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Abstract 
Background 

Eye movement abnormalities are paramount in neurological disorders. However, unaided 

eye movement assessments lack granularity. Although videooculography (VOG) improves 

diagnostic accuracy, resource intensiveness preclude its broad use. To bridge this care gap, 

we here validate a framework for smartphone video-based nystagmography capitalizing on 

recent computer vision advances.  

Methods 

A recurrent convolutional network was fine-tuned for pupil tracking using >550 annotated 

frames: ConVNG. Slow phase velocity of optokinetic nystagmus was calculated in 10 

subjects using both ConVNG and VOG. Equivalence of accuracy and precision was 

assessed using the “two one-sample t-test” (TOST) and Bayesian interval-null approaches. 

Results 

ConVNG tracking accuracy reached 9-15% of an average pupil diameter. SPV measurement 

accuracy was equivalent to VOG (p< .017; Bayes factors (BF) > 24). Average precision was 

0.30° for ConVNG and 0.12° for VOG.  

Conclusions 

ConVNG enables smartphone video nystagmography with an accuracy comparable to VOG 

and precision approximately one order of magnitude higher than comparable ARKit 

applications. This serves as a blueprint for highly accessible tools with potential to accelerate 

progress toward precise and personalized Medicine. 
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Background 
Disturbances of ocular motility and coordination mark a highly interdisciplinary subject matter 

extending into the fields of neurology, ophthalmology and otology. Somewhat unique to 

motor physiology, eye movements can be grouped into a limited set of functional domains 

which specifically map onto distinct and/ or partly overlapping neural circuits1. These involve 

vestibular and visual afferents as well as neuronal networks encompassing the vast extent of 

cortex, brainstem and cerebellum. Therefore, most structural and functional pathologies of 

the peripheral and central nervous system manifest with eye movement disorders, lending to 

the notion of the eyes being a “window into the brain”.  

Among those, nystagmus (from greek “nystázein”, to doze) has historically attracted the 

attention of clinicians and scientists due to its localizing and predictive value in various 

physiological and pathological contexts2. This is especially true in the context of vertigo and 

dizziness, which are among the most prevalent and economically challenging conditions 

world-wide3,4. 

Over the last century, different approaches to register eye movements and in particular 

nystagmus have been developed, ranging from early eye photography to invasive (i. e. 

scleral search coils), electrical (e. g. electrooculography) and most recently, infrared and 

video based (i. e. videooculography (VOG) goggles) techniques (for a review see1,5). Besides 

documenting the mere presence and three-dimensional direction of nystagmus, the 

aforementioned methods enable to quantify slow phase velocity (SPV) as the quintessential 

descriptor of pathophysiology underlying nystagmus. Traditionally, SPV serves as the prime 

kinematic descriptor of nystagmus dynamics and is relevant to diagnostic6,7 and therapeutic 

decisions alike8,9. Common to VOG methods however is a high degree of resource 

intensiveness encompassing both monetary and educational aspects, hindering broad use in 

diverse clinical settings and especially outside of highly specialized laboratories, high-

resource settings and academic infrastructure.  

This can be viewed as a significant care gap, since recent clinical investigations convincingly 

demonstrate clinically relevant benefits of quantitative eye movement recordings for 

diagnosis6,10–12, prognostication13 and disease monitoring9,14. Moreover, yet unknown disease 

patterns could be identified within the granular kinematic feature space provided by e. g. 

videooculography, hinting at a largely untapped potential to derive performant physiomarkers 

to be included in clinical decision making6,15.  

The episodic and often evanescent nature of many frequent neurological conditions 

presenting with eye movement abnormalities (e. g. vestibular migraine which affects up to 

1% of the population16) is associated both with missed diagnoses and misdiagnosis6,17. 
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Therefore, broadly available, point-of-care and longitudinal monitoring solutions to capture 

acute vertigo and improve diagnostic accuracy have received increasing attention7,18, with 

the idea of “telemetric nystagmography” dating back to 199119. However, the aforementioned 

limitations of resource-intensiveness and lacking availability also apply to such devices, 

unfortunately minimizing their broad impact. 

Recent shifts in health care landscapes necessitating remote, home use and telemedicine 

approaches20 are increasingly being answered with smartphone-based digital health 

applications shown to be capable of recording clinically meaningful eye and head movement 

data with acceptable accuracy and precision21,22 while performing on par with mobile eye-

trackers for experimental applications23. Moreover, the rapidly evolving field of computer 

vision field has revolutionized the way in which behavior is measured using experimental24,25 

as well as VOG recordings26 and clinical27–29 videos. Given the worldwide practiced tradition 

of clinical photo- and videography, especially in the field of Neurology and Ophthalmology, 

computer vision has the potential to unlock vast data treasures, likely containing digital 

biomarkers for prediction, prevention, prognostication and diagnostics30.  

Undoubtedly, highly accessible, non-invasive, hardwareless and objective means to record 

health-related data in diverse contexts will promote personalized and precision medicine. 

Therefore, such developments are among the highest priorities in current digital health 

research portfolios30,32,33.  

Here, we set out to develop a computationally inexpensive algorithmic framework based on 

the open-source computer vision tool DeepLabCut24 to extract SPV from smartphone 

nystagmus videos taken in realistic clinical scenarios and validate these measures against 

the current clinical gold standard, infrared VOG.  
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Methods 
See figure 1 for an illustration of the methodological workflow. 

 

Figure 1 - Workflow illustration. A. Illustration of standardized optokinetic stimulus presented on a 
smartphone screen. B. Exemplary frame of a tracked video, showing the typical camera perspective 
as well as ConVNG marker predictions, the color code of which is shown in C. L= left, R= right, P= 
pupil, L= lid, lat= lateral, 1-4 denote pupil marker position where 1 and 3 represent top and bottom 
(clock position 12 and 6) and 2 and 4 medial and lateral; e. g. “LP3” denotes left pupil bottom marker 
and “RLmid” the medial border of the right eyelids etc. [not included in preprint version, please 
refer to the corresponding author for more information.] D. Exemplary raw aggregate data plot 
and E., raw coordinate time-series plot from ConVNG-derived landmarks. Upper portion depicts 
vertical coordinates, lower portion horizontal coordinates. Note the already clearly recognizable “saw 
tooth” appearance typical for nystagmus in E. F. Median likelihood of predicted pupil labels in the out-
of-sample validation approach using 10 independent videos. G. Exemplary likelihood plot from all 
landmarks derived of the same video as B. Except for “nosetop” marker, all landmarks are tracked with 
constantly high likelihoods (~1.0). 

Tuning a recurrent convolutional neural network to perform pupil tracking 

Utilizing the open-source framework DeepLabCut (DLC)34, a recurrent convolutional neural 

network (RCNN) based on a residual network architecture (ResNet 50) was trained to track a 

total of 17 landmarks delineating each pupil´s outlines at clock positions three, six, nine and 

twelve (n=8) as well as anatomically defined support points of interest in the face (eye lid 

borders, root of the nose, n=9, Fig. 1B). To train a maximally robust model, a total of 558 

frames were extracted from >50 highly variable videos depicting ~40 individuals (7-15 frames 

per individual). The videos were collected from the authors’ own or openly available video 

collections35 and showed eye movements and faces of diverse persons in various situations, 

lightings and camera settings, both in physiological and pathological contexts. To ensure 

broad coverage of possible pose patterns, the k-means algorithm implemented in 

DeepLabCut24 was selected for extraction of frames which were subsequently labelled by an 

expert annotator (MF). In order to exclude labelling errors which may negatively affect 

generalization, the labeled frames were plotted and quality-checked for accuracy and 

plausibility before the RCNN was trained on a 95% fraction of data leaving the remainder as 

a test set for later performance evaluation. No videos of the prospective cohort recruited to 

validate SPV measurements were included in this training dataset to ascertain clear 

separation between training, test and validation datasets throughout. The RCNN was fine-

tuned using DLC’s default augmentation and ResNet 50 initialization weights. Sufficient 

convergence of the loss function was ensured with training iterations ranging between 

350.000 to 750.000 in a total of 14 consecutive refinement iterations using unseen video 

material. Model performance was evaluated using a polypragmatic approach: first, by 

computing the mean Euclidean distance (MED) of user-annotated and RCNN-predicted 

labels34, second, by relating the sizes of MED and tracked region of interest as previously 

reported by our group36 and third, by systematically inspecting pupil marker likelihoods as a 
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surrogate for the model’s prediction certainty in a fully independent (i. e. out-of-training) 

dataset of another 10 videos randomly sampled from an open-source, comprehensive eye 

movement disorder education library (courtesy Dan Gold)35. 

Eye movement recordings 

A priori power analysis 
Before subject recruitment, we carried out an a priori power calculation for two (paired) one-

sided t-tests (TOST) powered to detect equivalence of SPV measurements. Assuming a β/α-

ratio of 1.0 and a moderate effect size (d=0.65) due to the multivariate technical superiority of 

VOG over smartphone video (infrared vs. RGB sensor for contrast maximization, 220Hz vs. 

30Hz temporal resolution, goggle/head vs. tripod mounted camera), at least 10 subjects were 

needed for a power >0.8. This cohort size matches well with comparable studies22,31,37.  

Determination of intervals for equivalence testing 
A smallest effect size of interest (SESOI)38 between 2-3°/s (i. e. 2.5°/s) was established in a 

consensus of the authors specializing in neurotological and neuroophthalmological 

conditions. This value was inferred so as to reflect a conservative estimate of a minimal SPV 

sufficient to generate perceptible oscillopsia in humans and to prompt further clinical work-up 

e. g. when encountered in screening for oculomotor and vestibular disorders, therefore 

having theoretical and practical relevance. Of note, SPVs higher than 5°/s are associated 

with a relevant interference with reading ability39, which is in our experience a rather liberal 

estimate. Also to improve statistical rigor, we decided to keep the more conservative value of 

2.5°/s agreed upon in said consensus. Corresponding to approximately 25% of the estimated 

ground truth SPV, this value also matches with clinically used cut-offs to determine 

directional asymmetry of e. g. caloric nystagmus40. For relative error comparisons, a corridor 

of accepted measurement deviation was deducted from the deviation extremes measured 

with gold standard VOG after outlier testing in order to reduce the chance of misinterpreting 

an outlier as an acceptable deviation margin. These inferences were based on established 

methods to determine minimal meaningful effects in clinical studies38,41 and are in line with 

heuristic frameworks of SESOI definition42,43.  

Subjects and ethics approval 
For prospective validation, 10 healthy subjects (5 female) aged 25-44 years without 

significant neuroophthalmologic abnormalities, normal binocularity and an uncorrected visual 

acuity >0.6 were included. For the retrospective validation, cases with both VOG and 

frontoparallel eye movement video recording available from the same session were screened 

in the authors’ databases and collections. This query yielded two more subjects who had 

presented with downbeat nystagmus and congenital nystagmus to the lead author’s clinic 
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between 2018 and 2019. Ethics approval was obtained from Julius-Maximilians University 

Wuerzburg’s ethics committee under the number 318/21. 

Experimental setup 

Experimental procedures were conducted in a naturally illuminated room at daytime. 

Subjects were seated in a distance of 40cm in front of a smartphone (iPhone XR, Apple, 

Cupertino) mounted on a standard tripod with the screen facing frontoparallely (Figure 1A). 

Screen orientation was switched 90° depending on the respective stimulus plane, i. e. using 

landscape mode for horizontal stimuli. Alignment of the screen with the horizontal and 

vertical axes was ascertained by using a built-in level of the tripod. The smartphone screen’s 

width was measured to be 14.0 cm, mapping onto 896 points, an abstract unit referencing 

the screen as a coordinate system used by Apple (https://developer.apple.com). This in turn 

results in a total angular viewing range of approximately 20°, a value which was chosen in 

accordance with standard VOG paradigms44. The height of the tripod was adjusted so as to 

align the screen’s center with the meridian of the subject’s eyes. The subjects were 

instructed to rest the back of their heads against a wall behind them or, in case of sitting 

freely, to hold the head as steady as possible while recording. The subjects’ interpupillary 

distance was measured with a distance ruler upon fixation of an object positioned to match 

the experimental approach (~40cm) for later pixel-to-metric unit conversion.  

Video recording 

Eye movements were video recorded with smartphone cameras (iPhone Version 7 and XR 

Apple, Cupertino, CA, USA) at 1920x1080 pixels and a framerate of 30Hz, and in the case of 

one subject, 60Hz.  

Videooculography 

For gold standard monocular videooculography (VOG) recordings, the “EyeSeeCam Sci” 

(Version 8108847, EyeSeeTec, Munich, Germany45,46) was used. The camera’s 

spatiotemporal resolution is documented to be 188x120 px and 220 Hz, yielding a spatial 

resolution of 0.05 – 0.1° translating into an accuracy of approximately 1°. The VOG camera 

was connected to a Lenovo ThinkPad T470 Core i7 laptop running the proprietary OtoAccess 

version 1.5 recording software (Interacoustics, Middelfart, Denmark). The goggles’ headband 

was adjusted for a firm and snug fit. The camera was aligned in subject’s gaze straight 

ahead to center the reflection of the pupil in the image frame and subsequently calibrated for 

every individual using the built-in five-point laser grid projected onto a white wall located in 

one meter distance. Calibration plots were visually inspected by the experimenter (MF) 

before recordings were started in the software’s default “nystagmus” mode. 
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Stimulus material  

To elicit nystagmus in a standardized way, we delivered a monochrome optokinetic 

nystagmus drum stimulus on the smartphone revolving at a constant rate of 555 points/ s 

(equalling 8.7cm/ s) along the screen, corresponding to an angular velocity of ~12°/s (Figure 

1A). This speed was chosen (i) on practical grounds as it allowed optimal stimulus pursuit47,48 

as well as (ii) because it reflects the typical frequency of both physiologic caloric and 

pathological vestibular nystagmus encountered in daily practice6,7,9,49. Based on the 

assumption of a normal optokinetic response gain of 0.85 for horizontal and 0.80 for vertical 

stimuli in neurotypical subjects below the age of 50 years48,50, the ground truth of slow phase 

velocity was estimated to be 10.2°/s for horizontal and 9.6°/s for vertical directions.  

Comparative nystagmus recordings 

Since VOG goggles significantly obscured facial features essential for RCNN-based pupil 

tracking, nystagmus recordings were carried out in two back-to-back sessions taking place in 

a randomized order. To minimize intraindividual nystagmus heterogeneity between recording 

sessions, subjects were instructed to preferably follow fixation targets until they disappeared 

from the screen before refixation of a remote target on the opposite side of the screen. 

Nystagmus was recorded over 30 seconds in each of the four directions: left, right, up and 

down with breaks of two minutes between conditions for recuperation. 

Deriving kinematic measurements from eye movement videos 

Preprocessing 
A striking inverse relationship of the RCNN’s tracking performance, as assessed by stability 

and plausibility of landmark predictions upon visual inspection of outputs, and spatial 

resolution of the videos (i. e. better tracking in lower resolutions) was observed. Evidently, 

640x480px was the optimal resolution, retaining enough meaningful spatial information for 

landmark tracking while being associated with the most favorable tracking performance 

(Figure 1D, E, G). Therefore, all videos were downsampled to this resolution. 

Kinematic analysis was implemented in Python using standard scientific analysis packages 

(pandas, sklearn, numpy, scipy). Due to the inexact alignment of video and stimulus onset, 

the DLC output was first filtered for times of interest (the first and last 5 seconds are cut from 

the analysis). Next, the data was cleaned using two steps: (1) we removed low likelihood 

marker data points (p<0.8, likelihood defined by DLC during prediction), (2) we removed 

impossible coordinates, i.e., where the markers for the pupil lie outside of the area spanned 

by the eye lid markers (rarely observed artefact). The tracked pupil marker positions (see 

diagram of markers in Figure 1B) were averaged for each eye to determine a pupil centroid, 

before using a bandpass filter (low cut = 0.5 Hz, high cut = 14 Hz), removing both high 
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frequency noise and low frequency large scale movements (e. g. slow head or camera 

movements). 

For transforming pixels into metric units, a conversion factor was derived per individual by 

dividing the actual interpupillary distance (IPD, average of three measurements from mid-

pupil to mid-pupil) by the horizontal distance between both ConVNG tracked pupil centroids 

in pixels (average ~60mm, in line with previous anthropometric data51), before conversion to 

degrees using angle= arctan (x/r), where r is the radius of the eye (defined as 12mm, in line 

with anthropometric data52). Using aforementioned IPD average instead of individual values 

did not significantly influence SPV calculations. The timeseries of each pupil (left and right, in 

degrees) is smoothed using a median filter (ndimage package, window length=3).  

Classification of nystagmus direction 
The direction of the nystagmus (horizontal or vertical) was determined by calculating a fast 

fourier transform of the x and y components of the pupil trajectory. If the absolute power is 

larger in the x-direction, then the nystagmus fast beating component is horizontal, and vice 

versa for vertical. Since the nystagmus may have a component in both the x-y directions (e. 

g. due to slightly oblique camera perspective), we computed the magnitude of the combined 

trajectories of x and y, �x� � ��. The resulting trajectories are further processed by 

performing a linear interpolation (interp, numpy) between the peaks and troughs (peak 

detection, scipy, prominence=1) of the nystagmus trajectory, producing a saw tooth signal. 

Calculation of slow phase velocity 
Slow phase velocity is the primary kinematic measure to characterize jerk nystagmus and 

therefore widely used for its diagnostic classification and monitoring alike2,6,7,9. Directional 

SPV comparisons are routinely used to determine relative asymmetries of caloric excitability 

of either labyrinth40,53. The slow phase velocity (SPV) for each eye is calculated by 

multiplying the median of the instantaneous gradient (gradient function, numpy) by the 

sampling frequency of the original video. The sign of the gradient (positive or negative) per 

plane indicates whether the slow phase velocity is leftward, rightward, upward or downward.  

Statistical methods 

Normality of datasets was examined using Kolmogorov-Smirnov testing and additional 

inspection of quartile (“Q-Q”-) plots so as to inform selection of appropriate display of data 

distributions as well as parametric or non-parametric analyses. For SPV analyses, binocular 

measurements resulting from ConVNG were averaged. For relative error calculations, both 

method’s absolute deviations from the plane-specific estimated ground truth were divided by 

the observed value. Equivalence was assessed using the two one-sample t-test (TOST) 

method42 with smallest effect sizes of interest43 derived as outlined earlier. Additionally, the 

Bayesian interval-null method for equivalence testing was used54 (see supplementary data). 
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Outliers were removed using the robust regression and outlier removal (ROUT) method with 

a balanced coefficient Q= 1%55. For all statistical computations, GraphPad Prism Version 9, 

JASP Version 0.14.156 and JAMOVI Version 2.2.5.057, both with R plugins58 were used. 

Significance level was set at 5% (i. e. p< .05). 

Results 

An RCNN for tracking of pupils and facial landmarks  
RCNN performance was evaluated in a tripartite approach. First, the mean Euclidean 

distances (MED) of user-annotated and RCNN-predicted labels on the training and test data 

subsets were measured. These were 2.22 and 6.12 pixels, a ratio reflecting acceptable to 

good generalization34. Second, an additional, pragmatic performance evaluation was carried 

out by relating the magnitude of the MED in the test set to the size of the tracked structure of 

interest as previously reported by our group36: given the average pupil diameters occupying 

40-70 pixels throughout the used video material, MED was calculated to correspond to 9-

15% of a pupil diameter and therefore confirmed to be acceptably small for further 

predictions (see supplementary videos 1 through 4 for exemplary labelled videos). Lastly, the 

median likelihood assigned to each of the eight pupil markers in a set of ten fully independent 

clinical eye movement videos randomly sampled from an open-source eye movement video 

collection35 was 0.85 (95% CI [0.82, 0.86], range: 0.2 – 0.96 before outlier detection and 0.55 

– 0.96 after removal of four outlier values identified using ROUT method at a Q=1%, Fig 1F), 

demonstrating high out of sample model robustness. Upon further inspection, the lowest 

likelihood labels were yielded by one video. A lack of visual separability of pupil edge and an 

exceedingly dark iris could be identified as the most likely confounding factor. 

Accuracy and precision of slow phase velocity calculations 
As the prime parameter to characterize intensity of jerk nystagmus, VOG-based SPV 

calculations are routinely used in clinical practice both in diagnostic6,7,53 and therapeutic9,14,59 

contexts. To compare ConVNG’s aptitude to determine SPVs of experimentally standardized 

nystagmus, accuracy and precision were compared to the clinical gold standard method, 

infrared VOG. 

Two one-sample T-Test  
Within derived equivalence boundaries of ±2.5°/s, TOST revealed equivalence of SPV 

measures in all planes (leftward, upper limit T(9)=-4.5, p< .001, lower limit T(9)= 2.8, p= .01; 

rightward, upper limit T(9)= -4.0, p= .002, lower limit T(9)= 2.51, p= .017; upward, upper limit 

T(9)= -4.0, p= .002, lower limit T(9)= 3.34, p= .004; downward, upper limit T(9)= -7.5, p< 

.001, lower limit T(9)= 3.6, p= .003, Figure 2A-B).  
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To assess directional symmetry, which, besides absolute SPV values, is the principle 

readout for caloric nystagmus assessment in the clinical setting40,53, equivalence testing was 

also performed within methods and between stimulus directions. Per convention, 20-33% of 

directional asymmetry40,53 in the horizontal plane constitutes the cut-off for pathological 

findings (i. e. caloric paresis). In relation to the ground truth estimate of SPV, these 

percentages correspond to 2.0-3.4°/s, again rendering ±2.5°/s a reasonable equivalence 

interval. Conversely, the assumption of symmetry does not apply to vertical planes in various 

oculomotor domains60,61. Therefore, only horizontal symmetry was tested. TOST revealed 

equivalence of directional SPV measures in both methods (ConVNG, upper limit T(9)= -6.5, 

lower limit T(9)= 9.2; VOG, upper limit T(9)= -6.5, lower limit T(9)= 6.6, all p< .001). 

The SPV errors per plane in relation to the estimated ground truth were leftward 11.8±14.4, 

rightward 9.5±15.3, upward 11.4±7.3, downward 8.9±6.3% (median 6.6±11.0%) for ConVNG 

and 15.6±9.5, 17.8±10, 15.1±9.8, 13.0±8.6% (median 15.1±9.2%) for VOG. For equivalence 

testing, the maximum deviation of goldstandard VOG (38.9%, survived ROUT at Q=1%) was 

used as an anchor point for 90%-CI assumption, revealing equivalence of methods in all 

comparisons (leftward, upper limit T(9)=-7.3, lower limit T(9)= 6.02; rightward, upper limit 

T(9)= -6.8, p= .001, lower limit T(9)= 4.4; upward, upper limit T(9)= -12.2, p< .001, lower limit 

T(9)= 10.1, p< .001; downward, upper limit T(9)= -14.9, lower limit T(9)= 12.0, all p< .001, 

Figure 1C).  

To determine measurement precision, the medians of SPV standard deviations per plane 

were computed: 0.34, 0.23, 0.34 and 0.30°/s at a sampling rate of 30 Hz for ConVNG and 

0.11, 0.11, 0.12 and 0.12°/s at 220 Hz for VOG (all after ROUT at Q=1%). Deriving an 

equivalence boundary of ±0.12°/s from the maximum standard deviation of goldstandard 

VOG, TOST yielded significant results against all lower bounds (all p<.02), while 

comparisons against the upper bounds were not significant (Figure 1D), meaning the data 

does not allow the conclusion of equivalence within the used interval. 

Additionally, Bayesian approaches to equivalence testing were used, which are outlined in 

detail in supplementary data. 

 

Figure 2 - Validation. A. Exemplary traces derived from ConVNG and VOG for comparison. B. SPV 
values for both horizontal and vertical planes are shown in relation to the 90%-CI for equivalence 
testing. Red line denotes ground truth SPV value for horizontal (10.2°/s) and vertical (9.6°/s) planes. 
ConVNG values fall well within equivalence boundaries (±2.5°/s). C. Relative error values for accuracy 
calculation, in relation to the equivalence interval. ConVNG values fall well within equivalence 
boundaries (±38.9%). D. Standard deviations of sequential SPV measurements per plane for precision 
calculation, in relation to the equivalence interval. ConVNG values are significantly larger than the 
upper equivalence boundary, indicating lower precision (means: ConVNG 0.3°/s and VOG 0.12°/s). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.22277934doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.24.22277934
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Retrospective validation in an exemplary clinical cases 

In order to further assess the validity of ConVNG, the authors revisited recent jerk nystagmus 

cases from their respective clinics with both video documentation and VOG data available 

from the same examination so as to construct a retrospective convenience sample for 

validation. Likely due to the broad availability of VOG in the authors’ clinical settings, 

rendering simultaneous video documentation optional, only two cases were identified fulfilling 

the search criteria. The first subject presented with a pendular nystagmus restricted to the 

horizontal plane. Since SPV measurement is not fully applicable in pendular/ sinusoidal 

nystagmus, frequency and amplitude relationships are used for evaluation, since their 

product ultimately influences visual acuity1. Since the nystagmus showed gaze-dependent 

shifts in intensity, selected signal portions with gaze straight ahead were used for 

comparison. Computed spectrograms revealed a peak frequency of 2.4Hz (ConVNG) and 

2.2Hz (VOG), corresponding to an absolute deviation of 0.2Hz (relative deviation 9%, Figure 

3A-B, supplementary video 5). The second subject showed a nystagmus purely beating in 

the vertical plane (downbeat nystagmus). Upward SPV measurements were 15.7±8.9°/s 

(ConVNG) versus 14.9±13.5°/s (VOG), constituting an absolute deviation of 0.8°/s (relative 

deviation 5%), a value falling well within the previously specified equivalence boundaries 

(Figure 3C-D, supplementary video 6).  

 

Figure 3 - Retrospective validation. A. Traces from gaze straight ahead in case 1 and B., associated 
spectrograms. C. Traces from case 2 and D., associated SPV calculations.  

Discussion 
Quantitative analysis of eye movements is a quintessential technique in the clinical toolbox 

with immediate diagnostic implications, especially in the complex and highly interdisciplinary 

context of oculomotor disorders and vertigo management10,11. Recent clinical investigations 

demonstrate that VOG-based assessments can double diagnostic certainty of vertigo 

syndromes in an emergency department setting6 and shorten time to diagnosis in episodic 

vertigo syndromes which usually do not coincide with patient presentations7. Furthermore, 

videonystagmography offers the unique capability of demasking subtle oculomotor deficits 

and can also double the diagnostic yield of oculomotor assessment in the setting of ataxia 

syndromes, thereby providing crucial diagnostic clues guiding targeted genetic diagnostics12. 

However, the resource intensiveness of current gold standard VOG precludes broad 

implementation, thereby demarcating factual and optimal management of neurological, 

otoneurological and neuroophthalmological patient populations. 

To validate a highly accessible tool for video based nystagmus quantification, we chose a 

standardized, optokinetic instead of a caloric stimulus for two main reasons. Firstly, caloric 
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nystagmus is inter- and intraindividually highly variable due to unforeseeable central 

habituation mechanisms on various timescales40,53, making a ground truth estimation 

impossible. This is in contrast to well established normative data available for optokinetic 

nystagmus50. Secondly, caloric nystagmus is significantly suppressed by visual fixation, 

necessitating either Frenzel goggles, which introduce spatial distortions in video recordings 

or dark conditions, which demand infrared cameras not routinely usable in most consumer 

grade cameras. Both factors have likely contributed to the only modest agreement between 

webcam video- and gold standard VOG-based nystagmus classification in a recent study by 

Reinhardt et al.31 In another closely related study focussing on a continuous monitoring 

aspect, Phillips and colleagues have demonstrated how novel, wearable technologies enable 

nystagmus detection and classification18. However, the extraction of quantitative 

measurements like SPV, a quintessential descriptor of nystagmus pathophysiology with 

established diagnostic6,7 and therapeutic9,14 implications, has not been successful in both 

studies18,31. In Young and colleagues’ study investigating a portable infrared VOG device as 

a vestibular event monitor, SPV measurements were not only acquired with high accuracy 

but could also differentiate common etiologies of episodic vertigo disorders7; however, a 

custom-built VOG device was needed.  

The framework outlined here does not require any device except for a camera with at least 

30Hz temporal and 640x480px spatiotemporal resolution, which is well below the current 

camera standard implemented widely in digital devices, webcams and the like. Making only 

few and pragmatic anthropomorphic assumptions regarding interpupillary distance and 

eyeball diameter51,52,62, computationally inexpensive standard algorithms like filtering, fast 

fourier transform, power spectral analysis, peak stripping and instantaneous gradient 

calculation (in line with standard SPV computations63) were used on the bilateral ConVNG-

derived pupil centroid’s time series to identify nystagmus beating direction and calculate the 

average SPV per plane.  

Despite a known bias of the TOST method towards non-equivalence decisions in small 

sample size scenarios like the one at hand54, it revealed equivalence of both methods’ SPV 

measurements, which converged with the outcomes of additional, explorative Bayesian 

testing.  

Hence, these findings strongly support the notion that machine learning algorithms are not 

only capable of tracking pupils in laboratory acquired videos, but also of extracting time-

series data accurate enough to enable meaningful and quantitative kinematic analyses in 

clinically relevant contexts. This was also true for the very small retrospective sample, which 

of course can only serve as a qualitative assessment. Still, in both experimentally 

uncontrolled instances (handheld camera recording, no tripod), ConVNG could be used to 
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derive kinematic nystagmus descriptors with relative deviations in relation to VOG as little as 

9% and 5%, respectively. Applying ConVNG to randomly sampled instances from a fully 

independent dataset35, yielded excellent out-of-sample robustness (median pupil label 

likelihood >0.85), underscoring feasibility of retrospective quantitative eye movement 

analysis regardless of experiment, setting or camera equipment.  

This development adds to the growing interest in accessible, smart health care applications. 

As an important example, Parker and colleagues provided the proof-of-concept of an 

ARKit37-based iPhone application for video head-impulse testing21,22, thereby demonstrating 

feasibility of smartphone application-based quantitative eye and head movement recordings, 

albeit a considerable effort for manual postprocessing was needed. Using their ARKit-based 

application for gaze estimation, accuracy of 17% for horizontal and 27% for vertical planes 

(average 23%) and precision of 1.3° at lower gaze eccentricities was reported22. For 

comparison, precision of ConVNG reached 0.23-0.34°/s and, as expected, VOG reached 

precision as low as 0.11-0.12°/s. While equivalence of ConVNG and VOG in regards to 

precision could not be demonstrated, ConVNG’s absolute precision values of <0.34°/s are 

almost one order of magnitude smaller than ARKit’s documented gaze estimation37 and 

~75% smaller than the values achieved by Parker and colleagues22.  

Notably, unlike VOG, both ARKit and ConVNG do not implement a formal calibration 

procedure. Referencing pupil position in both the video and orbital space is crucial for 

relating eye positions to stimulus or head positions, a procedure essential for gain value 

calculations (e. g. for video head impulse testing). Since SPV computation does not 

necessarily require absolute gaze positions, an implicit calibration procedure consisting of 

two anthropomorphic assumptions and a stable viewing distance of approximately 40cm as 

outlined above was sufficient to allow extraction of data with high accuracy. At the same 

time, the lack of calibration might partly explain why both ConVNG and ARKit’s37 precision 

metrics were clearly inferior to those of reference VOG. The possibility of calibration-free 

measurement with sufficient accuracy however is of particular relevance for at-home 

monitoring, especially in short-lasting, episodic conditions, which may practically not allow 

lengthy calibration procedures and associated user input-intensive device interaction. 

Among the main methodological limitations of this study is the need for sequential eye 

movement recordings due to the fact that ConVNG is unable to track pupils and facial 

landmarks largely occluded or obscured by VOG goggles. However, in stark contrast to 

caloric nystagmus31,53, optokinetic nystagmus dynamics are significantly more stable 

between sequential measurements, making relevant intra-individual fluctuations confounding 

performance comparisons highly unlikely1,48. Additionally, we took precautions so as to avoid 

systematic biases by randomizing the order of experimental conditions for every individual. 
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Still, this fact introduces an unforeseeable degree of biological variance, which needs to be 

considered when interpreting the equivalence testing and especially the comparisons of the 

retrospective comparisons. Another limitation of this study is the non-exhaustive 

representation of different nystagmus velocity conditions which would enable testing for 

correlations, linearity and systematical error distributions, but lie beyond the scope of this 

intended proof-of-concept. Instead, we defined ground truth values which closely match SPV 

values typically encountered in clinical practice to maximize validity6,7. 

Relying on RGB videos, our approach is not expected to function in low light and low contrast 

settings, as was demonstrated in the out-of-sample validation. Combining the iPhone’s 

natural light and infrared sensors21,37, ARKit eye tracking promises to be more robust in these 

settings. However, in a series of experiments probing ARKit’s eye tracking capabilities 

(Taeger & Friedrich et al., unpublished data), we found that tracking performance 

significantly deteriorated in dim light conditions to the point of signal-to-noise ratios 

insufficient for SPV calculation. A recently proposed workflow based on convolutional neural 

networks applied to VOG-derived infrared eye videos has been associated with the most 

favorable pupil segmentation performance known to date26, however, as opposed to 

ConVNG it requires VOG equipment (high resolution infrared eye videos) in the first place. 

Albeit highly relevant for applications requiring visual fixation suppression, broadly accessible 

and available infrared camera technology remains an unmet need in clinical and 

experimental practice. 

Taken together, our findings demonstrate that a 30Hz smartphone video can be sufficient for 

a specifically trained RCNN to extract quantitative eye movement parameters with an 

accuracy comparable to VOG and a precision higher than comparable ARKit 

implementations22. The presented pipeline’s computationally inexpensive and slender 

algorithmic architecture promotes broad deployment to both stationary and portable devices 

in diverse settings. Furthermore, ConVNG may stimulate large-scale retrospective 

investigations using medical video databases in unprecedented granularity. 

Therefore, this approach holds tremendous potential for clinical and experimental 

applications ranging from telemetrics and at-home use to multivariate disease modeling for 

predictive, personalized and precision medicine. In our view, this will not supersede, but 

rather complement VOG in settings of low availability. To further validate the approach, 

larger-scale implementation efforts in even less controlled real-world settings, e. g. outpatient 

clinics and exploration of on-device analysis capabilities are warranted. To this end, we make 

the pretrained ConVNG model publicly available for the scientific community to build upon 

(https://doi.org/10.7910/DVN/GTUMAJ). 
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Supplementary data 
Explorative equivalence analysis using Bayes interval-null method 

In light of its potential complimentary value in small sample and large effect size settings like 

the one at hand54,64,65,  a more explorative approach to equivalence testing using Bayesian 

statistics was applied to this work’s key finding, i. e. SPV accuracy and precision. To this 

end, the smallest (i. e. most conservative) effect sizes, expressed as Cohen’s d values, 

corresponding to the raw interval boundaries (±2.5°/s) used for TOST were used to delineate 

a maximum equivalence interval around nil65. Systematic exploration of the equivalence 

likelihood was conducted in a bipartite approach: first, the maximum d values were multiplied 

by 0.5 and 0.1 so as to map out likelihoods of equivalence as a function of increasingly 

conservative interval boundaries. Second, due to insufficient data to inform a prior, a default 

Cauchy prior centered at 0 with a scale of �
√�

 ≈ 0.707 was used besides �.�
√�

 ≈ 0.354 and �
√�

 ≈ 

1.41 as more skeptical or “optimistic” variants, in line with previous comparative and 

explorative modeling in equivalence testing54,66. 

In the Bayes interval-null method, the so called non-overlapping hypothesis (NOH) Bayes 

factor (BF) compares the likelihoods of the interval-null hypothesis (i. e. measurements are 

equivalent, H0) and the alternative hypothesis (i. e. effect sizes fall outside the equivalence 

region, suggesting non-equivalence, H1). NOH BF can be viewed as the degree, to which the 

data support values lying within versus outside of the equivalence intervals. The overlapping 

hypothesis (OH) BF compares the interval-null hypothesis against an unconstrained (i. e. no 

equivalence region around nil) alternative hypothesis and can be interpreted as the degree to 

which the data support the use of a specified equivalence region65. 

Using an equivalence region of d ± 1.02 (smallest of all d-values corresponding to ±2.5°/s 

raw SPV interval boundaries used in TOST comparisons), OH BF for SPV comparisons per 

plane were 1.64, 1.64, 1.64 and 1.60, NOH Bayes factors 193.33, 235.65, 749.28 and 24.61, 

providing weak evidence for the overlapping hypothesis (i. e. restriction of parameter space 

to d ± 1.02) and extremely strong evidence in favor of equivalence. In other words, there is 

weak evidence in favor of the comparatively large equivalence boundary and given the data, 

the equivalence hypothesis is at least ~25 times as likely as the non-equivalence hypothesis. 

At d ± 0.5, OH Bayes factors were 2.55, 2.64, 3.07, 1.40 and NOH Bayes factors were 3.0, 

3.15, 3.9 and 1.46. At d ± 0.1, OH Bayes factors were 2.55, 2.64, 3.07 and 1.40, NOH Bayes 

factors were 3.0, 3.15, 3.85 and 1.46. Overall, these values provide moderate to strong 

evidence for an equivalence boundary of at least d ± 0.5, within which the equivalence 

hypothesis is  ~1.5- to 3.9-fold more likely than the alternative hypothesis. Neither adjusting 
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priors to more skeptical �
�.�

√�
 ≈ 0.354) nor optimistic (

�

√�
 ≈ 1.41) values substantially changes 

this conclusion (see supplementary figure 1 for systematic illustration). 

For relative error equivalence testing, OH Bayes factors were 1.32 in all planes and NOH 

Bayes factors >142.285, providing weak evidence for the overlapping hypothesis and very 

strong evidence in favor of the equivalence hypothesis. At 
��	


�
 = ± 0.89, OH Bayes factors 

were 1.71, 1.71, 1.72 and 1.70 and NOH Bayes factors 34,67, 33.51, 45.21 and 25.1. At 
��	


��
 = ± 0.18, OH Bayes factors were 2.04, 2.02, 2.20 and 1.84, NOH Bayes factors were 

2.53, 2.50, 2.83 and 2.20. Overall, this provides moderate to strong evidence in favor of the 

equivalence hypothesis within the smallest boundaries, d ± 0.18. As was the case for SPV 

measurements, adjusting priors to more skeptical �
�.�

√�
 ≈ 0.354) or optimistic (

�

√�
 ≈ 1.41) values 

yielded expected shifts of Bayes factors, however not substantially changing the conclusions 

drawn using the default prior (data not shown).  

For precision estimates (d ± 0.14, corresponding to 0.12°/s minimal precision of VOG used in 

TOST), OH BF were 0.97, 1.04, 0.74 and 0.95, NOH BF were 0.97, 0.96, 0.72 and 0.95. At d 

± 0.07 OH Bayes factors were 0.94, 1.0, 0.70, 0.92 and NOH BF were 0.93, 1.0, 0.69 and 

0.91. At d ± 0.014 OH BF were 0.92, 0.99, 0.69, 0.90 and NOH BF were 0.92, 0.99, 0.69, 

0.90. With NOH Bayes factors ranging between 0.69 and 1.0, consistent with weak evidence 

against the equivalence hypothesis with largely insufficient data to support a definitive 

conclusion. 

Taken together, the Bayesian interval-null method’s outcomes across exploratory 

parametrizations of priors and equivalence region boundaries stand strongly in favor of the 

equivalence hypothesis in terms of clinically relevant accuracy intervals while providing 

largely inconclusive evidence for definitive conclusions for precision comparisons. Overall, 

these findings closely converge with TOST findings, thereby corroborating the equivalence 

hypothesis. 

 

 

 

Supplementary figure 1 - SPV equivalence testing using Bayes interval null method. Shown are the 
relationships of prior (dashed lines) and posterior (solid lines) likelihood distributions with equivalence regions 
shaded in grey. Rows (i. e. A-C) ordered by d-values for equivalence boundaries, columns (i. e. 1-3) ordered by 
prior estimates (see supplementary methods). 
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Supplementary videos 

ID Content 

1-4 Exemplary labeled videos of prospective 

cohort subjects showing nystagmus in all 

four planes. 

5 Labeled video of Case 1, downbeat 

nystagmus 

6 Labeled video of Case 2, pendular 

nystagmus 

“OOSV”-Videos Labeled videos randomly sampled from Dan 

Gold collection35 used for out-of-sample 

validation. 

Supplementary Table 1 - Video descriptions. [Not included in preprint version, please refer to the 

corresponding author for more information.]  
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