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Abstract 39 

Background: Causality between plasma triglyceride (TG) levels and atherosclerotic 40 

cardiovascular disease (ASCVD) risk remains controversial despite more than four decades of 41 

study and two recent landmark trials, STRENGTH and REDUCE-IT. Further unclear is the 42 

association between TG levels and non-atherosclerotic diseases across organ systems. 43 

 44 

Methods: Here, we conducted a phenome-wide, two-sample Mendelian randomization (MR) 45 

analysis using inverse-variance weighted (IVW) regression to systematically infer the causal 46 

effects of plasma TG levels on 2,600 disease traits in the European ancestry population of UK 47 

Biobank. For replication, we externally tested 221 nominally significant associations (p < 0.05) 48 

in an independent cohort from FinnGen. To account for potential horizontal pleiotropy and the 49 

influence of invalid instrumental variables, we performed sensitivity analyses using MR-Egger 50 

regression, weighted median estimator, and MR-PRESSO. Finally, we used multivariable MR 51 

controlling for correlated lipid fractions to distinguish the independent effect of plasma TG 52 

levels.  53 

 54 

Results: Our results identified 7 disease traits reaching Bonferroni-corrected significance in both 55 

the discovery (p < 1.92 × 10-5) and replication analyses (p < 2.26 × 10-4), supporting a causal 56 

relationship between plasma TG levels and ASCVDs, including coronary artery disease (OR 57 

1.33, 95% CI 1.24-1.43, p = 2.47 × 10-13). We also identified 12 disease traits that were 58 

Bonferroni-significant in the discovery or replication analysis and at least nominally significant 59 

in the other analysis (p < 0.05), identifying plasma TG levels as a novel risk factor for 9 non-60 

ASCVD diseases, including uterine leiomyoma (OR 1.19, 95% CI 1.10-1.29, p = 1.17 × 10-5). 61 
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 62 

Conclusions: Taking a phenome-wide, two-sample MR approach, we identified causal 63 

associations between plasma TG levels and 19 disease traits across organ systems. Our findings 64 

suggest unrealized drug repurposing opportunities or adverse effects related to approved and 65 

emerging TG-lowering agents as well as mechanistic insights for future study.  66 
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Introduction 71 

Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death 72 

worldwide despite the effectiveness of statin therapy in reducing low-density lipoprotein 73 

cholesterol (LDL-C) levels (Baigent et al., 2005) (Roth et al., 2020). Additional therapeutic 74 

targets and adjunctive treatments are needed to address the burden arising from residual risk 75 

(Rosenson & Goonewardena, 2021). Triglycerides (TG) play vital roles in physiology, ranging 76 

from energy storage and mobilization to inflammation, thrombosis, and hormone-like signaling 77 

(Zewinger et al., 2020) (Norata et al., 2007). However, a causal relationship between TGs and 78 

ASCVDs remains controversial (Miller et al., 2011) (Albrink & Man, 1959), recently 79 

culminating in the conflicting reports of two double-blinded randomized controlled trials (RCT), 80 

STRENGTH and REDUCE-IT (Nicholls et al., 2020) (Bhatt et al., 2019) (Doi et al., 2021). 81 

Nevertheless, drug development for reducing TG-rich lipoproteins (TRL) is an active area of 82 

research and several targets have now been validated, including angiopoietin-like 3 (ANGPTL3) 83 

(Graham et al., 2017) (Dewey et al., 2017) (Musunuru et al., 2010) (Gaudet et al., 2017), 84 

angiopoietin-like 4 (ANGPTL4) (Dewey et al., 2016), and apolipoprotein C-III (APOC3) 85 

(Gaudet et al., 2015) (Crosby et al., 2014). Clinical trials are currently evaluating these targets 86 

for dyslipidemias (Arrowhead, 2021b) (Arrowhead, 2021a). 87 

Whether TGs are causal risk factors or simply associative biomarkers remains uncertain 88 

not only for ASCVDs but also other diseases of different organ systems. Understanding the 89 

causal effects of TGs across a broader range of human diseases could have significant 90 

implications for drug repurposing. TG-lowering agents, such as fibrates (Frick et al., 1987) 91 

(Group, 2010) and omega-3 fatty acids (Bhatt et al., 2019) have already been approved; however, 92 

not knowing which diseases are causally affected by TGs precludes their use for indications 93 
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other than hypertriglycidemia. Understanding the protective effects of TGs could also have 94 

implications for drug safety. With the recent approval of icosapent ethyl (Bhatt et al., 2019) 95 

(Gaba et al., 2022) and the ongoing development of other TG-lowering agents (Shaik & 96 

Rosenson, 2021), such as ANGPTL3 (Graham et al., 2017) (Dewey et al., 2017), ANGPTL4, and 97 

APOC3 inhibitors (Gaudet et al., 2015), long-term safety becomes a matter of concern. Post-98 

market surveillance data are limited; therefore, identifying diseases with negative causal links to 99 

TGs could suggest adverse side effects, whereas protective causal links to TGs could suggest 100 

therapeutic avenues and indices informative for drug development. Further, this could inform 101 

polypharmacy and drug titration in clinical practice. 102 

Several methodological challenges have prohibited causal conclusions about TGs across 103 

human diseases. First, TGs are correlated with established ASCVD risk factors, such as obesity 104 

and insulin resistance (Eckel et al., 2005). They also correlate with LDL particles or 105 

apolipoprotein B (apoB) concentration (Cromwell et al., 2007) and inversely correlate with high-106 

density lipoprotein cholesterol (HDL-C) (Phillips & Smith, 1991). Conventional observational 107 

studies have thus been limited in drawing causal inferences due to potential confounding. 108 

Secondly, available TG-lowering agents have pleiotropic effects on several major lipid fractions, 109 

including VLDL-C, LDL-C, HDL-C, and apolipoproteins, including APOC3 (Group, 2010) 110 

(Keech et al., 2005) (Frick et al., 1987). Thus, costly RCTs have had limited power to 111 

disentangle the effects of lowering TG specifically (Triglyceride Coronary Disease Genetics et 112 

al., 2010) (Goldberg et al., 2011) (Bhatt et al., 2019). Finally, Mendelian randomization (MR) 113 

studies have typically focused on individual diseases selected a priori (Davey Smith & Hemani, 114 

2014), narrowing the scope of causal estimates to ASCVDs while overlooking non-ASCVD 115 

diseases (Harrison et al., 2018) (Smith et al., 2014) (Allara et al., 2019). 116 
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Phenome-wide MR is a high-throughput extension of MR that, under specific 117 

assumptions, estimates the causal effects of an exposure on multiple outcomes simultaneously. 118 

As in conventional MR, this method uses genetic variants as instrumental variables (IV) to proxy 119 

modifiable exposures while minimizing confounding (Davey Smith & Ebrahim, 2003). A 120 

distinction, however, is that phenome-wide MR enables comprehensive scans of the phenotypic 121 

spectrum, limiting bias from prior assumptions and facilitating the discovery of unforeseen 122 

causal relationships. This has recently become feasible with the maturation of large-scale 123 

biobanks providing extensive genetic and phenotypic data, such as the UK Biobank (UKB) 124 

(Bycroft et al., 2018) and FinnGen project (FinnGen, 2020). 125 

Here, we use phenome-wide MR to systematically estimate the causal effects of plasma 126 

TGs on 2,600 disease outcomes in UKB, followed by replication testing in FinnGen. We then 127 

apply multiple MR methods for sensitivity analyses and multivariable MR to control for plasma 128 

LDL-C and HDL-C level. 129 
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Methods 130 

Study design and data sources 131 

We followed the guidelines published by Burgess et al. (Burgess et al., 2020) and the 132 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines 133 

(Skrivankova et al., 2021). Accordingly, we note that MR analyses rely on three important 134 

instrumental variable assumptions: (1) the genetic variant is directly associated with the 135 

exposure; (2) the genetic variant is unrelated to confounders between the exposure and outcome; 136 

and (3) the genetic variant has no effect on the outcome other than through the exposure (Davey 137 

Smith & Ebrahim, 2003). This study uses three non-overlapping genome-wide association 138 

studies (GWAS). A schematic figure summarizes the study design (Fig 1).   139 
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 140 

Fig 1. Study overview.  141 

A schematic summarizing the study design. GLGC, Global Lipids Genetics Consortium; HDL, 142 

high-density lipoprotein; IVW, inverse-variance weighted; LDL, low-density lipoprotein; MR, 143 

Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum 144 

and Outlier; SNP, single-nucleotide polymorphism; TG, triglyceride; UKB, UK Biobank. Tier 1 145 

(BB): At least Bonferroni-significant in both the discovery and replication analyses. Tier 2 (BN): 146 

At least Bonferroni-significant in the discovery analysis and at least nominally significant in the 147 

replication analysis. Tier 3 (NB): At least nominally significant in the discovery analysis and at 148 

least Bonferroni-significant in the replication analysis. 149 

 150 
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For primary and sensitivity analyses, we conducted two-sample MR taking summary 151 

statistics for genetic associations with plasma TGs from one dataset (Global Lipids Genetics 152 

Consortium, GLGC) (Willer et al., 2013) and summary statistics for genetic associations with 153 

outcomes from a second, independent dataset (UKB). The CARDIoGRAMplusC4D Metabochip 154 

study by GLGC involved 63,746 cases and 130,681 controls (Deloukas et al., 2013). UKB is a 155 

longitudinal, population-based cohort study with genetic and phenotypic data on over 500,000 156 

participants aged 40-69 years at recruitment from across the United Kingdom during 2006-2010 157 

(Sudlow et al., 2015). The sociodemographic and health-related characteristics of UKB 158 

participants have been described elsewhere (Fry et al., 2017). 159 

For replication analysis, we again performed two-sample MR but used summary statistics 160 

for TG from UKB and summary statistics for outcomes from FinnGen (Release 4; 176,899 161 

samples; 169,962,023 variants). FinnGen is a large public-private partnership started in August 162 

2017 aiming to collect and analyze genomic and phenotypic data from 500,000 Finnish biobank 163 

participants (FinnGen, 2020) (Kurki et al., 2022). For both primary and replication analysis, 164 

there is likely to be minimal sample overlap in the two-sample MR, which can cause weak-165 

instrument bias and inflated type 1 error (Burgess et al., 2016). 166 

 167 

Genetic instruments 168 

For primary and secondary analyses, we identified 3,086 single nucleotide 169 

polymorphisms (SNP) associated with plasma TG levels in GLGC at a genome-wide 170 

significance threshold of p < 5 × 10-8. A total of 141 independent SNPs were then selected at a 171 

linkage disequilibrium (LD) threshold of r2 < 0.05 using the 1000 Genomes LD European panel 172 

as the reference population (Auton et al., 2015). To select independent SNPs, we used the 173 
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PLINK software’s LD clumping command (Purcell et al., 2007) with the following options: --174 

clump-p1 0.00000005 --clump-p2 0.0005 --clump-r2 0.05 --clump-kb 250. 175 

For replication analysis, we identified 1,388 SNPs associated with plasma TG levels in 176 

UKB after restricting for genome-wide significance (p < 5 × 10-8) and LD-clumping. The SNPs 177 

were selected at an LD threshold of r2 < 0.05 using the 1000 Genomes LD European panel as the 178 

reference population. LD clumping was performed by PLINK using the same command as 179 

above. We then restricted to 1,248 SNPs for genetic instrumentation based on whether the SNP 180 

was also available in the FinnGen dataset. 181 

 182 

Disease outcomes 183 

As a phenome-wide investigation, this study examined many binary disease outcomes. 184 

For outcomes of primary and sensitivity analyses, we used genome-wide association summary 185 

statistics from the European ancestry subset of UKB. The focus on European ancestry was 186 

needed to reduce heterogeneity and maximize statistical power. Pan-UKB performed 16,000 187 

genome-wide association studies in ~500,000 UKB participants of various ancestries using 188 

genetic and phenotypic data (PanUKBTeam, 2020). A total of 7,221 total phenotypes were 189 

categorized as  “biomarker”, “continuous”, “categorical”, “ICD-10 code”, “phecode”, or 190 

“prescription” (PanUKBTeam, 2020). We filtered for outcomes to retain categorical, ICD-10, 191 

and phecode types; non-null heritability in European ancestry as estimated by Pan-UKB; and 192 

relevance to disease, excluding medications. This yielded 2,600 traits for primary analysis. 193 

For outcomes of replication analysis, we used genome-wide association summary 194 

statistics from FinnGen. To allow for compatibility between UKB and FinnGen datasets, 195 

phenotypes coded as FinnGen “endpoint IDs” were mapped to ICD-10 codes or phecodes 196 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2022. ; https://doi.org/10.1101/2022.07.21.22277900doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.21.22277900
http://creativecommons.org/licenses/by/4.0/


 

 12 

corresponding to the coding convention used by UKB. Categorical traits in UKB could not be 197 

reliably mapped to FinnGen IDs, requiring us to omit categorical traits from replication analysis. 198 

Of 2,444 available FinnGen outcomes, we ultimately selected 221 outcomes for replication 199 

testing based on two conditions: (1) The outcome has an equivalent phenotype documented as an 200 

ICD-10 code or phecode in UKB, which we had included in the discovery analysis, and (2) the 201 

outcome was at least nominally significant (p < 0.05) in the discovery analysis. 202 

 203 

Statistical analyses 204 

Primary discovery analysis used the inverse-variance weighted (IVW) method of two-205 

sample MR over the more horizontal pleiotropy-robust MR-Egger regression method to 206 

maximize statistical power (Burgess et al., 2013). To proxy TG, we selected the 141 TG-207 

associated SNPs from Pan-UKB identified above as instrumental variables in MR testing. All 208 

SNPs were harmonized to match the effect and non-effect allele at each SNP. For replication 209 

analyses, we conducted IVW tests using TG-associated SNPs from UKB as exposures and 221 210 

traits at least nominally significant (p < 0.05) in the discovery analysis as outcomes from 211 

FinnGen. R (4.1.0) was used for all analyses (R Core Team, 2021). 212 

For sensitivity analyses, we addressed the possible presence of horizontal pleiotropy by 213 

applying MR-Egger (Bowden et al., 2015), weighted median estimator (Bowden et al., 2016), 214 

and MR-PRESSO outlier tests (Verbanck et al., 2018) on Bonferroni-significant traits identified 215 

in the primary analysis above. MR-PRESSO outlier tests were performed on 16 traits with 216 

significant MR-PRESSO global test results (p < 0.05). To account for potential horizontal 217 

pleiotropy due to outliers, we examined the MR-PRESSO outlier test p-values from the 218 

discovery analysis, and as recommended (Burgess et al., 2020), removed outlier IVs (between 1 219 
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and 10 SNPs for each outcome) based on a corrected significance threshold (p < 0.05 / 141 = 220 

3.55 × 10-4). IVW tests were then re-run without the outlier IVs in the discovery analysis. 221 

Additionally, we fitted multivariable MR (MVMR) models controlling for plasma LDL-222 

C and HDL-C levels in the discovery stage. MVMR uses genetic variants associated with 223 

multiple exposures to estimate the effect of each exposure on an outcome, thereby accounting for 224 

potentially correlated exposures (Sanderson, 2021). We extracted the 141 LD-independent TG-225 

associated SNPs described above from the summary statistics for LDL and HDL provided by 226 

GLGC. We then performed three MVMR IVW tests against traits Bonferroni-significant in our 227 

discovery analysis with the following sets of exposures: TG and LDL; TG and HDL; or TG, 228 

HDL, and LDL. 229 

To account for multiple testing, a conservative Bonferroni threshold for statistical 230 

significance was set to p < 0.05 / 2600 = 1.92 × 10-5 for the discovery analysis. For replication 231 

analysis, a similar conservative Bonferroni threshold was set to p < 0.05 / 221 = 2.26 × 10-4. We 232 

determined three tiers of statistical evidence based on the Bonferroni or nominal threshold (p < 233 

0.05) in both the discovery and replication analyses. These three tiers are defined below: 234 

1. Tier 1 (BB): At least Bonferroni-significant in both the discovery and replication analyses. 235 

2. Tier 2 (BN): At least Bonferroni-significant in the discovery analysis and at least nominally 236 

significant in the replication analysis. 237 

3. Tier 3 (NB): At least nominally significant in the discovery analysis and at least Bonferroni-238 

significant in the replication analysis. 239 

 240 

Ethical approval 241 
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UK Biobank has approval from the North West Multi Centre Research Ethics Committee 242 

(MREC) as a Research Tissue Bank (RTB) (11/NW/0382), and all participants of UKB provided 243 

written informed consent. More information is available at (https://www.ukbiobank.ac.uk/learn-244 

more-about-uk-biobank/about-us/ethics). The work described in this study was approved by 245 

UKB under application number 16218. All participants of FinnGen provided written informed 246 

consent for biobank research, based on the Finnish Biobank Act. The Coordinating Ethics 247 

Committee of the Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen study 248 

protocol Nr HUS/990/2017. More information is available at 249 

(https://www.finngen.fi/en/code_of_conduct). 250 

 251 

Data availability 252 

 All data generated in this study are included in the manuscript and supplementary tables. 253 

All analyses used publicly available data (UKB, FinnGen), including previously published 254 

GWAS (GLGC) (Willer et al., 2013). Obtaining access to UKB (PanUKBTeam, 2020) and 255 

FinnGen (FinnGen, 2020) GWAS summary statistics is detailed here 256 

(https://www.finngen.fi/en/access_results) and here (https://www.ukbiobank.ac.uk/enable-your-257 

research/apply-for-access). Please note the summary statistics for FinnGen and Pan-UKB are 258 

made publicly available.259 
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Results 260 

Genetically proxied plasma TG levels and phenome-wide disease risk 261 

In the discovery analysis, we identified nominally significant associations (p < 0.05) 262 

between plasma TG levels and 598 disease traits in UKB (S1 Table). Of these, 39 disease traits 263 

were statistically significant after multiple testing correction with a conservative Bonferroni-264 

corrected threshold (p < 1.92 × 10-5). As a positive control, plasma TG levels were positively 265 

associated with gout with an odds ratio (OR) of 1.78 for gout (95% CI 1.52-2.09, p = 7.41 × 10-266 

11), in agreement with prior studies (Yu et al., 2021). In the replication analysis, we identified 267 

nominally significant associations (p < 0.05) between plasma TG levels and 71 disease traits in 268 

FinnGen (S2 Table). Of these, 22 traits were Bonferroni-significant. A summary of the 19 most 269 

statistically significant and replicated results have been organized into three predefined tiers of 270 

evidence (Fig 2). We note that the magnitude of estimates from the discovery analysis were 271 

generally greater than those from replication analysis, especially among tier 1 and tier 2 272 

associations, potentially as a manifestation of winner’s curse bias (Göring et al., 2001).  273 
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 274 

Fig 2. Causal estimates of genetically proxied plasma TG levels on disease risk using IVW 275 

regression in UKB and FinnGen. 276 

Causal estimates from inverse-variance weighted (IVW) regression are shown as odds ratios 277 

(OR) per 1 SD increase in plasma triglyceride (TG) levels (mmol/L). Asterisks indicate novel 278 

associations. Black indicates discovery analysis results using UKB. Red indicates replication 279 

analysis results using FinnGen. Horizontal lines represent 95% confidence intervals. Tier 1 (BB): 280 
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At least Bonferroni-significant in both the discovery and replication analyses. Tier 2 (BN): At 281 

least Bonferroni-significant in the discovery analysis and at least nominally significant in the 282 

replication analysis. Tier 3 (NB): At least nominally significant in the discovery analysis and at 283 

least Bonferroni-significant in the replication analysis. Full results are provided in S1 and S2 284 

Tables. 285 

 286 

For tier 1 results, genetically determined plasma TG levels were positively associated 287 

with 7 disease traits in both the discovery and replication analyses. These were Bonferroni-288 

significant in both analyses, and all were related to dyslipidemias or ASCVD. Among traits 289 

related to ASCVD, the strongest association by statistical significance was for angina pectoris in 290 

both the discovery UKB cohort (OR 1.39, 95% CI 1.29-1.51, p = 2.11 × 10-13) and the replication 291 

FinnGen cohort (OR 1.30, 95% CI 1.24-1.37, p = 1.25 × 10-26). For tier 2 results, plasma TG 292 

levels were positively associated with 3 disease traits, including non-ASCVDs: gout, uterine 293 

leiomyoma, and “other aneurysms” (phecode-442). The strongest association by significance, 294 

after gout, was for leiomyoma of the uterus in both the discovery (OR 1.19, 95% CI 1.10-1.29, p 295 

= 1.17 × 10-5) and replication cohorts (OR 1.06, 95% CI 1.02-1.11, p = 3.60 × 10-3). For tier 3 296 

results, 9 disease traits were identified, and a greater proportion were non-ASCVD traits. The 297 

strongest association by significance was for hypertension in both the discovery (OR 1.51, 95% 298 

CI 1.08-1.23, p = 3.20 × 10-5) and replication cohorts (OR 1.17, 95% CI 1.14-1.22, p = 9.49 × 299 

10-20). 300 

 301 

 302 

 303 
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Sensitivity analyses using MR-PRESSO, MR-Egger, and Weighted Median methods  304 

To account for potential horizontal pleiotropy bias due to outlier IVs, we next used the 305 

MR-PRESSO test on the 19 significant and replicated associations identified above, which were 306 

categorized into three tiers of statistical evidence. MR-PRESSO suspected outlier IVs for 16 of 307 

the 19 associations, and between 1 and 10 IVs were identified for 8 associations (S3 Table). We 308 

then re-ran IVW MR for these 8 associations after removing outlier IVs (S3 Table). Among tier 309 

1 results, all 7 associations increased in significance after outlier removal (Fig 3). For tier 2 310 

results, two of three associations had significant global MR-PRESSO test values but no outlier 311 

IVs were removed. For tier 3 results, seven of nine associations had significant global MR-312 

PRESSO test values, and outlier IVs were removed for one of these associations (S3 Table), 313 

which increased in significance: hypertension (p = 3.20 × 10-5 to p = 2.80 × 10-8). Importantly, 314 

all associations maintained the same effect direction after the MR-PRESSO outlier test, in 315 

keeping with the initial discovery analysis.  316 
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 317 

Fig 3. Causal estimates of genetically proxied plasma TG levels on disease risk using MR-318 

Egger, Weighted Median, and MR-PRESSO methods in UKB. 319 

Shown are sensitivity analysis results from the discovery stage using instruments from GLGC 320 

and outcomes from UKB. Levels of statistical significance are expressed as -log10(p) values. 321 

Associations with insignificant global MR-PRESSO test results (p > 0.05) were not rerun and do 322 

not have data points for IVW after MR-PRESSO. Tier 1 (BB): At least Bonferroni-significant in 323 
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both the discovery and replication analyses. Tier 2 (BN): At least Bonferroni-significant in the 324 

discovery analysis and at least nominally significant in the replication analysis. Tier 3 (NB): At 325 

least nominally significant in the discovery analysis and at least Bonferroni-significant in the 326 

replication analysis. Full results are found in S1 and S3 Tables. 327 

 328 

To further account for horizontal pleiotropy, we conducted sensitivity analyses for the 19 329 

significant and replicated traits using the MR-Egger and weighted median estimators on UKB 330 

data (Fig 3). MR-Egger results were comparable to IVW results for all 19 traits across the three 331 

tiers of evidence. However, weighted median results were less statistically significant than IVW 332 

and MR-Egger results for most traits except for disorders of lipid metabolism, hyperlipidemia, 333 

and hypertension. 334 

 335 

Separating the independent effects of plasma TG levels 336 

To isolate the independent effect of plasma TG levels from those of correlated lipid 337 

fractions, we next conducted multivariable MR (MVMR) on the 19 significant and replicated 338 

associations using the IVW estimator on UKB data, adjusting for plasma HDL-C, LDL-C, or 339 

both simultaneously (Fig 4). For tier 1 associations, we observed an increase in statistical 340 

significance for disorders of lipid metabolism and hyperlipidemia after adjustment. For tier 2 341 

results, we observed an increase in significance for gout. For tier 3 results, we observed an 342 

increase in significance for alcoholic liver disease, paroxysmal tachycardia, and calculus of 343 

kidney and ureter. Aside from these, MVMR led to a decrease in statistical significance for the 344 

remaining associations. However, all 19 associations remained in the same direction of causality 345 

despite multivariable adjustment (S4 Table).  346 
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 347 

Fig 4. Causal estimates of genetically proxied plasma TG levels on disease risk using 348 

multivariable IVW regression controlling for plasma LDL-C and HDL-C levels in UKB. 349 

Shown are the multivariable MR results from the discovery analysis, using genetic instruments 350 

for plasma TG levels from GLGC and disease traits from UKB. Degrees of statistical 351 

significance are categorized into three tiers: Tier 1 (BB): At least Bonferroni-significant in both 352 

the discovery and replication analyses. Tier 2 (BN): At least Bonferroni-significant in the 353 
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discovery analysis and at least nominally significant in the replication analysis. Tier 3 (NB): At 354 

least nominally significant in the discovery analysis and at least Bonferroni-significant in the 355 

replication analysis. Full results are provided in S4 Table. 356 
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Discussion 357 

We performed phenome-wide, two-sample MR to estimate the causal effects of plasma 358 

TG levels on a spectrum of human disease traits (n = 2,600) using a discovery cohort from UKB 359 

and a replication cohort from FinnGen. We report 7 disease traits reaching Bonferroni-corrected 360 

significance in both the discovery and replication analyses, which we categorized as tier 1 361 

results. These traits were predominantly manifestations of ASCVD, such as ischemic heart 362 

disease, angina pectoris, and myocardial infarction. Using multivariable MR, we found that these 363 

associations remained even after controlling for LDL-C and HDL-C (Fig 4). We also identified 3 364 

disease traits that are both Bonferroni-significant in the discovery analysis (p < 1.92 × 10-5) and 365 

at least nominally significant in the replication analysis (p < 0.05), categorized as tier 2 results. 366 

Lastly, we identified 9 disease traits at least nominally significant in the discovery analysis and 367 

Bonferroni-significant in replication analysis, categorized as tier 3 results. Several of these 368 

disease traits have never been reported to be causally associated with TGs, introducing new 369 

opportunities for drug repurposing and further mechanistic studies. 370 

Our results are consistent with prior work suggesting that plasma TG levels are causally 371 

associated with ASCVD risk (Triglyceride Coronary Disease Genetics et al., 2010) (Castañer et 372 

al., 2020) (Do et al., 2013) (Dewey et al., 2016) (Holmes et al., 2015) (White et al., 2016) (Varbo 373 

et al., 2013) (Ibi et al., 2021) (Rosenson et al., 2021). We do not prove here that circulating TGs 374 

per se are directly atherogenic; rather, we show that plasma TG measurement, which comprises 375 

multiple classes of triglyceride-rich lipoproteins (TRL) and their remnants, captures a clinically 376 

significant mechanism that is causally associated with ASCVD (Rosenson et al., 2021). This 377 

interpretation is concordant with the emerging consensus that apolipoprotein B (apoB) particle 378 

number is a more important determinant of atherogenesis than LDL-C and that TRL particles are 379 
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as important a risk factor in ASCVD as LDL particles, since they both carry a single apoB 380 

molecule (Ference et al., 2019) (Marston et al., 2021) (Richardson et al., 2020). According to this 381 

paradigm, the causal association we observe between plasma TG levels and ASCVD risk may be 382 

mediated by the concentration of apoB particles in TRLs, captured by plasma TG level 383 

measurements. If reducing TRLs proportionally reduces apoB levels (Ference et al., 2019), these 384 

results support that lowering plasma TG levels could serve as a valid therapeutic strategy to 385 

reducing ASCVD risk. Additional studies controlling for apoB are needed to test whether 386 

decreasing plasma TGs without a concomitant decrease in apoB could reduce ASCVD risk by 387 

alternative mechanisms unrelated to apoB. 388 

Regarding non-ASCVDs, we show novel causal associations between plasma TG levels 389 

and uterine leiomyomas (uterine fibroids), diverticular disease of intestine, paroxysmal 390 

tachycardia, hemorrhage from respiratory passages (hemoptysis), and calculus of kidney and 391 

ureter (kidney stones). Prior studies had reported correlational associations between many of 392 

these diseases and plasma TG levels or risk factors correlated to plasma TGs. For example, 393 

studies had documented positive correlations between leiomyoma risk and plasma TG levels 394 

(Uimari et al., 2016) (Tonoyan et al., 2021) (Peshkova et al., 2020). Others had shown 395 

diverticular disease risk is positively associated with BMI, body fat percentage, and visceral fat 396 

area (Shih et al., 2022) (Freckelton et al., 2018) (Böhm, 2021). Similarly, kidney stones have 397 

been associated with the triglyceride-glucose (TyG) index (Qin et al., 2021), and atrial 398 

tachycardias have been associated with VLDL levels in metabolic syndrome patients (Lee et al., 399 

2017) (Park & Lee, 2018). Our study is the first to suggest that these associations may be 400 

causally related and specific to plasma TG levels, as opposed to or in addition to confounding 401 

risk factors, such as obesity and hormone replacement therapy. We thus present rationale for 402 
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repurposing TG-lowering agents towards these diseases and pursuing mechanistic studies 403 

interrogating TG biology; however, RCTs are necessary to better evaluate clinical potential. 404 

Our results also identified a novel, negative causal association between plasma TG levels 405 

and alcoholic liver disease (ALD), suggesting that excessively reducing plasma TG levels may 406 

increase risk of this disease trait. A mechanistic explanation for this association remains elusive 407 

as previous studies on dysregulated lipid metabolism in liver disease have generally focused on 408 

non-alcoholic fatty liver disease (NAFLD). However, one animal study suggests that medium-409 

chain TGs may decrease lipid peroxidation and reverse established alcoholic liver injury in rat 410 

models of ALD (Nanji et al., 1996). Nevertheless, that elevated TG levels may protect against 411 

ALD is surprising and requires validation. It remains unclear whether this association is only 412 

relevant to lifelong, chronic lowering of plasma TG levels rather than transient lowering by drug-413 

based interventions. It is also unclear whether ALD could be prevented by increasing TG levels. 414 

Our finding emphasizes the potential intolerability of TG-lowering agents and the importance of 415 

maintaining these drugs’ concentrations within therapeutic windows for patient safety. 416 

This study has several limitations. First, horizontal pleiotropy has been shown to be 417 

common in genetic variation, which can cause bias in MR testing (Verbanck et al., 2018) (Jordan 418 

et al., 2019). We used MR tests that are robust to horizontal pleiotropy including the MR-419 

PRESSO test as well as MR-Egger and weighted median estimators as sensitivity analyses. 420 

Second, genetic variants confer exposures that are lifelong but small in effect size; thus, MR may 421 

over- or underestimate the effect sizes of pharmacological interventions. MR also cannot make 422 

comparisons between TG-lowering agents as it evaluates drug targets, not drug subclasses and 423 

unique pharmacodynamics (Gill et al., 2019) (Sofat et al., 2010). However, the utility of MR in 424 

drug target validation is well-established as estimates still indicate the presence and direction of 425 
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causality (Gill et al., 2021). Third, we were unable to reliably map “categorical” traits from UKB 426 

to corresponding traits in FinnGen for all traits, testing for replication only 221 of the 598 427 

associations that were nominally significant in the primary analysis. Moreover, ICD-10 codes 428 

and phecodes are imperfect descriptors of disease, liable to misclassification. Lastly, we 429 

acknowledge that this study was restricted to populations of European ancestry, limiting the 430 

generalizability of our findings. A recent study observed comparable MR estimates for the causal 431 

effects of lipid traits on ischemic stroke risk between African and European ancestry individuals 432 

(Fatumo et al., 2021), suggesting the potential generalizability of MR results across ancestries in 433 

some specific cases. Nevertheless, trans-ancestry MR analyses are warranted to validate our 434 

study’s findings in diverse ancestry populations. 435 

In conclusion, this study demonstrates a high-throughput application of two-sample MR 436 

to estimate the causal effects of plasma TGs on disease risk phenome-wide. With the 437 

proliferation of multiomic data, this systematic approach could be generalized to study the causal 438 

effects of serum biomarkers at scale to support the prioritization of targets for drug discovery. 439 

Further studies are needed however to consider the functional and qualitative attributes of TRL 440 

and TG subtypes. Metabolomic data partitioning TRLs by size and composition may enable this 441 

to identify the subcomponent of a plasma TG measurement that drives disease risk (Holmes et 442 

al., 2015). Diverse study designs are warranted to further triangulate evidence for the causal 443 

effects of plasma TG levels on disease risk. 444 
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Supplementary files 802 

S1 Table. Causal estimates of plasma TG levels on 2,600 traits in UKB using multiple MR 803 

methods.  804 

Shown are the estimates, standard deviations, and p-values of MR results using IVW, MR-Egger, 805 

and Weighted Median methods. 141 SNPs were used as instrumental variables to proxy plasma 806 

TG levels. A Bonferroni threshold for statistical significance was set to p < 0.05 / 2600 = 1.92 × 807 

10-5 for this discovery analysis. 808 

  809 

S2 Table. Causal estimates of plasma TG levels on 221 traits in FinnGen using multiple 810 

MR methods. 811 

Shown are the estimates, standard deviations, and p-values of MR results using IVW, MR-Egger, 812 

and Weighted Median methods. 1,248 SNPs were used as instrumental variables to proxy plasma 813 

TG levels. A Bonferroni threshold for statistical significance was set to p < 0.05 / 221 = 2.26 × 814 

10-4 for this replication analysis. 815 

 816 

S3 Table. IVW-MR estimates of significant and replicated associations (Tier 1-3) after MR-817 

PRESSO outlier tests using UKB data. 818 

Shown are the estimates, standard deviations, and p-values of IVW-MR results in the discovery 819 

analysis, before and after outlier IV removal, for significant and replicated traits (tier 1-3) that 820 

had significant MR-PRESSO global test results (p < 0.05) in the primary IVW analysis of the 821 

discovery UKB cohort.  822 

 823 
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S4 Table. Multivariable IVW-MR estimates of plasma TG levels on significant and 824 

replicated associations (Tier 1-3) using UKB data. 825 

Shown are the estimates, standard deviations, and p-values of multivariable IVW-MR results 826 

controlling for HDL-C, LDL-C, or both, in the discovery stage. Only tier 1-3 results significant 827 

and replicated as predefined in the methods were examined in this analysis. 828 
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