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Abstract 

The molecular mechanisms of SGLT2 inhibitors (SGLT2i) remain incompletely understood. 

Single-cell RNA sequencing and morphometrics data were collected from research kidney 

biopsies donated by participants with youth onset type 2 diabetes (T2D), aged 12-21 years of 

age, and healthy controls (HC) to study the effects of SGLT2i on kidney transcriptomics. 

Participants with T2D were more obese, had higher glomerular filtration rate, mesangial and 

glomerular volumes than HC. There were no clinically significant differences between 

participants prescribed SGLT2i (T2Di(+), n=10) and other T2D (T2Di(-), n=6). Transcriptional 

profiles showed SGLT2 expression exclusively in the proximal tubular (PT) cluster. 

Transcriptional alterations in T2Di(+) compared to T2Di(-) were seen across most nephron 

segments, most prominently in the distal nephron. SGLT2i treatment was associated with 

suppression of genes in the glycolysis, gluconeogenesis, tricarboxylic acid cycle pathways in 

PT, but enhanced expression in thick ascending limb.  The energy sensitive mTOR signaling 

pathway transcripts were suppressed towards HC level in all nephron segments in T2Di(+). 

These transcriptional changes were confirmed in a diabetes mouse model treated with SGLT2i. 

Therefore, the beneficial effects of SGLT2i treatment to the kidneys might be from mitigating 

diabetes-induced metabolic perturbations via suppression of mTORC1 signaling across nephron 

segments, including those not expressing SGLT2. 
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Introduction 

Youth-onset type 2 diabetes (T2D) is an increasingly common cause of diabetes in children and 

adolescents worldwide(1). It is associated with a more severe clinical course than youth-onset 

type 1 diabetes (T1D) and is characterized by the frequent appearance of diabetic kidney 

disease (DKD) in adolescence and young adulthood(2). The Treatment Options for Type 2 

Diabetes in Adolescents and Youth follow-up study (TODAY2) documented a 15-year 

cumulative incidence of albuminuria of greater than 50% in young adults with T2D(3, 4). Yet, the 

young age and the relatively short follow-up period limit robust data on kidney failure in the 

TODAY2 cohort. However, among Southwest American Indians, in whom youth-onset T2D was 

first noted in the 1960s(5), kidney failure is nearly five times as high in midlife (ages 25-54) in 

those with youth-onset T2D than in those diagnosed with T2D later in life(6). Furthermore, adult 

Southwest American Indians with youth-onset T2D were more likely to have severe kidney 

structural lesions on kidney biopsy than those with adult-onset T2D of similar duration(7). These 

studies underscore the burden of DKD in youth-onset T2D and their lifetime risk of kidney failure 

and premature death. 

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are highly effective therapies that have 

revolutionized the management of DKD in patients with T2D. (8-11) Although not currently 

approved by the Food and Drug Administration (FDA) for patients < 18 years of age, SGLT2 

inhibitors are often prescribed off-label in patients with T2D due to their high risk of DKD. 

However, the molecular mechanisms underlying the kidney-protective effects of SGLT2 

inhibitors in youth onset diabetes are yet to be elucidated. 

Accordingly, the objective of this study was to characterize the effects of youth-onset T2D on 

kidney tissue and function and describe the impact of SGLT2 inhibition on the morphological 

and molecular features of early kidney dysfunction in these patients. To this end, protocol 
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research kidney biopsies provided by study participants underwent histological analysis and 

molecular profiling studies using single-cell RNA sequencing technology. Transcriptomic 

signatures of perturbed renal energy expenditure and substrate metabolism associated with 

youth-onset T2D were identified, and the impact of SGLT2 inhibitor use on these transcripts was 

evaluated.  

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 24, 2022. ; https://doi.org/10.1101/2022.07.23.22277943doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.23.22277943


Methods: 

Study Design and Participants 

Adolescents and young adults (N=16) with T2D (12-21 years of age, T2D onset <18 years of 

age, diabetes duration 1-10 years, and HbA1c <11%) from the Renal Hemodynamics, 

Energetics and Insulin Resistance in Youth Onset Type 2 Diabetes Study (Renal-HEIR, 

NCT03584217) and the Impact of Metabolic Surgery on Pancreatic, Renal and Cardiovascular 

Health in Youth with Type 2 Diabetes (IMPROVE-T2D, NCT03620773) who volunteered for a 

nested protocol research kidney biopsy were included in this analysis (Figure 1). The 

participants were recruited from the Type 2 Diabetes and Metabolic Bariatric Surgery clinics at 

the Children’s Hospital Colorado at the Anschutz Medical Campus in Aurora, Colorado. T2D 

was defined by American Diabetes Association criteria plus the absence of glutamic acid 

decarboxylase, islet cell, zinc transporter 8, and/or insulin autoantibodies. Exclusion criteria are 

detailed in Supplemental Table 1. The Renal-HEIR and IMPROVE-T2D cohorts have 

intentionally harmonized study protocols and were both approved by the Colorado Multiple 

Institutional Review Board (COMIRB). Participants and/or parents provided informed consent as 

appropriate for age. Participants who opted to undergo the optional kidney biopsy were 

specifically and additionally consented by the research and biopsy teams. Medication use was 

recorded for all participants, and T2D treatment, including SGLT2 inhibition, was at the 

discretion of their medical provider. Normative reference tissue research biopsies were provided 

by 6 healthy young adult participants in the Control of Renal Oxygen Consumption, 

Mitochondrial Dysfunction, and Insulin Resistance (CROCODILE) study (NCT04074668).  

Clinical measurements 

In Renal-HEIR and IMPROVE-T2D, iohexol was administered as a bolus IV injection (5mL of 

300 mg/ml [Omnipaque 300, GE Healthcare]). An equilibration period of 120 min was used, and 
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blood collections for iohexol plasma disappearance were drawn at +120, +150, +180, +210, and 

+240 min (12). Because the Brøchner-Mortensen equation underestimates high values of GFR, 

the Jødal-Brøchner-Mortensen (JBM) equation was used to calculate the GFR(13) . Urine 

albumin to creatinine ratio (UACR) was measured from fasting untimed urine samples before 

and after renal clearance assessment and averaged.  

All laboratory assays for the Renal-HEIR, IMPROVE-T2D, and CROCODILE cohorts were 

performed by the University of Colorado Clinical and Translational Research Centers (CTRC) 

Core Labs and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 

laboratory in Phoenix, Arizona. As described previously, iohexol concentrations were measured 

in Phoenix by high-performance liquid chromatography (Waters, Milford, MA). (14-18) Other 

fasting laboratory evaluations included: total cholesterol, low-density lipoprotein cholesterol 

(LDL-C), high-density lipoprotein (HDL-C) cholesterol, triglycerides, glucose, and HbA1c 

(DCCT-calibrated); assays were performed by standard methods in the CTRC laboratory. 

Ultrasound-guided kidney biopsies and tissue processing  

All 3 studies (i.e., Renal-HEIR, IMPROVE-T2D, and CROCODILE) use the same pathology 

protocol as KPMP. Briefly, an ultrasound-guided percutaneous kidney biopsy was performed by 

one of two highly experienced interventional radiologists (Drs. Patricia Ladd and Roger Harned). 

Per local protocol, up to 4 passages were performed to obtain 3 biopsy cores. Each core was 

immediately assessed for the presence of cortex by gross examination and digital imaging. 

Kidney tissue was placed in specific fixatives and shipped to the University of Michigan.(19) 

(https://dev.kpmp.org/wp-content/uploads/2019/06/KPMP_Pathology_Protocol_2019-06-07.pdf)  

Quantitative morphometrics 

Light microscopy sections were assessed for pathologic diagnosis. For quantitative assessment 

of glomerular and mesangial volume and mesangial nuclear count, all glomeruli present in a 
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3 µm formalin-fixed paraffin-embedded section, stained with Periodic-Acid-Schiff, of each 

specimen, were assessed using quantitative morphometrics as previously described (20, 21). 

Mesangial index is % mesangial area per glomerular volume.  

 

Sample processing and Single-cell RNA sequencing 

scRNAseq profiles were obtained using KPMP protocols.(22) Briefly, single cells were isolated 

from frozen tissues using Liberase TL at 370C for 12 minutes. The single-cell suspension was 

immediately transferred to the University of Michigan Advanced Genomics Core facility for 

further processing. Sample demultiplexing, barcode processing, and gene expression 

quantifications were performed with the 10X Cell Ranger v6 pipeline using the hg38 GRCh38-

2020-A reference genome(23-25). To remove ambient mRNA from the data, the cell ranger 

count matrices were processed using SoupX(26) using the default parameters. The resulting 

matrices were processed as previously described22, whereby cells were included only if gene 

counts were between 500 and 5000, with fewer than 50% mitochondrial genes. Individual 

matrices were then integrated using RunHarmony embedded in Seurat, version 4.0.0. Clusters 

were annotated based on previously established kidney cell markers (27, 28) (Supplemental 

Figure 1A). 

Murine Models: 

To validate our findings in the human data, we used RNA-sequencing data from the kidney 

tissue of recently published mouse models. In brief, female db/db mice BKS.Cg-Dock7m +/+ 

Leprdb/J from Jackson, BKS background, Lot 642) underwent left nephrectomy at 5 weeks of 

age and, at 12 weeks, infected with renin expressing adeno-associated virus (ReninAAV, 109 

genomic copies), which accelerates disease progression (29). We compared ReninAAV 

Uninephrectomy db/db mice who received 2 weeks of SGLT2 inhibitor treatment with untreated 

ReninAAV Uninephrectomy db/db mice. 
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Statistical Analysis 

Groups 

For our analyses, we stratified participants as follows: T2D without SGLT2i (T2Di(-)), T2D with 

SGLT2i (T2Di(+)), as well as normative reference tissue from healthy controls (HC). 

Additionally, the term T2D indicates all participants with T2D irrespective of SGLT2i use. 

Statistical power was limited to compare baseline clinical and morphometric comparisons 

between biopsy groups; thus, quantitative data are presented as mean and standard deviations.  

Differential Expression Analysis 

To identify the genes potentially influenced by SGLT2 inhibition, the Limma R package(30) was 

used to fit linear regression models with the Benjamini-Hochberg (BH) procedure to correct 

multiple testing. We calculated the fold change (Log2FC) between two comparisons: T2Di(-) vs. 

HC and T2Di(+) vs. T2Di(-). Transcripts were required to pass FDR-adjusted p-values <0.05 in 

T2Di(-) vs. HC and in T2Di(+) vs. T2Di(-) to be considered "reversed”. A T2D regulated 

transcript was considered to be: i) “suppressed” with SGLT2i if the log2FC of the transcript level 

in T2D relative to HC was >0 and log2FC T2Di(+) relative to T2Di(-) was <0 and ii) “enhanced” 

with SGLT2i if its log2FC in T2Di(-) relative to HC was <0 and log2FC T2Di(+) relative to T2Di(-) 

was >0 (Supplemental Figure 2).  

Enrichment analysis 

Enrichment for transcripts “reversed” by the SGLT2 inhibitor was determined using the enrichR 

package(31-33) and the Reactome database(34-36). A pathway was considered significant if its 

p-value <0.05 and included at least 5 reversal genes. Based on existing literature, genes and 

their Reactome terms were further categorized manually into smaller groupings. 
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Proteins Protein Interaction network 

The Agilent Literature Search version 2.69 plugin(37) implemented in Cytoscape version 

3.7.2(38) was used to generate the protein-protein interaction networks for “reversed” genes.  

Pathway activity score 

The single sample gene set enrichment analysis (ssGSEA) method implemented in GSVA 

R(39) package version 1.40.1 was used to compute the mTOR pathway activity score.  

Analysis of Mouse Data 

Mouse data were analyzed using the identical reversal analysis approach and definitions 

described for human gene expression studies to identify the genes suppressed/enhanced with 

SGLT2i.  Limma R package(30) for DEGs identification, BH for multiple testing correction, and 

threshold FDR =0.05 were similarly applied.  

Effects of SGLT2i on metabolic pathways were assessed in the murine data after applying the 

same analytical approach and criteria for defining reversed, suppressed, and enhanced genes 

as used in the human data. 
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Results 

Clinical and Morphometric Characteristics of Cohort 

Participants included in this study are summarized in Figure 1. When comparing all participants 

with T2D (both T2Di(-) and T2Di(+) groups) to HC, T2D were, on average, younger and had a 

higher BMI and percent body fat, greater dyslipidemia, and a higher GFR. The participants with 

T2D had an even distribution of males and females with an average age of 17±2 years. Only 

18% of participants had elevated albuminuria at the time of screening. Participants with T2D, 

overall, had good glycemic control, and the T2Di(-) (n=6) and T2Di(+) (n=10) groups were well 

matched in terms of clinical, laboratory, and morphometric parameters (Table 1).   The median 

time on SGLT2 inhibitors in the T2Di(+) group was 5 months.  

Morphometric assessment of the tissue demonstrated that mesangial matrix, mesangial nuclear 

count, mesangial volume, and glomerular volume were all quantitatively higher in participants 

with T2D than in HC. However, the fractional interstitial area was similar (Table 2). These data 

suggest that participants with T2D had findings consistent with early kidney dysfunction but no 

features consistent with advanced DKD. 

scRNAseq Results 

From 22 biopsies undergoing scRNAseq, 40,535 cells passed quality control requirements and 

were annotated to 18 clusters, representing all the major cell types in the nephron (Figure 2A, 

Supplemental Figure 1A). The expression of SGLT2 (SLC5A2) was enriched in the proximal 

tubular cell cluster (PT) (Figure 2B). Each cell cluster had a robust representation of the three 

biopsy groups (Supplemental Figure 1B).  

Within the PT cluster, five sub-clusters were identified using an unbiased approach, (PT-1 to 

PT-5). The expression of the SGLT2i target gene, SLC5A2, was highest in PT-1 followed by PT-

3 and PT-5 sub-clusters (Figure 2C). PT-1 mapped back predominantly to S1 and S2 nephron 
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segments using the Kidney Medicine Project (KPMP) segment-specific marker set.(40) Most of 

the other PT subclusters also mapped back to the S1 and S2 nephron segments, with PT-4 

contributing minimally to the S3 nephron segment (Supplemental Figure 3 A-B). PT-5 mostly 

mapped back to S1 and S2 nephron segments, but there were few cells in this sub-cluster 

(Supplemental Figure 3C).  PT-4 had the highest expression of reactive cell markers 

(Supplemental Figure 3D), while cycling cell markers had low expression across and the 

subclusters (Supplemental Figure 3E) and degenerative markers were expressed relatively 

uniformly across the PT subclusters (Supplemental Figure 3F). The proportion of cells in PT-1 

expressing SLC5A2 (encoding SGLT2) was higher in T2DI(-) compared to those in HC and 

reverted to baseline level in T2DI(+) (Figure 2D).  

SGLT2 inhibitors are associated with transcriptional changes throughout the nephron 

Despite SLC5A2 being localized only to the PT clusters, the most significant number of genes 

reversed in the presence of SGLT2i were in the descending thin limb (DTL), followed by 

intercalated cells (IC), principal cells (PC), thick ascending limb (TAL), and then PT (Figure 3A).  

Upset plots (Figure 3B-C) show the number of unique nephron segment-specific genes that 

were reversed (enhanced or suppressed) and changes shared between contiguous and non-

contiguous tubular segments, and complete results of the reversal analysis are shown in 

Supplemental Table 2. PC and TAL had the greatest number of uniquely enhanced and 

mutually shared genes, consistent with their shared sodium reabsorption capacities. While DTL, 

IC, and PC had the greatest number of unique and shared suppressed genes. Figures 3D and 

E demonstrate pathways enriched within the SGLT2i regulated transcript sets. Key metabolic 

pathways such as glycolysis, gluconeogenesis, pyruvate metabolism, and citric acid cycle (TCA) 

were suppressed from PT to DTL segments. TCA cycle and fatty acid beta-oxidation were 

suppressed in IC, while PC did not show suppression of transcripts associated with any 
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metabolic process (Figure 3D). However, these major metabolic pathways were enhanced in 

TAL (Figure 3E). The complete enrichment analysis results are available in Supplemental 

Table 3.  Pathways involving metal-binding by metallothioneins, critical to mitigating damage 

from oxidative stress(41), were also enhanced by SGLT2i across all tubular segments except 

DTL.  

 

Proximal Tubular Cells 

An examination of the top twenty significantly altered (suppressed: Figure 4A, enhanced: 

Figure 4B) pathways confirm suppressed central metabolism-related pathways in PT (Figure 

4A) with SGLTi exposure compared to T2DI(-). The transcriptional readouts of genes 

significantly reversed in each of the central metabolic pathways are presented in Figure 4C. 

Within glycolysis-specific enzymes, there was increased expression of key rate-limiting 

enzymes in T2Di(-) compared to HC, including hexokinase-2 (HK2) phosphofructokinase-liver 

(PFKL), and pyruvate kinase (PKLR). These genes were suppressed in the T2Di(+) group 

(relative to T2Di(-)). Similarly, other key glycolytic enzymes, such as aldolase (ALDOC), enolase 

(ENO), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were also suppressed in 

T2Di. Furthermore, specific rate-limiting enzymes of the gluconeogenic pathways were 

suppressed, including phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-

bisphosphatase (FBP1). These data suggest that SGLT2 inhibitors suppress the elevated 

glycolysis and gluconeogenesis transcriptional profiles of PT cells in T2Di(-) towards HC.  

Downstream of glycolysis, SGLT2i was associated with the suppression of rate-limiting 

enzymes that allow pyruvate to enter the TCA cycle, such as pyruvate dehydrogenase complex 

(PDHB) and pyruvate dehydrogenase kinase (PDK2) (42). Moreover, aconitase (ACO2), 

isocitrate dehydrogenase (IDH3G), and components of succinyl Co-A synthase (SUCLG1, 
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SUCLA2) were also suppressed. Genes critical to β-oxidation(43) like acyl-CoA dehydrogenase 

long-chain (ACADL) showed diminished expression in T2Di(-) (vs. HC) but were relatively 

enhanced in T2Di. Additionally, metallothionein, involved in mitigating oxidative stresses (41) 

was consistently enhanced by SGLT2i in PT (Figure 4C).  

Differentially expressed gene (DEG) profiles in PT were visualized as physical networks using 

protein-protein interaction networks to demonstrate the effects of genes on central metabolism 

and oxidative stress. Although SGLT2 inhibitors reversed the direction of expression for many of 

these genes, they did not all completely revert to the HC state, as evidenced by the presence of 

significant logFC when comparing T2Di(+) to HC (Supplemental Figure  4).  

Thick Ascending Limb 

The TAL response differed from other nephron segments, with central carbon metabolism being 

the top pathway significantly enriched in genes enhanced by SGLT2i, whereas in PT, central 

carbon metabolism was one of the top suppressed pathways (Figure 5A-B). There were 

differences between the expression of key pathway genes for glycolysis in TAL compared to PT. 

For example, in PT, genes in the glycolysis pathway (ALDOB, TPI1, PFKM, GAPDH) had 

significantly elevated expression in T2Di(-), which were suppressed in T2Di(+) (Figure 4C). 

Whereas in TAL, these genes or corresponding isozymes (ALDOC, TPI1, PFKL, GAPDH) were 

suppressed in T2Di(-) and then enhanced with SGLT2 inhibition. Gluconeogenesis was among 

the pathways in TAL enhanced by SGLT2 inhibition (Figure 2D). However, the key 

gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1) was suppressed in T2Di(+) 

(Figure 5C). Overall, the findings of the transcriptional response in the distal nephron are 

consistent with the need to handle an increased glucose load as a consequence of the 

upstream inhibition of reabsorption in the proximal tubular segments. 
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Similarly, TCA cycle genes were affected in opposite directions in TAL and PT with SGLT2i. In 

TAL, lactate dehydrogenase B, mitochondrial pyruvate carrier 1, and components of succinate 

synthase and the succinate dehydrogenase complex (LDHB, MPC1, SUCLG1, and SDHB, 

respectively) were enhanced with SGLT2i. In contrast, these TCA components were 

suppressed with SGLT2i in PT. Moreover, the reversal with SGLT2i of lanosterol synthase 

(LSS) and delta-7 sterol reductase (DHCR7) expression were unique to TAL, which code for 

enzymes that convert oxidosqualene into lanosterol and also convert 7-dehydrocholesterol into 

cholesterol, respectively. Several genes that oxidize branched and unsaturated fatty acids, 

including Enoyl-CoA Delta Isomerase 1 (ECI1), methylmalonyl CoA Epimerase (MCEE), and 

acyl CoA dehydrogenase family member 11 (ACAD11) were enhanced in T2Di(+).  

Different pathway members involved in metal binding metallothioneins in PT and TAL were 

enhanced with SGLT2i in both nephron segments. The glutathione conjugation pathway was 

suppressed in PT but enhanced in TAL. The direction of expression changes of glutathione 

conjugation pathway members in PT and TAL was also opposite (Figure 4C and 5C), except 

for glutathione S-transferase mu 3 (GSTM3), which was suppressed in both segments with 

SGLT2i. 

The expression of several genes related to ion transport, both basolateral and apical, was found 

to be reversed in TAL. Of these, the expression of electroneutral sodium/potassium/chloride 

transporter (NKCC2, SLC12A1), the apical tubular flow-mediated potassium rectifier channels 

(ROMK channels, KCNJ1), chloride voltage-gated channel B (CLCNKB), and the basolateral 

Na/potassium ATPase (ATP1B1) were enhanced by SGLT2i. Other ion transporters up-

regulated in T2Di(-), like SLC5A3 that codes for the Sodium-Myo-inositol Cotransporter critical 

for maintaining intracellular tonicity(44), were suppressed in T2Di(+). These data suggest that, 

with SGLT2 inhibition, TAL may have to compensate for increased sodium load resulting in 

transcriptional changes to support these increased energy demands. 
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Similar enrichment analyses are summarized for DTL, PC and IC in Supplemental Figure 5 

with the complete list for PT, TAL, DTL, PC and IC nephron segments provided in 

Supplemental Table 3. 

 

Validation of findings in murine models of diabetes treated with SGLT2 inhibitors 

To validate the observed reversal by SGLT2i of metabolic pathways and genes in tubular 

segments impacted by T2Di(-), we compared this cohort to the transcriptional data from control 

and SGLT2i-treated ReninAAV db/db mice after uninephrectomy(29). The suppression of 

glycolysis, gluconeogenesis, TCA cycle, β-oxidation and glutathione conjugation with SGLT2 

inhibition observed in the human PT were replicated in the murine kidney transcriptomic data 

(Figure 6, Supplemental Table 4). Given the preponderance of PT cells in the cortex (>80%), 

PT is a likely source of the transcriptional changes observed in the bulk murine cortical RNAseq 

data. Moreover, in the ReninAAV db/db mouse models, none of the metabolic pathways were 

enhanced at a transcriptional level, which also parallels the human PT data where metal-binding 

to metallothioneins was the only pathway enhanced in PT (Figure 3E). However, none of these 

genes were detected in the mouse data, precluding validation of this pathway (Supplemental 

Figure 6 shows gene level alterations in human PT cells with SGLT2i and mouse cortex with 

SGLT2 inhibitors). 

 

mTOR Pathway as a Mediator of Effects of SGLT2 Inhibition 

As most nephron segments, except TAL, had suppression of transcripts related to metabolic 

pathways, we hypothesized that decreased mTORC1 activity, which integrates signals 

regarding cellular energy state, was a candidate upstream regulator mediating the effects of 

SGLT2 inhibition. Decreased mTORC1 activity has previously been implicated in animal 
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models(45)  as mediating the effects of SGLT2 inhibitors. Using gene sets annotated for mTOR 

signaling, a delta mTOR pathway activity score for the T2Di(-) group was computed by 

subtracting the T2Di(-) mTOR score from the HC mTOR score. Similarly, for the T2Di(+)  group, 

the delta mTOR pathway activity score was computed by subtracting the T2Di(+) mTOR score 

from the HC score. These analyses were performed across all tubular segments. The delta 

mTOR pathway activity score can be viewed as the departure of each of the group's mTOR 

activity scores from the HC control score.  SGLT2 inhibitor treatment was associated with lower 

mTOR activity scores compared to T2Di(-). The difference in the mTOR pathway activity score 

in all tubular segments in T2Di(+) versus T2Di(-) are shown in Figure 7A. These findings were 

reflected in the corresponding murine model data (Figure 7B). 
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Discussion 
 

In protocol research biopsies from a homogenous cohort of young persons with T2D and early 

kidney dysfunction, this study demonstrated that treatment with SGLT2 inhibitors associated 

with significant transcriptional changes across several tubular segments in the kidney despite 

localized SGLT2 expression in PT cells. Transcripts that reversed towards the healthy reference 

tissue state were enriched in metabolic pathways with subtle differences across nephron 

segments, with TAL most distinctly affected. The transcriptional regulation of metabolic 

pathways observed in PT in the human biopsies were validated in kidney cortical tissue from an 

SGLT2i- treated established diabetic kidney disease mouse model. This suggests that the 

transcriptional changes identified in our study may also be relevant in the later stages of diabetic 

kidney disease. In parallel, we observed a significant perturbation in mTOR signaling across all 

tubular cell types, despite SGLT2 being expressed only in the proximal tubule. Taken together, 

these data demonstrate that SGLT2 inhibition mitigates the perturbed cellular metabolic profiles 

induced by a hyperinsulinemic and insulin resistance state and is accompanied by reduction in 

mTORC1 signaling that is known to drive a DKD phenotype. (46-48) 

Differences in morphology were also observed. Quantitatively glomerular volume and mesangial 

expansion were lower among diabetics treated with an inhibitor. However, sample sizes were 

limiting for this comparison. The morphology data is consistent with previous rodent models that 

noted a reduction in glomerular volume in animals treated with an SGLT2 inhibitor.(49) No 

differences in fractional interstitial area were observed between the three groups suggesting 

that transcriptomic differences in PTs are not due to structural differences. Another key 

observation was that multiple metal-binding to metallothionein pathway genes in both proximal 

and distal nephron segments were consistently increased with SGLT2 inhibitor treatment. 

Metallothioneins are intracellular metal-binding proteins that mitigate damage from oxidative 
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stress(50, 51). In streptozocin-induced models of diabetes, metallothionein deficiency is 

associated with increased interstitial fibrosis and inflammatory interstitial infiltrates, which are 

prognostic markers of progressive DKD(52). While mice also express metallothioneins, they 

were not enriched in the ReninAAV db/db mouse model treated with SGLT2i. However, the 

metallothioneins enhanced with SGLT2i in the human data do not have exact orthologs in mice, 

so our data may highlight an additional pathway to mitigate oxidative stress in humans with 

SGLT2 inhibition. Murine studies have additionally shown that SGLT2 inhibitors may mitigate 

oxidative stress via the glutathione pathway in the kidney cortex, particularly glomeruli, but not 

in the medulla(53). The single-cell resolution of our data suggests that glutathione conjugation 

pathway activity may differ between PT and TAL, which further supports that there may be cell-

specific differences in how the glutathione pathway mitigates oxidative stress with SGLT2 

inhibition.  

The role of metabolic derangements and perturbed renal energetics as drivers of DKD are well 

established (54-57). The transcriptional changes observed between our cohort's diabetic and 

healthy control states align with prior evidence that diabetes increases glycolysis, β-oxidation, 

and TCA cycle activity in the kidney(55). Glomerular hyperfiltration in T2D is thought to 

exacerbate high tubular workload by increasing the filtered Na+ load, thereby augmenting 

SGLT2 activity and adenosine triphosphate (ATP) demand. (58-66) In parallel, T2D is 

associated with insulin resistance and hyperinsulinemia that increase renal tubular glucose and 

free fatty acid (FFA) uptake while impairing glucose and FFA oxidation resulting in a state of 

excess nutrients within the kidney.(56, 67-73) The kidney relies heavily on β-oxidation to meet 

its high metabolic demands, although there are nephron-segment-specific differences in 

metabolic processes and energy sources.(54, 74, 75) Notably, PT has a greater capacity for 

gluconeogenesis than glycolysis compared to the distal nephron, (76) which relies more on 

glycolysis and oxidative phosphorylation to meet its energy needs.(77)  
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This study provides evidence that SGLT2 inhibition might revert the transcriptional expression of 

many metabolic pathway genes closer to the healthy control state in this cohort of youth onset 

T2D and early renal dysfunction. These findings suggest that part of the beneficial effects of 

SGLT2 inhibition on the kidney may be through ameliorating some of the metabolic 

derangements present in T2D, which has been shown in animal studies (53, 55). Further, the 

scRNA-seq data in this study highlighted that the molecular changes in metabolism-related 

genes varied in each nephron segment, including anatomically contiguous segments. SGLT2 

inhibitor treatment suppressed the up-regulated central metabolism pathway genes observed in 

T2D in PT, perhaps suggesting an attenuated state of “nutrient excess”. Meanwhile, with SGLT2 

inhibitor treatment, TAL showed enhancements to genes involved in glycolysis, 

gluconeogenesis, TCA cycle, and β-oxidation. As TAL is the next nephron segment with sodium 

resorbing capabilities downstream of PT, our finding of increased expression of NKCC2 with 

SGLT2 inhibition could indicate several functional consequences of increased TAL workload. It 

is plausible that TAL has increased energy demands in response to SGLT2 inhibition to 

transport the increased tubular sodium content. Indeed, increased sodium transport and oxygen 

consumption has been predicted with SGLT2 inhibition in diabetic kidneys in rigorous 

mathematical models (78).  

An advantage of transcriptional profiles is the opportunity to identify key transcriptional 

regulators of cellular responses to an external stimulus, using the mRNA signatures as an 

activity readout. mTORC1, a protein kinase, is a key signaling hub that integrates signals 

concerning nutrient and energy status, particularly glucose and branched-chain amino acids, to 

affect downstream pathways, including lipid metabolism, cell proliferation, cell growth and 

autophagy with a coordinated transcriptional response (79). Additionally, increased mTORC1 

activity is a critical step in podocyte dysfunction in DKD (80), is implicated as a contributor to 

renal hypertrophy along the nephron and is known to induce a pro-inflammatory phenotype (81). 
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In a recent study in the Akita mouse model of diabetes, SGLT2 inhibition decreased mTORC1 

signaling in proximal tubular cells (82). Furthermore, increased mTORC1 activity was sufficient 

to abolish the beneficial effects of SGLT2 inhibitors (45) thereby suggesting that mTORC1 

signaling may mediate the protective effects of SGLT2 inhibition. Using the differences in mTOR 

transcriptional scores between the diabetic groups and the healthy controls across tubular 

segments, we show evidence of reduced mTOR1 activation in proximal and distal tubular 

segments in diabetic patients on an SGLT2i. 

SGLT2i were reno-protective in several high-quality clinical trials that enrolled older individuals 

with established DKD(83-86). The participants in this study had youth-onset T2D, an emerging 

epidemic with a high risk of early-onset DKD(87). At the time of kidney biopsy, some of these 

participants exhibited early signs of kidney dysfunction, including elevated GFR and 

albuminuria. While our sample size was too small for formal analysis, morphometric data also 

suggested early structural changes, including increased glomerular volume and mesangial 

expansion, which have been associated with future loss of kidney function(17). Our participants' 

age and kidney function precludes extrapolating our results to older individuals with established 

DKD. However, these data provide important insights into the transcriptional alterations 

associated with SGLT2 inhibition in a high-risk population early in the disease process. 

Moreover, the effects of longstanding disease and associated comorbidities on structural and 

functional changes in kidneys, such as interstitial fibrosis, are minimized in these young 

participants.  

To our knowledge, this is the first study to perform research on kidney biopsies in youth-onset 

T2D to examine the differences in intrarenal, cell-type-specific transcriptomic signatures 

associated with SGLT2 inhibitor treatment use. The single-cell resolution of this data provided 

insights into cell-type-specific responses and enabled the assessment of nephron segment-

specific responses in a population of youth with T2D who are at uniquely high risk of DKD.  
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Our analyses also have important constraints, including the cross-sectional and observational 

examination, causal inferences of SGLT2 inhibitor treatment, and the relatively small sample 

size. For this reason, these data should be considered hypothesis-generating. While we do not 

currently have long-term outcomes data regarding the kidney health of these participants, such 

data are being collected. Additionally, our results show small absolute transcriptional changes at 

multiple steps in metabolic pathways, and we do not have metabolite flux data available to 

measure the changes in intra-renal metabolic flux through these pathways directly. However, we 

have previously shown that relatively modest transcriptional changes in metabolic pathways 

correspond to biologically meaningful changes in metabolic flux in DKD(55), and that transcript 

abundance in scRNAseq data correlates with protein and metabolite levels (88). Lastly, 

scRNAseq data may not capture genes that are expressed at a low level and in rare cell types, 

which may hinder our ability to classify cells, scarce cell types, such as juxtaglomerular cells 

and Type B intercalated cells. Although transcriptional changes may reflect the cell type-specific 

response to changes in metabolites(55), further investigations with metabolome measurements 

in this cohort will be needed to determine the ultimate impact of SGLT2 inhibition on the 

metabolic flux in the kidney. Spatial metabolomic techniques(89) could also provide more 

insights on the nephron segment-specific changes, particularly when integrating with other novel 

tissue interrogation technologies(90).  

In conclusion, young persons with T2D with early kidney dysfunction exhibited transcriptional 

signatures of perturbed renal metabolism, which were attenuated in the presence of SGLT2 

inhibition. Intriguingly, most transcriptional changes associated with SGLT2 inhibition were in 

the distal tubular segments where SLC5A2 is not expressed. While further investigations are 

needed to identify the mechanisms responsible for the changes in the distal nephron segments, 

our data suggest that alterations in the mTORC1 pathway may mediate some of these 

transcriptional changes. Future directions include designing a rigorous trial to examine the 
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molecular and metabolic mechanisms by which SGLT2 inhibition mitigates the progression of 

DKD in T2D, as well as determining whether the transcriptional changes observed in this study 

predict long-term progression of structural injuries and kidney function decline.   
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Figure Legends: 

 

Figure 1: Participant data flow 

 

Figure 2: SLC5A2 expression is limited to PT clusters. A) UMAP projection of annotated 

cellular clusters from 3 groups: HC, T2Di (-), and T2Di(+) correspond to all major cell types in 

the nephron B) For all groups (HC, T2Di(-) and T2Di), SLC5A2 expression was limited to the PT 

cluster. C) Fraction of cells (%) expressing SLC5A2 varied in each PT subcluster with PT-1 

having the highest expression and PT-2 and PT-4 having the lowest expression. D) Decreased 

percentage of cells expressed SLC5A2 in the T2Di(+) group. 

 

Abbreviations: PT - proximal tubule, DTL - descending thin limb, ATL - ascending thin limb, TAL 

- thick ascending limb, DCT - distal convoluted tubule, CNT - connecting tubule, IC - intercalated 

cells, PC - principal cells, tPC-IC transitioning intercalated/principal cells, EC - endothelial cells, 

vSMC/MC/Fib - vascular smooth muscle cells/mesangial cells/fibroblasts, PEC - parietal 

epithelial cells, POD - podocytes, MAC - macrophages, MON - monocytes, B - B cells, 

NKT/NKCT - Natural Killer T Cells/Natural Killer Cells with T cells 

 

Figure 3: SGLT2 inhibition altered expression in the majority of tubular cell segments. A) 

The majority of genes altered with SGLT2 inhibition were in distal nephron segments. B) Most 

unique genes enhanced with SGLT2 inhibition were in PC, TAL, and DTL. PC and TAL had the 

greatest number of overlapping genes (135). C) Most genes suppressed with SGLT2 inhibition 

were in DTL, and DTL and IC shared the greatest number of genes. D) Using Reactome 

database, there was suppression of central metabolic pathways in PT, DTL, and IC. 

E) Using the Reactome database and Fisher’s exact test, metallothioneins were enhanced 

across all segments, except DTL. TAL had enhancement of all central metabolic processes.  
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Figure 4: Suppression of central metabolic pathways with SGLT2 inhibition in PT. A) 

Pathway enrichment analysis using Reactome database of enhanced genes with SGLT2 

inhibition. B) Enrichment analysis using Reactome data of suppressed genes with SGLT2 

inhibition shows metabolism as the pathway with the greatest number of altered genes (n>200). 

C) Bar plots showing gene-level alterations (log2FC) when comparing T2Di(-) to HC (pink) and 

T2Di(+) to T2Di(-) (blue). 

 

Figure 5: Enhancement of central metabolic pathways with SGLT2 inhibition in TAL. A) 

Enrichment analysis using Reactome database of enhanced genes with SGLT2 inhibition. B) 

Enrichment analysis using Reactome data of suppressed genes with SGLT2 inhibition showing 

metabolism as the pathway with the greatest number of altered genes (n>200). C) Bar plots 

showing gene level alterations when comparing T2Di(-) to HC (pink) and T2Di(+) to T2Di(-) 

(blue). 

 

Figure 6: Transcriptomic alterations in Db/Db mouse model treated with SGLT2i validate 

alterations in central metabolic pathways in PT from humans. 

Using Reactome database, there was concordant regulation of central metabolic pathways 

between murine cortex and human PT in response to SGLT2 inhibition. 

 

Figure 7: SGLT2i treatment associated mTor activity across nephron segments in human 

and mice data. Using Reactome database, 39 genes were associated with the mTOR pathway. 

A) Plot represents mTor pathway activity by nephron segment between T2Di(-) and HC (coral) 

and between T2Di(+) and HC (aqua). B) Similar comparison in the mouse model data where 

db/db/AVV is the diabetes model and mTOR activity in these mice was compared to the 

background db/m mice (coral) and the SGLT2i treated db/db/AVV with db/m mice (aqua). 
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Table 1. Participant Characteristics Stratified by T2D status and SGLT2 inhibitor use 
 
 Youth-onset T2D Healthy 

Controls SGLT2i at time of biopsy 
No (n=6) Yes (n=10) (n=6) 

Age (years) 17±3 16±2 25±2 
Sex (% female) 50% 70% 50% 
BMI (kg/m2) 38.0±4.9 35.2±7.5 23.9±2.8 
Body fat by DXA 40.7±6.7 41.5±7.5 29.1±5.3 
Total cholesterol (mg/dl) 167±25 168±31 148±21 
LDL (mg/dl) 115±16 119±27 87±9 
HDL (mg/dl) 37±7 37±9 47±11 
Triglycerides (mg/dl) 195±94 149±30 105±47 
SBP (mm Hg) 127±9 129±15 118±16 
DBP (mm Hg) 72±5 75±8 75±12 
ACR (mg/g) 4.8 (4.6, 12.6) 8.2 (6.7, 13.1) 3.8 (1.7, 8.4) 
Elevated albuminuria (≥ 30mg/g) [%] 20% 22% 0% 
HbA1c (%) 6.9±2.5 7.2±1.4 5.3±0.3 
Serum creatinine (mg/dl) 0.64±0.17 0.58±0.11 0.74±0.15 
Estimated GFR (ml/min/1.73m2) 128±16 133±25 116±21 
Iohexol measured GFR (ml/min) 208±53 224±80 -- 
SGLT2 inhibitor use (%) 0% 100% 0% 
Duration of SGLT2 inhibitor use before 
kidney biopsy (months) 

-- 5 (3-7) -- 

GLP-1 RA use (%) 0% 0% 0% 
Metformin use (%) 83% 70% 0% 
Thiazolidinedione use (%) 17% 20% 0% 
Insulin use (%) 17% 30% 0% 
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Table 2. Morphometric Parameters Stratified by T2D status and SGLT2 inhibitor use 

 Youth-onset T2D Healthy Controls 
SGLT2i at time of biopsy 

No (n=6) Yes (n=10) (n=6) 
Fractional Interstitial 
Area 

0.30±0.04 0.29±0.04 0.30±0.06 

Glomerular tuft area 
(µm2) 

19615.9 
(15718.6, 20217.7) 

17383.6 
(15674.6, 26272.5) 

14551.0 
(12706.6, 18172.2) 

Glomerular volume (106 
µm3) 

3.9 (2.8, 4.0) 3.2 (2.8, 5.4) 2.5 (2.0, 3.5) 

Mesangial matrix (µm2) 2412.3 
(2192.6, 2750.1) 

2430.4 
(1949.8, 2996.7) 

1553.9 
(1327.4, 2224.9) 

Mesangial index (%) 13.5±1.7 12.4±1.5 11.3±4.0 
Mesangial volume (106 
µm3) 

0.46 (0.37, 0.58) 0.48 (0.36, 0.64) 0.23 (0.20, 0.40) 

Glomerular nuclear count 117.0 (91.1, 126.8) 98.4 (80.7, 119.3) 75.7 (70.6, 97.1) 
Mesangial nuclear count 24.1 (20.7, 38.4) 17.2 (15.5, 26.6) 11.0 (11.0, 11.0) 
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Figure 1: Participant data flow
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Figure 2: SLC5A2 expression is limited to PT clusters
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C. Genes enhanced with the SGLT2 inhibitorB. Genes suppressed with the SGLT2 inhibitor

A. Reversal of T2D-related altered expression with SGLT2 inhibitor (T2Di vs T2D)
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Figure 3: SGLT2 inhibition altered expression in the majority of tubular cell segments.
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Figure 4: Suppression of central metabolic pathways with SGLT2 inhibition in PT
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B. Enriched pathways in SGLT2 inhibitorA. Enriched pathways in SGLT2 inhibitor
suppressed genes in TAL (N=956)

Figure 5: Enhancement of central metabolic pathways with SGLT2 inhibition in TAL
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Figure 6: Transcriptomic alterations in Db/Db mouse model treated with SGLT2i validate 
alterations in central metabolic pathways in PT from humans.
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Figure 7: SGLT2i treatment associated mTor activity across nephron segments in human and mice 
data.
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