investigations.

The model also seems to have captured the disease dynamics of Dhaka city
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Figure 8: A barplot of the proportion of different COVID-19 variants found
among all infected populations from April 04, 2020 to August 27, 2021. This
graph is better understood when examined in combination with Figure 6. The
graph shows that all the variants were alpha from April 04, 2020 to around
December 23, 2020 when Kent Variant first appeared. Then on Feb 28,2021
Beta Variants started to dominate until May 29,2021 when Delta Variant is
shown to gain dominance.

quite adequately (Figure 2a). The epidemiological perception of a high number
of asymptomatic cases has been well-captured by the system. Interestingly, the
cumulative number of forecasted infections in mid-August was almost 1,100,000
- 9% of the total population of Dhaka. This nicely matched with the findings of
the silo study carried out on Dhaka [20], which acted as a second level validation
for the model. Our studies have shown that compared to countries in the western
hemisphere, the first wave of COVID-19 caused more asymptomatic cases, fewer
severe cases, and fewer mortality in Bangladesh and in other countries of South
Asia.

From the model output, it is clear that the degree of relaxation adversely af-
fects the impact of intervention, i.e., lockdown (Figure 3). Evidently, lockdown
in its strictest form effectively controls the pandemic quite quickly whereas the
relaxed version thereof affects the efficacy of the lockdown, the degree whereof
depends on the degree of relaxation. It can be observed from the model output
that for a small degree of relaxation, the effect of lockdown does not differ dras-
tically. It can also be observed that for a degree 1 (most relaxed) lockdown, the
curve reaches its peak sooner and begins to fall very quickly. This suggests that
a significantly relaxed lockdown would have caused a large number of infections,
eventually leading to herd immunity among the population until a new strain
was introduced. However, since it is well-perceived that a full-fledged lockdown
affects the economy, drastically affecting the marginal group working under the
umbrella of informal economy category (e.g., wage labourers, self-employed per-
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(a) (b)

Figure 9: A hypothetical future scenario analysis following the analysis done in
Figure 6. The analysis done therein was continued for the blue curve till Day
650 of that simulation (i.e., January 14, 2022; only shown upto July 23, 2021
in that figure). By then, the total cases came down to (almost) zero. This is
marked as Day 0 in the current simulation. Subsequently, new variants with
different severity are introduced in the (current) simulation that was run for a
total of 250 days. a) Predicted total case count with Variant-X introduced on
Day 0 with different severity relative to Delta variant b) Predicted total case
count with two new variants, Variant-X and Variant-Y, introduced on Day 0
with different severity relative to Delta variant, where both variants are equally
likely to contaminate.

sons, unpaid family labour, piece-rate workers, other hired labour etc. to name a
few) in particular, the policy makers may consider the trade off among different
degrees of relaxed lockdown.

In spite of being a scaled down model, ABM-SD was able to follow the
official cases more closely than ABM-BD (Figure 5). This can be attributed to
the fact that the former implements true agent to agent interaction and that,
while the implementation is a scaled down one, appropriate measures have been
taken to make it statistically confident. And the situational analyses conducted
using ABM-SD also seemed quite realistic. For example, the simulation in
Figure 6, containing various scenario analyses based on the projected severity
of the Delta variant, captured the real life scenario quite closely. Note that, this
simulation was conducted following the calibration and validation of the model
based on the official confirmed cases up to April 21, 2021 (cut off date). From
the records of official confirmed cases beyond the cut off date suggests that the
Delta variant in reality has been 1.7 times severe than the Beta variant. A
final note regarding ABM-SD is that, although we could only use it on a scaled
down population of Dhaka, it will also be useful for less populated regions to
investigate the transmission dynamics of different viral strains (through true
agent level interactions).

Although the current statistic suggests that COVID-19 has died down, and
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in different parts of the world already it has been declared endemic, we have
witnessed similar situations before only to face a new deadly variant deterio-
rating the scenario sharply. So, it is crucial to have the capability to quickly
predict the course of the pandemic with whatever data is available. To this
end ABM-SD could be instrumental as it can simulate scenarios with newly
introduced variants assuming different degrees of severity thereof with respect
to known variants.
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