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Abstract: Chronic pain conditions are complex syndromes characterized by a mosaic of
biological, psychological, and social factors. We derived predictive models for the number of co-
existing pain sites in the UK Biobank and identified a common risk score that classified different
chronic pain conditions in cross-sectional data, predicted the development of chronic pain in
pain-free individuals, and determined the spreading of chronic pain to multiple sites or its
recovery nine years later. The features with the strongest prognosis included sleeplessness,
feeling ‘fed-up’, tiredness, stressful life events, and a BMI > 30. The risk score for pain was
associated with an inflammatory blood marker, a polygenic risk score for pain, and a
neuroimaging-based marker for sustained pain. The demonstration of a common biopsychosocial
risk factor for different clinical pain conditions may help better characterize a general chronic
pain syndrome, tailor research protocols, optimize patient randomization in clinical trials, and

improve pain management.
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Pain isthe primary reason individuals seek healthcare and the most important source of disability
among working adults 3. Unfortunately, the cause of chronic pain and its prognosis often
remains unknown, as tissue damage following injury is a poor predictor of clinical outcomes *.
The interactions between biological, psychological, and socia factors instead better determine
chronic pain conditions and the functioning of the patients °. This holistic framework is often
referred to as the biopsychosocial mode for chronic pain °. Despite its popularity, the eements
composing the model remain hard to define due to the difficulties of simultaneously measuring
and dissociating multidimensional factors in large groups of pain patients. Recent accessibility to
large cohorts of chronic pain patients provides unprecedented opportunities to tackle these
problems and better understand the determinants of chronic pain.

Prognosis studies have shown that maladaptive pain coping strategies, somatization of
pain, and history of pain increases the likelihood of developing long term back pain *. For
instance, pain severity and duration "°, fear of pain !, and pain catastrophizing **? have all
been associated with worsening of back pain. Moreover, brain imaging and genetic studies have
also suggested that biological factors predispose to chronic pain conditions 3. Yet, these studies
are often circular, as the features entered to predict pain are mostly pain measurements or
attitudes towards pain, and most of the candidate brain imaging markers for chronic pain have
been identified in small sample studies that hinders their reproducibility in larger heterogenous
sample of participants ***>. Moreover, these previous prospective studies have rarely been
validated in out-of-sample patients and their generalization to new patients remains unknown.
Large scale longitudinal studies examining the contribution of candidate biological markers to
the development of chronic pain and their associations with psychosocial factors predictive of

pain are currently lacking.
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The Task Force for the Classification of Chronic Pain recommended that chronic pain
conditions be classified based on their etiology (i.e., visceral pain), underlying pathophysiology
(i.e., neuropathic pain), or body site (i.e., knee pain) ***’. Despite notable differences between
these conditions, the evidence also suggests that different pain conditions are overlapping with

one another *°, sharing a common genetic risk factor 2%

, and showing similar alterations in the
central nervous system **?>%, Thus, different conditions share common risk factors and primary
chronic pain has been recognized as a disease on its own term rather than the symptom of
another disease 8. Here, we used a data-driven approach that synthesized a wide range of
multidimensional pain-agnostic features to derive empirical models for classifying and
forecasting different pain conditions. The reproducibility and the generalizability of these
predictive models were estimated in a large number of participants reporting pain and outline a
robust roadmap characterizing a general chronic pain syndrome. We first hypothesized that
different chronic pain conditions are characterized by common psychosocial factors that can be
observed and identified by studying the number of co-existing pain sites. We secondly
hypothesized that these psychosocial risk score can predict the development of different chronic
pain conditions. The mismatch between the baseline pain levels and the individual psychosocial
risk score will determine the spreading or the recovering of chronic pain across body sites in the
longitudinal data. We finally hypothesized that biological markers for chronic pain are associated
with the identified psychosocial features predictive of the different chronic pain conditions.

To test these hypotheses, we used machine learning to train a biopsychosocial model on
the number of co-existing pain sites to derive a general risk score for pain. The risk score for
pain could classify each chronic pain condition separately in cross-sectional data (seven different

body sites and 25 pain-related ICD-10 diagnoses) and forecast individual differences in the
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spreading or recovery of chronic pain nine years later. Our model also generalized to secondary
outcomes such as general health, disability, and opioid use. We then showed that our risk score
for pain was associated with three pre-selected biological factors available in the biobank,
namely, an inflammatory blood marker, a polygenic risk score computed for the number of pain
sites, and a neuroimaging-based marker for sustained pain. We finally show that a sparse model
based on six items (with binarized answers) can account for different pain conditions and predict
the development of chronic pain in heathy individuals. Overall, our study provides a
comprehensive biopsychosocial framework that characterizes a general chronic pain syndromein

alarge and representative sample of patientsin the UK Biobank.

Results

This study was conducted using data from the UK Biobank (UKBB). On their initial vist,
participants were asked if they experienced pain interfering with their usual activities at the
following body sites. headache, face, neck/shoulder, stomach/abdominal, back, hip, and knee.
The participants could also respond that they experienced pain all over the body or none of the
above (these were categorized as pain-free participants). Fig. 1a shows the prevalence of painin
the full sample of participants (n = 493,211) and a subsample of participants that returned for a
follow up magnetic resonance imaging (MRI) visit about nine years later (n = 48,079).
Participants reporting pain were then asked if they had pain lasting for more than 3 months,
which represents the cut-off for the pain to be considered chronic *°. Pain experienced for less

than 3 months was therefore considered acute.

Multi-site pain in the UKBB.
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We first aimed to derive a model that was predictive of all chronic pain conditions classified
from their body sites. To this end, we trained a model that predicted the number of co-existing
pain sites reported by the patient to identify common features between co-existing pain sites.
Previous studies have shown that over one third of chronic pain patients report co-existing pain
conditions associated with lower quality of life and poorer response to treatment **%*, In the UK
Biobank, 44% of chronic pain patients reported pain a more than one body site and the co-
occurrence of pain was more frequent between proximal sites than distal sites (fig. 1b,c). These
results emphasize that pain was not amplified uniformly across body sites, an effect that was also
observed in acute pain conditions. We next examined the prevalence of these pain conditions
across a series of clinical conditions diagnosed according to the international classification of
diseases (ICD-10). Here, pain conditions and other pain-related non-cancer illnesses (NCI) were
all characterized by overlapping pain conditions (fig. 1c). This can be appreciated in the case of
migraine, non-migraine headache, or spinal spondylitis, where the prevalence of pain at the head
(migraine, headache) or back (spinal spondylitis) sites was lower than the cumulative prevalence
of pain at the remaining sites (fig. 1c).

The importance of co-existing pain conditions was then examined using the online follow
up data collected about 12 years after the initial visit (n = 84,030 chronic pain patients, excluding
pain al over the body). The number of pain sites reported at the time of the online follow-up
guestionnaires showed a monotonic increase with pain duration (fig. 1d), pain intensity (fig. 1e),
impact of pain (fig. 1f), depressive symptoms (fig. 1g), and symptoms severity (fig. 1h). Higher-
resolution anatomical body sites available in the online questionnaire further confirmed the
gpatial co-occurrence and interdependence in pain ratings across sites (extended fig.1). Here

again, diagnosed clinical conditions such as pelvic pain or carpa tunnel syndrome were
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characterized by co-existing pain at other body sites. Overall, these results show that the number
of co-existing pain sites is an important phenotype that characterizes different chronic pain
conditions and reflects the severity and the impact of these pain conditions. We conclude that the
number of co-existing pain site may therefore be used to derive our biopsychosocia framework

characterizing ageneral chronic pain syndrome.

Pain Phenotype Pain Co-occurrence Pain Sites Prevalence

a Pain Sites - Cases b Chrumc OR Acule OR c among NCls Cases_
(Full / Longitudinal) 0 - . Chronic =228 £88

Ha 3 .23 2 19 ’ R?=0.56 Pprevalence (Stacked) & & & B © © < 5 S

Headaches (Ha) - 99,350 / 9,485 ’ Prerm < 0.0001 @B e v AT FF

F 216/ 1.5 2.1 1.7

ws BT 23 P 2e] 27
SIA m 36l 22 21 19

B 26 3.43.6 —\|
Hp 2 33 '2.7

NCI Free NI
Cervical Spondylosis| I IEEEI|
Spinal Spondylitis| " I NN
Disc Degeneration| I NN
Fibromyalgia " I I/
Spinal Injury | FT RN

Non-Migraine Headache

Facial (F) - 9,027/ 815

o
i
]

[ ]

Neck/Shoulder (N/S) - 113,733 /9,921

Stomach/Abdo (S/A) - 38,757 / 3,536

N
i

Back (B) - 126,792/ 10,652 1
J

Log-Odds Ratios Between Sites

B Normal Work
M Enjoyment of Life|
B General Activity I 4

Hip (Hp) - 54,685/ 3,811 e
ip (Hp) - K17 24 gl 23 B H 0.64 Irritable Bowel Synd.
Knee (K) - 105,270/ 8,411 E Tg ’_g S % %— 3 ' | Osteoarthritis
5 @ = 2 @ c . .
Pain All Over (PAO) - 9,244 / 422 gL 3 £ @ X N 12345 6 Migraine | 5 I NN
8 a3 Distance Rheumatoid Arthritis | I I
Pain-free - 196,914 / 21,585 I S g Between Sites Chronic Bronchitis| " I EHEEEI
N = 493,211/ 48,07 " z C d N ||
9, 8.079 Online Assessment ch or.nplr:est.se SEN§ L i
(N = 84,030, p < 1.0e-300) ronic Fatigue Synd.
d f h Gastric Ulcers
Durationof € Ratings of Worst Impact of g Depressive Symptoms Hiatus Hernia
Pain or Discomfort Pain Last 24 Hours Pain (BPI) Symptoms (PHQ-9) Severlty Past Week
r=0.21, R?=0. 045 r=0.23,R?=0.05 r=024,R?*=0086 r=0.27,R?=0.075 r=0.36, R*=0.13 Endometriosis
100% . 8 4- Chronic Obstructive
HRelationships [ Cognitive Pulmonary Disease
M Mood Symptoms Angina
80% M Walking Ability B Fatigue Gastro-Oesophageal
MSleep 6 Reflux
Carpal Tunnel Synd.
60%

Pulmonary Embolism
Stroke
Myocardial Infarction | I IIENI

I M 1-5 years Diabetes | [N IENI
W5+ years Multiple Sclerosis | FHIEI

0 0 0 0 P T T
01234567 01234567 01234567 01234567 01234567 | Knee [liBack [liNeck/Shoulder [liHip llHeadaches
Number of Pain Sites [l Stomach/Abdo [l Facial [l]Pain All Over

Fig. 1 | Phenotyping pain in the UK Biobank. a. Anatomical body map of pain sites and counts of pain cases
(acute and chronic) for the full sample and for individuals with a follow-up visit nine years later. b. Odds ratios of
co-occurrence between pain sites (chronic on the left and acute on right) at baseline. The log-odds ratios of co-
occurring pain between two sites were negatively associated with their distances. Significance was determined using
10,000 permutation tests. c. The prevalence of pain is shown per body sites among 25 Non-Cancer IlInesses (NCI)
commonly associated with chronic pain and the count of cases reported. d-h. In the online follow-up pain
guestionnaires, the number of co-existing pain sites was associated with d. the duration or discomfort of pain, e.
ratings of the least pain on 10 in the last 24 hours f. the interference of pain across 7 dimensions, g. depressive
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Facial (F); Neck or Shoulder (N/S); Stomach or Abdominal (S/A); Back (B); Hip (Hp); Knee (K); Non-Cancer
[1Iness (NCI); Brief Pain Inventory (BPI); Patient Health Questionnaire (PHQ).

40%

20% I3-12 months

0% -~

Predicting the number of pain sites.


https://doi.org/10.1101/2022.07.22.22277850
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.22.22277850; this version posted July 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

We applied machine learning algorithms on 99 non-pain-related features assessing physical,
psychological, demographic, and sociological factors to derive a risk score that predicted the
number of pain sites. To this end, the UKBB dataset available at the basdine visit was divided
into a training set (n = 445,132) for discovery and a testing set composed of out-of-sample
participants for whom longitudinal data were available (n = 48,079). In the discovery set, we
applied Nonlinear Iterative Partial Least Square (NIPALS) regression algorithm on the 99
features to predict the number of co-existing pain sites (combining acute and chronic). This was
done using a 10-folds cross-validation within the training set to estimate the model fit and
identify the optimal number of components to retain in an unbiased manner (extended fig. 2).
The derived model applied in the test set accounted for about 14% of the variance in the number
of co-existing pain sites (fig. 2a-c).

The strength of the approach is that it considers all the features simultaneously to
identifies the optimal solution that best predict the number of pain sites in the cross-validation
procedure. The number of co-existing pain sites was mostly explained by mood, sleep, and
neuroticism while demographics, and occupational measures explained the least. A detail list of
each feature and its respective weight in the model is presented in (extended fig. 3a). Notable
features with positive weights included tiredness, insomnia, and body mass index, and notable
features with negative weights included grip strength, employment status, and frequency of
alcohol intake. Although the model was trained irrespective of acute and chronic pain, the
number of chronic pain sites was systematically better predicted than the number of acute pain
sites (fig. 2d). Concordant results were obtained in the discovery set (extended fig. 3b). Partial
correlations were then used to construct networks at different densities, showing the respective

contribution of each of the 10 categories for acute and chronic pain, based on the strength of their
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conditional associations after controlling for other categories (extended fig. 3c,d). The networks
show that chronic pain was simultaneously associated with independent categories, highlighting

the multifactorial nature of the model used to predict pain.
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Fig. 2 | A multivariate model classifying and predicting different pain conditions. a. Schematic describing the
cross-sectional analyses performed to derive a common risk score predicting the number of pain sites. b.
Classification of 99 clinical features grouped in 3 domains and 10 categories. ¢c-d. Venn diagram and bar graph show
the model’s explained variance in the number of pain sites across the 3 domains and the 10 categories. The least
contributing category was compared to a null model generated from 10,000 permutations. e-h. The model
performance is shown in the testing set using explained variance (R%) and Root Mean Squared Error (RMSE) for
acute and chronic pain conditions separately. Mean estimated across number of sites and standard errors are shown.
f. Cohen’'s d effect sizes in the risk score for each pain site (acute in orange and chronic in red) compared to pain-
free individuals. g. The diagnostic ability of our model to classify acute and chronic pain conditions are displayed
using the area under curve of the Receiver Operator Characteristic (AUC-ROC) curve. h-i. The diagnogtic ability of
our model to classify the selected non-cancer illnesses are displayed using Cohen’s d and AUC-ROC (selected NCI
compared to NCl-free individuals). Errors bars estimated from 10,000 bootstrap resampling. *Pain all over the body
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was excluded from model training in the discovery set. Abbreviations: Non-Cancer |lIness (NCI); Area Under the
Curve (AUC); Receiver Operating Characteristic (ROC).

The mode’s output provided a single prediction for the number of pain sites for each
participant based on their score on the 99 features. This output was referred to as the risk score
for pain and was then used to classify each pain condition separately. The risk score for pain
showed good to excellent performance for classifying chronic pain conditions from pain free
participants at each body site (fig. 2e,f; similar performance were observed in the discovery set
shown in extended fig. 4a-d). The risk score for pain also showed good performance for
classifying pain-related clinical conditions diagnosed using the ICD-10 (fig. 2h,i). Moreover, the
risk score for pain generalized to secondary pain outcomes including overall health rating, use of
opioids, and disability due to sickness (extended fig. 4e-f). Overall, the risk score for pain
generalized well across different chronic pain conditions classified from either their body sites or

from the ICD-10 diagnoses.

Predicting recovery and spreading of chronic pain

We used the longitudinal data (i.e., the patients from the test set) to test if the risk score for pain
measured at baseline predicted changes in the number of chronic pain sites at the follow-up visit
nine years later. The stability and individual changes in the number of pain sites between the two
vigits are displayed in fig. 3a. The matrix in fig. 3b shows that chronic pain at baseline was
associated with higher odds ratio of experiencing chronic pain at the same site or at a proximal
site nine years later. Moreover, individuals with high-risk scores for pain were more likely to
report new pain at distal sites (fig. 3c). Thus, while baseline chronic pain presents a risk for
spreading of pain to proximal sites, higher risk scores for pain instead impacted the spreading of

pain to distal sites, where pain is not normally propagating. As hypothesized, the risk score for
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pain adjusted for the number of pain sites at baseline predispose to the pain outcomes measure at
the follow-up visits; patients with negative scores recovered from their pain while patients with
positive scores progressed towards a spreading of their pain (fig. 3d). Therefore, our adjusted
risk score shows strong effect sizes and obtained good performance for predicting chronic pain
spreading over multiple new pain sites at the follow-up visit (fig. 3e).

We next performed a tentative temporal ordering of individual risk factors by ranking the
10 categories and the three pre-selected biological markers for pain based on their effect sizes.
This allowed us to unpack the sequence of biopsychosocial risk factors, from early prodromal
featuresto late features, predicting the progression of the spreading or recovering of chronic pain
across body sites (fig. 5f). Here, mood was the earliest contributor to the spreading of pain,
biological contributors were middle to late onset risk factors, and occupational ranked last. The
changesin chronic pain used in the temporal ordering analysis are displayed per body sitesin fig.

50.
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Fig. 3 | Forecasting the spreading and recovery of chronic pain. a. Test-retest variance explained (R?) in number
of chronic pain sites (4+ including pain all over the body) between baseline and the follow-up visit. b. Odds of
reporting chronic pain sites a baseline and the follow-up visit depended on the distance on the body map. c. our risk
score however increased the odds of reporting pain at distal sites. Significance was determined using 10,000
permutations tests. d. The matrices display the risk score depending on the changes in the number of chronic pain
sites before (left matrix) and after (right matrix) adjusting linearly and exponentially for the number of chronic pain
sites initially reported at baseline. A negative adjusted risk score was associated with recovery and a positive
adjusted risk score was associated with spreading of chronic pain. e. The diagnostic capacities of our adjusted risk
score for recovering and spreading was tested using Cohen’'s d effect size and AUC-ROC discrimination when
compared to chronic pain-free participants. f. The order of progression between the pain determinants was
determined using Cohen’s d in each category and biological markers. The factors are ordered depending on their
importance in spreading and recovering. Early factors showed significant differences between small changes in
chronic pain (Pain +1 or -1) while late factors only showed differences between large changes in chronic pain. g.
Changes in chronic pain displayed per pain sites. *Tonic Pain Signature was only available at the follow-up visit.
Abbreviations. Headache (Ha); Facia (F); Neck or Shoulder (N/S); Stomach or Abdomina (S/A); Back (B); Hip
(Hp); Knee (K); Follow-up visit (FU); Baseline visit (BL). Area Under the Curve (AUC); Receiver Operating
Characteristic (ROC).
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Therisk scorefor pain isembedded with biological markers.

The association between the risk score for pain and biological markers of pain was further
examined in the participants of the testing set (fig. 4a,b). The selected biological markers
included an inflammatory blood marker (c-reactive protein; CRP), a Polygenic Risk Score
(PRS), and a validated brain-based biomarker for pain (Tonic Pain Signature; ToPS %). Here, the
PRS was computed from a GWAS analysis for the number of pain sites in discovery set fig. 4c.
We found significant enrichment for heritability at loci of genes expressed most specifically in
brain regions. All biological markers were significantly associated with the number of pain sites
(Fig. 4f-h), although the magnitude of the correlations was smaller than expected, especially for
the brain-based signature. Yet, the inflammatory blood marker and the brain-based biomarker
were more strongly correlated with our risk score for pain than with the actual number of pain
sites, emphasizing that psychosocial factors were embedded with the biological factors for pain.
Findings from the discovery set and additional exploratory analyses for the biological markers

are shown in extended fig. 5-7.
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Fig. 4 | Inflammatory, genetic, and functional connectivity markers associated with the risk scorefor pain. a.
Schematic describing the selected biological markers: c-reactive inflammatory protein, a polygenic risk score for the
number of pain sites, and a validated brain signature for sustained pain. b-d. Genome-wide association study of
number of pain sites in the discovery data. b. The Manhattan plot shows association p-value for each single
nucleotide polymorphism. c. The partitioned heritability in tissues of the Benita et a. dataset is shown for total of 78
tissues grouped into eight tissue classes. central nervous system (CNS), peripheral nervous system (PNS), endocrine
(END), myeloid (MYE), B cells (B), T cells (T), adipose (ADI) and muscle (MUS). P-values were FDR-adjusted
(10%) for enrichment with significant tissues colored. d. Details shown for the CNS tissue class. e. Circular graph
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representing the links of the Tonic Pain Signature (ToPS) computed from resting state functional Magnetic
Resonance Imaging (rsfMRI) and thresholded for the top 5% of weights. f-h. The association between each selected
biological marker and the number of pain sites and our risk score. The Venn diagram shows the correlation between
the biological markers with respect with the 3 domains. i. Rendering of the ToPS brain parcels showing the strongest
connections at 5% density. The Cohen's d effect sizes are presented for each pain site compared to pain-free
individuals. Comparisons were FDR-corrected (g = 0.05). Abbreviations: Central Nervous System (CNS);
Peripheral Nervous System (PNS); Endocrine (END); Myeloid (MYE); B cells (B); T cells (T); Adipose (ADI);
Muscle (MUS); Headache (Ha); Facia (F); Neck or Shoulder (N/S); Stomach or Abdominal (SA); Back (B); Hip
(Hp); Knee (K); Periagueductal Grey (PAG); Primary Somatosensory Cortex (S1); Secondary Somatosensory
Cortex (S2); Left (L); Right (R).

Common risk scoresfor different chronic pain conditions

We next investigated the specificity of the risk factors between different pain conditions by
generating and testing alternative candidate models for each pain site separately (fig. 5a). Sixteen
new candidate models were trained by applying the NIPALS agorithm on the 99 features to
classify each body site separately (e.g., patients reporting chronic knee pain versus everyone
else). Here again, the results were properly validated in the |eft-out participants of the testing set.
The matrix presented in fig. 5a shows the loadings of the 99 features (rows) on the risk score
derived for different pain conditions (columns), including our initial model predicting the
number of co-existing pain sites (black). A visual inspection of the matrix show that the most
predictive features were also the most homogenous, from mental health, physical heath and
sociodemographics. For example, different loadings were observed for some demographic
features such as age, sex, and ethnicity, some socioeconomic features such as retiring, and self-
employment, and the grip strength feature depending on the pain conditions. The models trained
to classify acute pain conditions showed poor to good discrimination (AUC ranging between
0.62-0.74) while the models trained to classify chronic pain conditions showed good to excellent

performance (AUC: 0.70-0.89; fig. 5b). The expression of each risk score (normalized for

comparisons) correlated with the number of co-existing pain sites (fig. 5¢). The weights of the 99
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features are presented for each candidate model trained for different pain conditions in extended

fig. 8a,b.

To test the commonality or the specificity between the body sites, we compared the
discriminative value of each site-specific model with that of the candidate models trained on a
different pain site, in both cross-sectional (fig. 5d) and longitudinal (fig. 5e) data. In the cross-
sectional data, site-specific models showed only modest improvement over the candidate models
trained for a different body site. In the longitudinal data, we applied these models to predict
development of chronic pain conditions in individuals that were pain free at baseline. Here again,
site-specific models showed only modest improvement over candidate models trained on another
pain site. Similar results were observed in the discovery dataset (extended fig. 8c,d). We
conclude that different chronic pain condition can be predicted from interchangeable models
trained on a different pain site. This finding supports the proposition that a single

biopsychosocial framework may be used to characterize a general chronic pain syndrome.

To further examine this finding, we generated a similarity matrix correlating the loadings
between the candidate models. The weights of our initial model trained on the number of pain
sites strongly correlated with the weights of the eight candidate models trained for chronic pain
conditions (r = 0.68-0.94; fig. 5f). Moreover, the similarities between the chronic pain candidate
models depended on the distance between the body site, reflecting the actual body map of the co-
existing pain sites presented in fig. 1b. This was however not the case for acute pain conditions,

as the candidate models were dissimilar from one another, less discriminable, and did not depend
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on the distance on the body map. Similar results were obtained in the discovery dataset

(extended fig. 8c,d).


https://doi.org/10.1101/2022.07.22.22277850
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.22.22277850; this version posted July 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Candidate Models
Derive and Compare 16 Pain
a Site-Specific Models \ b o

NIPALS Regression -> Examination
(Discovery; N = 445,132) (Validation; N = 48,079)

Features Outcomes

Mood M HPain All Over  Acute Chronic
Neuroticism Wl M Facial
Life Stressors M Stomach/Abdo
Sleep B M Headaches
Anthropometric ll HHip
Substance Use Ml B Neck/Shoulder
Physical Activity Il HBack
Socioeconomic [l | |
Demographic |
Occupational

) Domains

Mental Health
Physical Health Il

Sociodemographics [l Il

Freq. T\ledness / Lethargy:

Depressed

Freq. Tensenessl esllessness
e Disinterested

nr ‘Mental Health

Seen Psych\alr\sl for Mental Health

Risk Taking

Total Neurgticism
Fed-u
MMOOd Win:
Loneliness / Iso]atla-

@ No. of Pain Sites

<
@

Candidate Models

Pain All Over
Hea_daches
Neck/Shoulder
Stomach/Abdo

No. of Pain Sites
/Facial

!
7

Loadings ab?ene
Tense | H\gh\y Slrung
Ty I'AnXious

I 0.75
0.50 Sufferflum Nerves
0.25 Irritabilit
Sensitivity / Hui
0.0 Wurry after Embalrassmem

-0.2!
Life Stressors Last 2 Yrs
-0.50 Financial leﬂculnss
\fe Stressnr R I
ose e
Life Slressor on Iose

Separal, -on or guvgrgg
U

" i T,
R

S\eeple%sness / Insomnia ]
iculty Wakmg Up |

NaE during the ay
ate Chronotype
Sleep Duration

dy Mass Index: [ ]

Gained Wslghl Lasl Year: n
Weight:
e Rate
Fraclur d Lasl 5 Years
ight Last Year
Dlastollc l00d Fressure
Systolic Blood Pressure

Change Alcohol \nlake Lasl 10 Years
us Drinker

Clinical Features

a\ Smoker
Smokers inside Household
Hours Exposure Tubacoo at Home
er Drank:
Smoked
Past Toba::cn Smoking
Previous Smoker:
QOccasional Smoker:
Weekly Alcohol Frequency: | Bl | | B |

Low IPAQ Acllvnvar'v(Jup
in

i}
rate Activit
Above Physﬁal Acllw OZReEt%c?méen
0
5 ETOngnrousyAcgwly

Weekly Frequenl?y Ph&swcal/\ctl‘ywlﬁ - —

Certificate Secondary Education

Look After Home"and Family:

Practical Career Dlp\uma
Unemployed

Number of Emplc mems

None of Proposed Emplnyment
Unpaid Volunteer Work

Other Professional Qélallf cattlo‘pesl
Paid or Self-] plo ed | |

Number ofn&uall}{catgcnsl

College or Universit
Fi6isehold Incoma-] i

Black Ethnicity I
Asian Ethnicity-
Mixed Ethnicity-
Other Ethnlmly

White Ethmcﬂy

Manual or Physical Job
Job Slang r Walking
ive with Grandchil
Little nends amily Visits
e Wi ildren
Live wﬂh Related Relatives
er in Household
Live with LJnreIated Relatives
Live with Parents
Live with Siblings

e with Grandparents

Live
Moderate Friends Family Visits
Live with Partner-
Able to Confide

Candidate Models Performance

2.5
2.0
208 @
o S 1.5
206 &
= © 1.04
§ 0.4 -
© § 0.5
20.2 N
= 4 -== Acute 0.04
0.0d ¢ — Chronic 3 05
— -0.54 1
00 02 04 06 08 10 % 01234567
False Positive Rate g Number of Pain Sites
O
d Pain Discrimination at Baseline
(Cross-sectional; Pain-Site vs All-Else)

o 1:0 7 Pain All Oveg Facial Headaches

‘ti‘ -

08 SR0CROC GC-ROC C-ROC "ROC
206 s"@ 08

Boa y 0.7

g 0.2 0.6 .

. 0.0 Acute E:hronic:c"5 Acute Chromco 5 Acute Chronic™ Acute Chronic™

0.00.20.4 0.6 0.8 1.0 MOther Candidate Models (Mean and range
False Positive Rate

)
ERisk Score Model HNEBENENT Pain-Site Specific Model

1.0 Neck/Shoulder

£0.8
206
Soa
0.2

. 0.0 Acute Chronico‘5

000.204086081.0
False Positive Rate

0.5 0.5

Acute Chronic Acute Chronic Acute Chronic™

Pain Development at Follow-up
(Longitudinal; No Pain to Pain)

Stomach/Abdo

Facial Headaches

€-ROC -ROC| ‘ROC
0.8 - 0.8
4 0.7
= T . 7 :
= 0.0 /¥ Acute Chmnlc0 5 ¥ Acute Chromc -F Acute Chronlc0 5 - I Acute Chronlc0 5
| B — LI E— L LI E— 1

000204 0_-6 0-3 1-0 M Other Candidate Models (Mean and range)
False Positive Rate @ Risk Score Model MM EBBEN T Pain-Site Specific Model

° 1.0 q Neck/Shoulder - Back = Kr

=z 0.8 - 4 /
x -ROC -ROC -ROC
206 - 08 - 08 - 0.8
§0.4 J 0.7 | 0.7 | 0.7
$0.2 6 6 0.6
= 0.5 5 5

AcuteChromcD' - AculeChronicD' - 0.5
T L T T 1 L T T 1 1

0.0 2 F Acute Chronlc g
T T

0.00.204 0.6 D.B 1.0
False Positive Rate

Acute Chronic
T | B — T T

f Post-Hoc Models Examination
Acute Pain Chronic Pain
0.3 W1.0 Similarity Models (r) Models Models
2 —
031043 K 0.320.07508%] 0.23 5] 0.41 K R*=0.58
' . pperm < 0.0001
0.53 Hp 0.5 [5/0.53 0.59 0.39 2.5 2.5
043046 B 049 0.23 0.4 =204 =204
£ 157 £ 157
= 2
E 1.0 .‘—E 1.0+
7] £ E
. Ha 8 % 0.5 % 0.5+
[%]
06 T3
,55 § 3 00" T 00" rrT7TT
ﬁg " 123456 123456
4 Distance Distance

Fig. 5| A common risk shared across chronic pain condltlons a. A schematic describing that atotal of 16 site-
specific candidate models (e.g., acute knee vs all-else) were derived cross-sectionally in the discovery set using
NIPALS. Features loading (Pearson’s r correlation coefficient between features and the models’ scores) are shown


https://doi.org/10.1101/2022.07.22.22277850
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.22.22277850; this version posted July 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

in the testing set for each model. b. Candidate models' capacities to discriminate between the pain sites they were
trained on from pain-free individuals are shown using the Area Under the Receiver Operator Characteristic Curve
(AUC-ROC). c. The risk score derived from each candidate model correlated with number of co-existing pain sites.
d. Cross-sectional discrimination for each pain site in acute (dashed line) and chronic (full line) pain conditions
against the rest of the testing cohort (i.e., pain-free and other pain sites) using the model specific to the site (in
color), to the number of pain sites (black), and to other candidate models trained on different pain sites (grey). e. The
same analyses were performed in the longitudinal data to predict the development of chronic pain in pain free
individuals 9-years later. f. Post-hoc analyses show that similarities between the feature loadings of the different
models are associated with the distance between the sites for chronic pain conditions. Abbreviations: Headache
(Ha); Facial (F); Neck or Shoulder (N/S); Stomach or Abdominal (S/A); Back (B); Hip (Hp); Knee (K); Area Under
the Curve (AUC); Receiver Operating Characteristic (ROC).

A sparse model for chronic pain.

Lastly, we aimed at simplifying our model by reducing the number of features, as a sparse model
would be more useful in research or clinical settings. A six items model using sleep neuroticism,
mood, trauma, and anthropometric measurements (fig. 6a,b) achieved good performance in
cross-sectional data, average to good performance in longitudinal data (fig. 6¢,d), and predicted
the impact of pain for the patients (fig. 6e). This represented the best trade-off between the
smallest number of features and the highest AUC-ROC, especially in the longitudinal data. This
risk score for pain was calculated by simply summing the binarized answers to the 6 items. None
of these features were directly related with pain or attitude towards pain, suggesting that more

objective predictions can be obtained by avoiding the use of pain questionnaires to predict pain

outcomes.
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Discussion

A major challenge in understanding chronic pain conditions is that they are
heterogeneous by nature and commonly overlap **%. For the first time, we provide empirical
evidence for a biopsychosocial risk score that can predict pain severity and differentiate patients
experiencing chronic pain from healthy controls. Here, we studied pain conditions through the
lens of a continuum, where pain was examined in either the acute or chronic phase, from the

body site where it is experienced, from the medical diagnoses, and from the number of co-

existing pain sites. Our model, trained to predict the number of pain sites, could classify chronic
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pain conditions at different body sites, general health, usage of opioid, disability, and 25 Non-
Cancer IlInesses. Importantly, we show that the risk score could forecast the spreading or
recovery of chronic pain nine years later, in a group of new patients. The ability to forecast
chronic pain conditions can be used in many contexts, including selecting patients in research
protocols, matching individuals between the arms in randomized controlled trials, or guiding

more aggressive treatment options in patients requiring urgent clinical attention.

For over 40 years, the biopsychosocial model has emphasized that illnesses are
determined from a synergic interaction between psychological, sociocultural, and biological
factors %’. The biopsychosocial model has been influentia in the field of chronic pain as any
model focusing solely on any one of these domains would inevitably be incomplete or
inadequate °. Here, we investigated how psychosocia risk relates with biological markers of
pain. The three pre-selected biological factors (i.e., CRP, PRS, and ToPS) showed small but
consistent associations with the number of pain sites (r = 0.04-0.11). Previous studies have
demonstrated that brain wide associations ** or genome wide associations *> performed in well
powered studies are smaller than those initially observed in small sample studies. In the present
study, the CRP, PRS, and ToPS were tested in more than 30,000 individuals, making it safe to
conclude that their associations with pain were small. Interestingly, these biological factors
more strongly correlated with the risk score than with the number of pain sites per se. Tentative
temporal ordering also revealed earlier elevated psychosocial risk (mood, anthropometric,
neuroticism) compared to biological risk developing significantly in patients with higher
numbers of pain sites. These findings suggest that biological factors may be more strongly

expressed in the risk score predisposing chronic pain development, raising questions regarding
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the pathophysiological nature of chronic pain illnesses in these patients. This raises questions
regarding the utility of the examined biologica markers for risk given the sensitivity of
psychosocial risk to detect pain in lower numbers of pain sites.

Although the origin of pain vastly varies between pain conditions and taxonomies, we
further demonstrated that chronic pain is determined from common risk factors. Body-site
specific models for chronic pain risk showed little superiority over site agnostic and even off-site
models. Although unexpected, this finding again suggests that different chronic pain conditions
can be predicted cross-sectionally and longitudinally from a common psychosocial framework.
Mood (i.e., consulting GP for depression or anxiety), sleep (i.e., insomnia), neuroticism (i.e.,
feeling fed-up), and anthropometric measures (BM1) were the major risk factorsidentified in this
study. Interestingly, our risk score and candidate models showed that acute pain conditions were
harder to predict than chronic pain conditions. The strongest predicting features to number of co-
existing pain sites, mental health related features, showed homogeneity across sites while the
least predicting features, sociodemographics, showed heterogeneity. Overall, we found little
evidence of pain-condition specific psychosocial risk factors. Instead, we further demonstrate
that risk factors support a general pain syndrome with a common biopsychosocial framework.
While it has been known that the biopsychosocial framework can predict the experience and
maintenance of pain, we found here that this aggregated risk could predispose the devel opment
of new pain sites, a phenomenon we refer to as the “ spreading” of pain sites.

An increasing number of conditions and syndromes resembling widespread pan
disorders have been referred as chronic overlapping pain conditions (COPC). We explore these
co-morbidities by looking at multiple co-occurring pain sites beyond the sites of focus (beyond

headaches pain in migraine, stomach/abdominal for IBS, or hand pain for carpel tunnel
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syndrome) to demonstrate this co-occurrence of pain sites to be common in other conditions than
the traditional COPC. Furthermore, we demonstrated that the co-occurrence of pain sites was not
random, with a strong independence between proximal pain sites, shown from acute and chronic
pain sites and correlations between pain intensity ratings. More interestingly, pain between distal
sites, high spreading of pain, and fibromyalgia patients were best predicted by biopsychosocial
risks, suggesting that elevated risk could present a pathway to the progression of widespread pain
disorders and may help us understand how one site can spread to multiple.

Our model also identified the features of a common driver that can be referred to as a
general chronic pain syndrome that would encompass what has previoudy been referred to as
high impact pain. High impact pain has previously been used to define patients who are living
with limitations in work, social, and self-care activities leading to disability, opioid use, and
needs for healthcare resources %%°, While our framework was derived to predict the number of
co-existing pain dtes, it could also predict the psychological and social limitations considered
key indicators of pain impact. This denotes that the concepts of chronic pain spreading and high
impact pain appear intimately linked and predictable from higher order characteristics presented

from our biopsychosocial framework.

In conclusion, our model predicted chronic pain spreading across multiple body sites in
50,000 out-of-sample individuals that attended both the basdline visit and the brain imaging
follow-up visit nine years later. Data reduction strategies showed that high sendtivity and
specificity can still be obtained for some chronic pain conditions after reducing the number of
features to six questions. The proposition that chronic pain is a general syndrome that can be
accurately predicted with minimal effort has the potential to improve research protocols, clinical

practices, and randomization of participantsin clinical trials.
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Extended Fig. 1 | Online follow-up assessment of the experience of pain. a. Demographics of participants across
sex, ethnicity, and age. b. Pain reported in the past 3 months (being chronic, > 3 months) for single and multi-site
pain. c. High-resolution representation of anatomical body map sites and counts across atotal of 13 sites: 10 along
the medial line, 2 along the lateral line (shoulder to arm-hand) and 1 not localized (widespread). d. Cross-sectional
analysis of co-existing pain and pain ratings. Odd ratios of co-occurrence between sites in the past 3 months (left
diagonal, yellow) and Pearson’s correlation between pain ratings interdependence in the last 24 hours (right
diagonal; green). Both the log-normalized odds ratio of pain sites and fisher-normalized odd ratios occurring in the
past 3 months and fisher-normalized correlations were negatively associated with their distance. Significance was
determined using 10,000 permutations tests. e-f. A total of 14 common chronic pain conditions diagnoses were
included. e. Counts of diagnoses across the entire online assessment and the prevalence of those reporting pain or
discomfort in the past 3 months. No Dx includes those without any of the 14 diagnoses. f. Pain prevalence and mean
pain ratings (10 = as bad as you can imagine) across each diagnosis stacked across sites. Abbreviations. Headache
(Ha); Facial (Fc); Neck or shoulder (N/S); Chest (C); Stomach or abdominal (S/A); Back (B); Hip (Hp); Leg (L);
Knee (K); Feet (Ft); Arm (A); Hand (Hd).
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Extended Fig. 2 | Discovery and Validation data for the risk score development. Pie charts displaying a.
demographics, b. acute (< 3 months) and c. chronic (> 3 months) pain phenotype for the discovery datathe model is
trained on and the validation data the model is tested on, at baseline and follow-up. d. Y ears between baseline and
follow-up visit in the validation data (9 years median). e. Schematic on using NIPALS to predict co-existing pain
from biopsychosocial features. f. Model specification based on 10-fold cross validation by minimizing the root mean
square (RMSE) and maximizing the explained variance (R?) average across 10-folds. Following the scree plot
(elbow rule) criterion and to minimize overfit, 3 components were selected. g. Random stratified sampling of 200
participants projected across the 3 components separately and combined used as our risk score. Headache (Ha);

Facial (F); Neck or shoulder (N/S); Stomach or abdominal (SA); Back (B); Hip (Hp); Knee (K).
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Extended Data Fig 3. | Detailed model interpretation in the discovery data. a. Model features weights to project
to the risk score. b. Venn diagram and bar graphs of the explained variance across domains and their unions and
categories in the discovery data. c. Schematic of a network approach to integrate the risk model’s categories. Edges
and nodes were evaluated using strength of partial correlation and weighted node centrality. d. Partial correlation
networks analysis across three levels: sparse (absolute partial correlation above 0.1), intermediate (above 0.05), and
full (all edges) across the discovery data (upper row) and validation data (lower row). Abbreviations: Trauma (T);
Neuroticism (N); Mood (M); Substance Use (SU); Seep (S); Physical Activity (PA); Anthropometric (A);
Socioeconomic (SE); Occupational (O); Demographic (D).
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Extended Fig. 4 | Detailed model performance in our discovery data. a-i. Identical analyses conducted in the
original discovery from which the model was derived on (see Fig. 2). e-h. Evaluating the model performance
in predicting secondary outcomes associated with high-impact chronic pain. e. Schematic of three pain-related
secondary outcomes used to assess the clinical impact of pain. f-g. Cross-sectional performance of the secondary
outcomes. Cohen’s d effect sizes and explained variance (R?, on the left) were used across self-reported ratings of
overall health ratings while Cohen’s d and AUC-ROC discriminations were used for opioid medication use and
inability to work due to sickness or disability in f. the discovery data and g. the validation data. h. Longitudina
prognosis two secondary outcomes from the risk score at 9-years follow-up. Cohen’s d and AUC-ROC were
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measure in the worsening at follow-up (left in red) and improvement (right in blue). Non-Cancer I1iness (NCI); Area
Under the Curve (AUC); Receiver Operating Characteristic (ROC). Sample sizes are included in parenthesis.
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Extended Fig. 5 | C-Reactive Protein (CRP) as main inflammatory marker. a. CRP was chosen as main

inflammatory marker. b. The association between CRP (log-transformed for parametric estimations) and the number
of pain sites and our risk score. The Venn diagram shows the correlation between the CRP with respect with the 3
domains. The Cohen’s d effect sizes are presented for each pain site compared to pain-free individuals. Comparisons
were FDR-corrected (g = 0.05). ¢. Spearman’s rank association between immune cell counts and CRP, our risk
score, and the number of pain sites in discovery and validation set. Errors bars were estimated using 1,000
resampling.
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Extended Fig. 6 | Polygenic Risk Score (PRS) for Genetic Risk of Pain. a. Genome-wide association study was
done on the discovery set to derive a Polygenic Risk Score (PRS) on the number of pain sites, done across an array
of thresholds. The least stringent threshold was taken to maximize prediction. b. The association between the most
normalized PRS and the number of pain sites and our risk score. The Venn diagram shows the correlation between
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the number of pain sites, our risk score and log-transformed C-Reactive Protein (CRP) in the discovery and
validation set. Errors bars were estimated using 1,000 bootstrap resampling.
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Extended Fig. 7 | Tonic Pain Signature (ToPS) for the neuroimaging marker. a. Tonic Pain Signature (ToPS)
was used to capture blood oxygenated-dependant level fluctuation following a capsaicin-induced sustained pain.
Top 5% weights of the signature were used. Alternatives thresholds and the top 5% thresholds shown in a. and b.
respectively. c. Connectivity patterns from the top 5% signature were extracted from each of the major networks. d.
The association with head motion, our selected polygenic risk score, the number of acute, chronic, and combined
pain sites as well as our risk score with each network. Comparisons were FDR-corrected (q = 0.05, non-significance
shown in grey). Errors bars were estimated from 10,000 bootstrap resampling. Abbreviations: Brainstem and
Cerebellum (BSCB); Somatosensory Network (SMN); Subcortex (SCTX); Ventra attention Network (VAN);
Limbic Network (LN); Dorsal Attention Network (DAN); Visual Network (VN); Fronto-Parietal Network (FPN);
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Extended Fig. 8 | Deriving candidate models for chronic and acute pain conditions a. A schematic describing
the 99 features to derive atotal of 16 site-specific candidate models cross-sectionally in the discovery set. b. 10-Fold
cross-validation was used to estimate the root mean square (RMSE) and explained variance (R?). The same number
of components were used to ensure comparability between derived models using NIPALS. c. Weights used for each
model (normalized to allow comparison) grouped across categories and domains. d. Candidate models' capacities to
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discriminate between the pain sites they were trained on from pain-free individuals are shown using the Area Under
the Receiver Operator Characteristic Curve (AUC-ROC). e. The risk score derived from each candidate model
correlated with number of co-existing pain sites. d. Cross-sectional discrimination for each pain site in acute (dashed
line) and chronic (full line) pain conditions against the rest of the training cohort (i.e., pain-free and other pain sites)
using the model specific to the site (in color), to the number of pain sites (black), and to other candidate models
trained on a different pain site (grey). f. Post-hoc analyses show that similarities between the weights of the different
models are associated with the distance between the sites for chronic pain conditions. Root mean squared error
(RMSE); Area Under the Curve (AUC); Receiver Operating Characteristic (ROC); Headache (Ha); Facial (F); Neck
or shoulder (N/S); Stomach or abdomina (SA); Back (B); Hip (Hp); Knee (K).
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Methods

UK Biobank population: The UK Biobank is a prospective epidemiological cohort of
approximately 500,000 middle-aged and older individuals across Great Britain (40-69 years old
at recruitment). Participants provided electronically signed consent, answered socio-
demographic, lifestyle, and health-related questionnaires, and completed a range of physical
measures . A subset of approximately 50,000 participants underwent an additional follow-up
visit 6-10 years later (median = 9 years) which included whole-body MRI imaging. The present
analyses were conducted under the UK Biobank application 20802. All participants provided
written, informed consent, and the study was approved by the Research Ethics Committee (REC
number 11/NW/0382). Further information on the consent procedure can be found elsewhere

(http://biobank.ctsu.ox.ac.uk/crystal/field.cqi 21d=200).

Pain status at baseline visit: Participants were asked if they experienced pain in the past
3 months interfering with their usual activity at any of the following maor anatomical sites —
head, face, neck or shoulder, back, stomach or abdominal, hip, knee, or pain al over the body
(data field 6159). Note that if pain all over the body was selected, no other pain sites could be
selected. When answering positively to a given site, participants were asked if the pain lasted
more than 3 months. This question was used to distinguish between a chronic pain site, one
present for more than 3 months according to the classification from the International Association
for the Study of Pain (IASP ?) and an acute pain site, one present for less than 3 months. Finally,
the number of the pain sites experienced (excluding pain all over the body) was used to measure
the co-existing pain sites (i.e. widespread pain) as a continuum. The body sites included in the

UK Biobank remained the most prevalent and stereotypical sites of chronic pain.
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Co-occurrence: The co-occurrence of acute and chronic pain sites was measured using
odd ratios from the exponential function of a logistic regression coefficient estimated for each
combination of sites (excluding pain all over the body). The number of sites setting apart each
combination was used a measure of their distance (1-7), as done by Khoury et al. (2022) . To
ensure the robustness of the association between co-occurrence and distance, our results were

compared to anull model generated from 10,000 permutations tests, using two-sided tests.

Non-cancer illnesses: The prevalence of pan sites in the UK Biobank among self-
reported non-cancer illnesses was also assessed. Patients were asked during a verbal interview if
they had been told by a doctor about any serious illnesses or disabilities. If the participant was
uncertain of the type of illness they had, they would describe it to the interviewer (a trained

nurse) who would attempt to place it within the coding tree (data field 20002).

Online Follow-up: Online questionnaires were administered about 8-13 years after the
baseline visit to better phenotype chronic pain patients. A total of 167,000 participants filled out
the experience of pain guestionnaire (20 sections;

https://bi obank.ctsu.ox.ac.uk/crystal/crystal/docs/pain_questionnaire.pdf) administered online by

the UK Biobank. About 90,000 of these individuals reported pain or discomfort that has lasted
for more than 3 months (i.e. chronic). In this online questionnaire, various subsections were
used to validate the importance of increased widespread pain using the same major anatomical
sites assessed in person. These included the duration of the pain or discomfort (3-12 months, 1-5

years or more than 5 years), worst pain rating experience in the past 24 hours, pain interference
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using the Brief Pain Inventory across 7 dimensions — each out of 10 in the last 24 hours (10 = as
bad as you can imagine; BP!I %), depressive symptomsin the last 2 weeks using the Patient Health
Questionnaire (ratings of 5-9 ratings associated with mild depression; PHQ-9 °), and severity of
pain symptoms in the past week combining three rating scales on fatigue, sleep quality and
cognitive symptoms (3 = pervasive, continuous, life disturbing problems). Online follow-up also
included examination of 14 chronic pain diagnoses as well as questions about pain including
additional anatomical sites and ratings at each site. This allowed us to validate the co-occurrence
of pain sites and explore the interdependence of pain ratings accompanying the co-occurrence of

pain sites.

Risk score for pain: A total of 99 features collected at baseline were selected a-priori
based on their relevance to chronic pain. The selection was based on the Prognosis Research
Strategy (PROGRESS) group who recently provided a framework for the development of a
prognostic model to determine risk profile ©. Variables were organized along a hierarchical
framework from 99 variables into 10 categories forming three distinct domains (mental health,
physical health, and sociodemographic). The mental health domain included 3 categories:. i)
neuroticism — all individuals items and their sum-score — based on neurotic behaviors closely
linked to negative affect, ii) stressful life events — illness, injury, bereavement, or stress in the
last 2 years — including 6 events, and iii) mood — reported frequency of certain moods in the past
2 weeks and visits to a general practitioner or psychiatrist for nerves, anxiety, tension, or
depression. The physical health domain included 4 categories: i) physical activity — Metabolic
Equivalent Task scores computed using the International Physical Activity Questionnaire

guidelines 7, ii) sleep — questions regarding duration, napping, snoring, sleeplessness, iii)
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substance use — smoking and alcohol use, and iv) anthropometric measures — body mass index,
fractures that occurred over the last 5 years, blood pressures, etc.. The sociodemographic domain
included 3 categories:. i) socioeconomic status — education completed, income, employment, etc.,
i) occupational measures — individuals present within household, social entourage, and manual

or physical job, and iii) demographic — age, sex, and ethnicity.

Data excluson: Among the 99 features selected, participants with more than 20% of
features missing were excluded, as were participants with missing data at any of the acute or
chronic pain sites (<2.5% of the population). To ensure the findings of the study to be as
generaizable as possible to the greater population, no other exclusion criteria were applied. This
led to the discovery cohort of 445,132 participants who did not attend a follow-up visit and from
whom the multivariate model was derived. The validation cohort of participants who did attend a
follow-up visit included 48,079 participants. To minimize potential bias from incomplete
guestionnaires, a data-driven Bayesian ridge regression model was applied for imputation of
missing data as a function of all other features in the model, using the median as prior. A
median-only feature imputation was also tried and presented congruent results. Features were
then standardized across the participants by centering mean to zero and scaling the variance to
one. The same process of exclusion followed by imputation for missing data and standardization

with the same mean and variance was applied separately for the validation dataset.

NIPALS: Finally, a Nonlinear Iterative Partial Least Square (NIPALS) regression
algorithm (implemented using scikit-learn.org/) was used to derive an epidemiological model

that explained the number of pain sites reported at the basdline visit. This modd excluded
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individuals reporting pain all over the body to avoid making assumptions about the equivalence
of pain all over the body and some number of pain sites experienced. This specific algorithm was
chosen to reduce the 99 features into a few sets of distinct homogenous components associated
with salf-reported number of pain sites. A common rule-of-thumb in multiple regression suggests
that the minimum ratio of sample size per variable is 10:1 with greater ratios equivalent to
greater stability. Here, we observe a 4500:1 ratio of sample size per variable giving us
confidence in our stability. Ten-fold cross-validation was used to assess the number of
components to use in the model. A total of three components were selected based on the largest
increase in the variance explained and the largest decrease in root mean squared error according

to the elbow criterion. Then, the model was then applied in the validation dataset.

Evaluation of the model: The contribution of the domains and categories were examined
using the weighted sum of the features across each category, domain or the union between
domains. Mode fit to number of pain sites was assessed using explained variance and root mean
squared error. To examine the impact of acute and chronic pain sites, the model score of each
pain site was compared to the score of pain-free participants. Group differences were computed
using both Cohen’s d for effect size (pooled standard deviation) and the Area Under the Receiver
Operating Characteristic curve (AUC-ROC) for discrimination. AUC-ROCs were used to
estimate model accuracy because they are i) threshold-unspecific and ii) resilient to class
imbalance, which is inherent to less frequent pain conditions or clinica outcomes. The
performance of the model was also tested across 25 different Non-Cancer llinesses (NCIs)

commonly associated with chronic pain using the same metrics: Cohen’s d and AUC-ROC. To
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ensure the robustness of the results in less frequent NCIs, 10,000 bootstraps resampling were

done to estimate the confidence interval in the observed effect sizes.

Network analyses. Networks were constructed from partial correlations between pain
and the 10 categories. Partial correlations were used to measure conditional dependence between
categories — defined as nodes — while controlling for al other potential edges. The number of
acute pain sites and chronic pain sites were integrated into the network to assess the relative
contributions of our modd’s categories on both pain types. The networks were constructed and
studied at three different densities. A threshold was first applied to obtain a sparse model and
conserve connections equivalent to a small effect size (partial correlation > 0.1). An intermediate
model was then constructed using a more liberal threshold equivalent to a very small effect size
(partial correlation > 0.05). A full model was finally constructed by including all the edges
surviving Bonferroni-correction. Nodes were placed using a force-displacement layout (i.e.
spring layout, using Fruchterman-Reingold algorithm) using ggraph 8. Starting in a circular
layout and through various iterations, more connected nodes are placed closer together while less
connected or negatively linked nodes are placed further apart. Finally, node-weighted centrality,
a measure of the mean number of edges passing through each node, was computed to estimate
the centrality of both categories and pain outcomes. The procedure was done on both the

discovery and validation datasets.

Secondary pain outcomes. We examined overall health rating (field 2178), opioid
medication use (NO2A from the ATC classification), and inability to work due to sickness or

disability (field 6142). Opioid medication use was obtained from self-reported of medications at
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each visit (data field 20003), and was coded according to the Anatomical Therapeutical
Chemical (ATC) classification system from the World Health Organization obtained from the
Wu et a. (2019) classification °. The performance of the model in predicting longitudinal

changes in opioid use and changes in ability to work were also tested.

Chronic pain spreading: The risk score for pain was initially derived usng cross-
sectional data. The prognostic value of the pain risk score to predict the development,
persistence, and worsening of chronic pain was however assessed using the left-out participants
in the validation for who the longitudinal data were available. After examining the stability of
number of pain sites (0 — 4 or more including pain all over the body), we measured the risk of
chronic pain a each anatomical ste at follow-up associated with chronic pain at each site at
baseline. Odds ratios using the exponential function of the logistic regression coefficients were
used to calculate risk. The risk of chronic pain at each anatomical site at follow-up was also
examined by calculating the odds ratio associated with one unit higher in the risk score for each
chronic pain site at basdline.

Spreading was measured using the change in number of chronic pain sites (from -4 or
less to 4 or more). To examine the prognostic value of our risk score, we regressed out the
number of chronic pain sites (and their squared values) from the risk score at baseline making the
score orthogonal to the pain at baseline. Making the score orthogonal allowed us to interpret
interindividual deviations in this adjusted score as risk of recovery or spreading of pain. Group
differences in the adjusted risk between individuals without chronic pain and individuals with
chronic pain presenting different rates of pain spreading or recovery were computed usng AUC-

ROC discrimination and Cohen’ s d effect sizes.
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A temporal ordering of predicted risk across the derived ten categories and three
biological markers adjusted for the number of pain sites (and squared values) was performed at
baseline. Difference in predicted risk across each rate of chronic pain spread compared to
chronic pain-free individuals for all 13 factors were computed using Cohen’s d effect size while
significance was corrected for false discovery rate across all rates of spreading and factors.
Events were ranked according to the absolute sum of effect sizes across rates of spreading
providing a temporal progression of the spreading or recovery of chronic pain across body sites.
The associated changes for each rate of spreading were also measured using the sum of chronic
pain sites developed (+1) or recovered (-1) across the rate of chronic pain spread or recovery to

investigate early-to-late pain site development.

Immune-inflammatory profile: The UK Biobank haematological data included a

complete blood count (https://bicbank.ctsu.ox.ac.uk/crystal/crystal/docs/haematol ogy.pdf). The

sample handling and storage has been described by Elitt & Peakman (2008) °. Inflammation was
estimated using C-Reactive Protein (CRP; field 30710) obtained through saliva samples and
measured by immunoturbidimetric assay using a high sensitivity analysis on a Beckman Coulter
Analyzer. A logarithmic transformation was applied to the raw measures of CRP to account for
the positive skewness (https://bi obank.ndph.ox.ac.uk/showcase/field.cgi 2d=30710). Immune cell
count included neutrophils, platelets, reticulocytes, basophils, lymphocytes, eosinophiles, and
monocytes, most of which have been shown to be independently linked to chronic pain, the

sickness response and associated depressive profile ™.
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Polygenic Risk Score: A genome-wide association study (GWAS) of number of pain
sites, including both acute and chronic was conducted. A thresholding procedure was done
across 7 statistical thresholds of significance (from P = 5x107 to 5x10°®) for each single
nucleotide polymorphism. The association of each threshold with the risk score, c-reactive
protein and pain phenotype was also examined in the discovery and validation datasets.

Partitioned heritability in tissues was used to investigate the genetic architecture of our
polygenic risk score. The top 1,000 most enriched genes per tissue were extracted from the gene
expression databased features in Benita et al. (2010) using the computer program ‘ldsc’ 274, A
total of 78 tissues grouped into eight tissue classes — central nervous system, peripheral nervous

system, endocrine, myeloid, B cells, T cels, adipose, and muscle — were examined for

enrichment. The methodology is described in greater detail in our previous publication *

Tonic Pain Signature (ToPS): Theresting state functional Magnetic Resonance Imaging
data were requested to the UK Biobank to construct the brain network from which the ToPS was
derived. Our study used the minimally preprocessed pipeline designed and carried out by FMRIB
group, Oxford University, UK *°. The minimally preprocessed resting-state fMRI data from the
UK Biobank were analyzed using the following preprocessing steps. motion correction with
MCFLIRT ', grand-mean intensity normalization, high pass tempora filter, fieldmap
unwarping, and gradient distortion correction. Noise terms were identified and removed using
FSL ICA-FIX. Full information on the UK Biobank preprocessing is published *°. Additional
preprocessing included warping the image in native space to the 2mm MNI template (FSL),
despiking using 3DDespike (AFNI from Nipype), 6-mm kernel smoothing (Nilearn), and

resampling to 3-mm (for storage purposes). A modified Brainnetome atlas *” was used to parcel
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the brain into 279 distinct regions to apply the weights from the Tonic Pain Signature (ToPS *°),

a capsai cin-induced tonic pain signature of pain derived from the brain that was associated with
both experimental and clinical pain. The modified atlas includes additional midbrain, brainstem,
and cerebellar regions.

Dynamic connectivity was estimated to derive ToPS using Dynamic Conditional
Corrélation (DCC). DCC is based on generalized autoregressive condition heteroscedastic
(GARCH) and exponential weighted moving average (EWMA) modeds (implemented by
https://cocoanlab.github.io/tops/). The preprocessing aimed to be as similar as possible to the
origina ToPS study without diverging from the minimally preprocessed data from the UK
Biobank. The weights of the signature were thresholded to the top 5% to avoid overfitting and to
minimize relation with head motion prior to the examination of the full dataset (early subsample
of n = 200). Multiple thresholds (1, 2.5, 5, 10, 25, 50, 100%) were also tested to ensure
generaizability. Absolute connectivity from the signature for visual and interpretation purposes
was computed using the sum of absolute connectivity values for each brain region within the top
5% threshold (z-scores normalized prior to thresholding) using a cut-off of 100 as the maximum.
Surface rendering was done using the Surf Ice tool (https://www.nitrc.org/projects/surfice/).

Two frameworks were evaluated to control for the effects of confounding variables: i)
adjusting confounding variance that overlaps with pain and ii) adjusting total confounding
variance. The first approach allows the brain signature to be compared to other polygenic and
inflammatory markers that were left intact given the research focus on prediction, while the
second ensures that our results did not overlap with confounds commonly reported as higher in
pain patients such as motion. Results were very similar in both approaches with the former

presenting slightly smaller probability values.


https://doi.org/10.1101/2022.07.22.22277850
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.07.22.22277850; this version posted July 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

The MRI-based covariates included head motion (linear, squared, and cubed), imaging
site, position in the scanner, and coil position (X, Y, Z respectively). Both covariates and brain
features were normalized to a mean of zero and variance of one unit across participants. To
examine confounding variance that did not overlap with pain, the number of pain sites was
regressed out from confounds. A confound-removal procedure, done on the original confounds
or pain-regressed confounds was applied by deriving a multivariate regression model to predict
each normalized brain feature as a function of the normalized confounds. The procedure was

done for each of the brain features, making them strongly or perfectly orthogonal to confounds.

Candidates Models: The same statistical procedure (NIPALS) performed on the same
the 99 clinical features was used to derive our initial model predicting the number of pain site
and the 16 candidate models classifying acute or chronic pain sites (vs al-else). Modd
specification was done through 10-fold cross-validation to maximize the variance explained (R?)
while minimizing the Root Mean Squared Error (RMSE). This allowed us to decide on the
gparsity of components to include in the models using the elbow criterion from the largest drop
of explained variance. The same parameters (i.e. three components, used as regularization) were
used to predict the pain sites using NIPALS. Features for each model were visualized using two
methods: i) by computing the Pearson’s r correlation equivalent to the loadings of each feature
onto their projected score or ii) by comparing the z-normalized weights used to obtain the
projected score. The former approach was preferred for interpretability.

The sensitivity of these candidate models was evaluated using AUC-ROC discrimination
in comparison to pain-free individuals and Pearson’s R correlation with number of pain sites.

Then, we assessed the specificity of these models by comparing their AUC-ROCs to the AUC-
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ROC of i) the risk score model and ii) the pain-site models of same origin (e.g. acute knee pain).
This was done cross-sectionally (e.g. acute knee pain vs all-else) and longitudinally for the risk
of developing agiven pain sitesin individuals without it.

Finaly, a post-hoc analysis was done to examine the similarity across model using
Pearson’s r correlation coefficient between the 99 loadings (or normalized weights) obtained in
acute and chronic models. This approach allowed us to compare the similarity between risk
factors estimated from each model. These correlations were then normalized using z-fisher
transformations to estimate the association between similarity of pain sites models and the
distance between pain sites.

Sparse model for pain risk score: A sparse model containing 6 features was derived
from the full risk model containing 99 features. We trained a linear forward feature selection
algorithm to select the core six features that presented the highest explained variance based on
the full risk model. Forward feature selection iteratively evaluates a prespecified combination of
six features in a feature pool (99 from the original model) until there is no improvement in the
model’s performance. The feature selection algorithm chose features spanning across 5
categories (Sleep, Neuroticism, Mood, Life stressors, and Anthropometric).

Core features were binarized and calibrated based on feature thresholds that maximized
the discrimination performance (AUC-ROC) between subjects reporting pain al over the body in
the online follow-up data and those not reporting pain all over the body (n = 159,663). This led
to the formation of a 6-item short questionnaire capturing 63% of the variance explained by the
full risk model. The cross-sectional and longitudinal performance of the sparse model was
assessed in the discovery set for acute and chronic conditions using the number of pain sites

(explained variance and root mean squared error) and group differences between pain and pain-
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free groups (AUC-ROC). The sparse modd was also evaluated on the online follow-up pain
guestionnaires in a subsample of 80,000 participants on interference of pain ratings (BPI,
depressive symptoms in the last 2 weeks, and the severity of symptoms using Pearson’s

correlation and R-squared metrics.

Data Availability: All data are provided from the UK Biobank and available to other
investigators online upon permission granted by www.ukbiobank.ac.uk. Restrictions apply to the
availability of these data, which were used under license for the current study (Project ID:

20802).

Code Availability: Detailed code and annotation will be published upon publication and
can be found on GitHub (LINK). The medication classification done by Wu et al. (2019) can be

found in supplementary from the original article (https.//www.nature.com/articles/s41467-019-

09572-5). Code to extract the TOPS by Lee et al. (2021) can be found online

(https://cocoanlab.qgithub.io/tops/)
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