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ABSTRACT 

Introduction: Although APOE ε4 allele carriage confers a risk of coronary disease, its persistence 

in human populations might be explained by certain survival advantages (antagonistic pleiotropy).  

 

Hypothesis: Combining data from three British cohorts–1946 National Survey of Health and 

Development (NSHD), Southall and Brent Revised (SABRE) and UK Biobank–we explored 

whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural 

and functional parameters by echocardiography and cardiovascular magnetic resonance (CMR) in 

older age. 

 

Methods: Based on the presence of APOE ε4, genotypes were divided into: APOE ε4 (ε2ε4, ε3ε4, 

ε4ε4) and non-APOE ε4 carriers. Echocardiographic data included: LV ejection fraction, E/e’, 

systolic and diastolic posterior wall and interventricular septal thickness (LVPWTs/d, IVSs/d), LV 

mass and the ratio of the LV stroke volume to the LV myocardial volume called myocardial 

contraction fraction (MCF). CMR data additionally included longitudinal and radial peak diastolic 

strain rates (PDSR).  Generalized linear models explored associations between APOE ε4 genotypes 

as exposures and echocardiographic/CMR biomarkers as outcomes. As APOE genotype is a 

genetic instrumental variable (unconfounded), Model 1 was unadjusted; Model 2 was adjusted for 

factors associated with the outcome (age, sex, and socio-economic position) to yield more precise 

estimates; and subsequent models were individually adjusted for mediators (body mass index, 

cardiovascular disease [CVD], high cholesterol and hypertension) to explore mechanistic 

pathways.  
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Results: 35,568 participants were included. Compared to the non-APOE ε4 group, APOE ε4 

carriers had similar cardiac echocardiographic phenotypes in terms of LV EF, E/e’, LVPWTs/d, 

IVSs/d and LV mass but had a 4% higher MCF (95% confidence interval [CI]: 1–7%, p=0.016) 

which persisted in Model 2 (95% CI 1–7%, p=0.008) but was attenuated to 3% after adjustment 

for CVD, diabetes and hypertension (all 95% CI 0–6%; all p<0.070). This was replicated in UK 

Biobank using CMR data, where APOE ε4 carriers had a 1% higher MCF (95% CI 0-1%, p=0.020) 

which was attenuated only after adjusting for BMI or diabetes.  

 

Conclusions: APOE ε4 carriage associates with improved myocardial performance in older age 

resulting in greater LV stroke volume generation per 1 mL of myocardium and better longitudinal 

strain rates compared to non APOE ε4 carriers. This potentially favorable cardiac phenotype adds 

to the growing number of reported survival advantages attributed to APOE ε4 carriage that might 

collectively explain its persistence in humans. 

 

 

Keywords: apolipoprotein ε4, cardiovascular disease, myocardial contraction fraction.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2022. ; https://doi.org/10.1101/2022.07.20.22277846doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277846
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Apolipoprotein ε (APOE ε) mediates the biding of low-density lipoprotein (LDL) to peripheral 

receptors. Given the existence of two single-nucleotide polymorphisms, namely rs429358 and 

rs7412, there are three APOE ε isoforms coded by the alleles ε2, ε3 and ε4 giving rise to six 

genotypes namely ε2ε2, ε2ε3, ε2ε4, ε3ε3, ε3ε4 and ε4ε4 with the commonest being ε3ε31.  

Apolipoprotein ε4 is regarded to be a major risk factor for developing Alzheimer’s disease2  even 

from young age, especially in females 3.  In addition, it may associate with decreased physical 

performance in older age4 and decrease cognitive performance (e.g., verbal episodic memory) in 

healthy young adults5. Yet despite its adverse associations, this ancestral allele has persisted in 

human populations instead of being replaced by the more recently evolved alleles, ε3 and ε26 

suggesting its carriage might be conferring some survival advantages. Indeed, APOE ε4 carriers 

have been shown to have increased fertility7,8, resistance to infections7, decreased perinatal and 

infant mortality7 , decreased chronic airway obstruction 9, fewer arterial aneurysms9 and peptic 

ulcers9, less liver disease  and slight cognitive advantages7 10.  

In terms of the cardiovascular system, carriage of ε4 (rs429358-cytosine and rs7412-cytosine) has 

been associated with adverse clinical sequelae including ischaemic heart disease (IHD)11, 

hypertension12, diabetes13 and high LDL14.  Moreover, heart function was also suggested to be a 

mediator in the association between ApoE ε4  and gray matter decline15.  However, to date it 

remains unclear whether APOE ε4 carriage independently associates with a better or worse long-

term cardiac phenotype in terms of heart size and function. Using cohort data from the Medical 

Research Council (MRC) 1946 National Survey of Health and Development (NSHD), Southall 

And Brent Revised (SABRE) and United Kingdom (UK) Biobank, we explored this association. 
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METHODS 

Study population  

The MRC NSHD is the world’s longest-running birth cohort with continuous follow-up. In 1946 

in Britain, 5,362 individuals (2547 males and 2815 females) born in the same week in March were 

enrolled. Participants were invited for periodic follow-ups in which health and socio-economic 

assessments were performed which have been described elsewhere16.   

The SABRE study is a tri-ethnic cohort of European, South Asian, and African Caribbean 

participants living in North and West London. Between 1988-1981, participants aged 40-69 years 

were randomly selected from 5-year age and sex stratified primary care lists (n=4063) and 

workplaces (n=795). Full details have been described elsewhere17.  

The UK Biobank is a large prospective cohort study with more than half a million individuals 

recruited between 2006 and 2010 when study participants were aged 40-69 years old, and features 

demographic, genetic, health outcome and imaging data for participants. 18. Details of subjects’ 

comorbidities were obtained through self-reported diagnoses and International Classification of 

Disease (ICD-9 and ICD-10) codes from linked medical records This project was conducted using 

the UK Biobank (UKBB) resource under application numbers 40616 and 46696. 

 

Data availability 

NSHD data is available from: https://www.nshd.mrc.ac.uk/data , SABRE data is available from 

https://www.sabrestudy.org/ , and UK Biobank data is available from 

https://www.ukbiobank.ac.uk/ .  
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Ethical approval 

The 2006-2010 NSHD data collection sweep included an in-depth cardiovascular assessment and 

was granted ethical approval from the Greater Manchester Local Research Ethics Committee and 

the Scotland Research Ethics Committee16 and written informed consent was given by all study 

participants.  Similarly, the SABRE study was granted ethics approval from Ealing, Hounslow and 

Spelthorne, Parkside, and University College London Research Ethics Committees with all 

participants giving written consent. Our project was approved by both the SABRE and NSHD 

committees. UK Biobank’s ethical approval was from the Northwest Multi-centre Research 

Committee (MRCEC) in 2011, which was renewed in 2016 and then in 2021. All procedures 

performed were in accordance with the ethical standards of the institutional and/or national 

research committee and with the 1964 Helsinki declaration and its later amendments or comparable 

ethical standards.  

 

Outcomes: Echocardiographic data 

In NSHD, when study members were 60-64 years (2006-2010), British-based NSHD participants 

who had not been lost to follow-up or withdrawn, were invited to attend a clinic-based assessment 

that included resting transthoracic echocardiography using General Electric (GE) Vivid I 

machines. The echocardiographic protocol included long and short axis (LAX and SAX), apical 

5-, 4-, 3- and 2- chamber, aortic SAX views 19. In SABRE, study members were invited between 

2008 and 2012 to a clinic visit in which echocardiographic data was acquired using a Phillips iE33 

ultrasound machine S5-1 phased array and a X3-1 matrix transducer and analyzed using Philips 

QLAB software 7,017 in line with the with the American Society  of Echocardiography (ASE) 

guidelines20. In both cohorts, echocardiographic data provided left ventricular (LV) ejection 
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fraction (EF), E/e’, systolic and diastolic LV posterior wall and interventricular septal thickness 

(LVPWTs/d, IVSs/d), LV mass (LVmass). Myocardial contraction fraction (MCF) was calculated 

as the ratio between stroke volume and myocardial volume.  Although indexation to body surface 

area (BSA), is commonly done in clinical practice, BSA is a poor indexation metric as it creates a 

bias for overweight individuals21. Although indexation to allometric height is a better alternative21, 

indexation might lead to spurious associations, as the exposure might be associated with 

height/weight rather than with the outcome itself. Therefore, we used unindexed 

echocardiographic outcomes in all subsequent analyses. 

 

Outcomes: Cardiovascular magnetic resonance data 

Participants in the UK Biobank were randomly invited for a CMR scan on a 1.5 T Siemens Aera 

scanner from 2014. Briefly, the CMR imaging protocol consisted of three long-axis views and a 

complete short axis stack of balanced steady state free precession cines22. Grey-scale short axis 

cine stacks were automatically segmented using a deep learning neural network that has optimised 

for UKBB scan images, with human expert level performance 23.  The short-axis segmentations 

underwent post-processing to compute end-systolic, end-diastolic and stroke volumes in both 

ventricles 24. Left ventricular mass (LVM) was computed from left ventricular volume (assuming 

a density of 1.05 g/ml). Left ventricular wall thickness was computed as the perpendicular radial-

line distance between endocardial and epicardial surfaces at end-diastole for each of the 17 

myocardial segments as defined by the American Heart Association (AHA)25. MCF was derived 

as above. Thickness of the IVS was calculated as the mean wall thickness of segments 2, 3, 8, 9 

and 14, while PWT was taken as the mean of segments 5,6, 11, 12, and 16.  To compute 

longitudinal and radial peak diastolic strain rates, non-rigid image co-registration was performed 
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between successive frames to enable dynamic motion tracking of the heart during the cardiac cycle 

26.    Unindexed CMR metrics were used in all subsequent analyses as discussed above.  

 

Exposures: APOE ε genotype 

In NSHD, blood samples were collected at age 53 by a trained research nurse, and DNA was 

extracted.27 Genetic analysis of stored samples took place in in 1999 and 2006-2010. In SABRE, 

blood samples were collected during baseline studies in 1988-1991 and during follow-up from 

2007-201217. Genotyping of rs439358 and rs7412 was conducted at the Exeter University for 

SABRE and by LGC, Huddleston, UK for NSHD28.  . Genotyping of UK Biobank participants is 

detailed elsewhere 29, however in brief, genotyping for 488,252 subjects was performed using the 

UK BiLEVE or UK Biobank Axiom arrays and imputation based on the HaplotypeReference 

Consortium and UK10K+1000 Genomes panels. Imputation V3 (in GRCh37 coordinates) was 

used for the current study. Genotypes in their released PLINK-format files were used on the 

DNANexus platform (https://www.dnanexus.com/ ).  Based on the presence or absence of APOE 

ε4, genotypes were categorically defined as: non-APOE ε4 carriers (ε2ε2, ε2ε3, ε3ε3), 

heterozygous-APOE ε4 (ε2ε4 and ε3ε4) or homozygous-APOE ε4 (ε4ε4).  Heterozygous-APOE 

ε4 and homozygous-APOE ε4 were further grouped into APOE ε4 carriers.  

 

Covariates 

Sex was recorded as male or female. The age, weight, and height at the time of the imaging were 

used to compute the body mass index (BMI) in all 3 cohorts. In NSHD, participants’ 

socioeconomic position (SEP) was evaluated at the time of echocardiography according to UK 

Surveys Registrar General’s social class, dichotomized as manual or non-manual. In UK Biobank, 
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we used the Townsend deprivation index scores derived from national data about ownership and 

unemployment aggregated by postcodes30. The presence of cardiovascular disease (CVD), 

diabetes or high cholesterol was recorded as 1=present or 0=absent.  

 

Statistics 

All analyses were performed in R 4.0 31. For all analyses, a two-tailed p-value <0.05 was 

considered statistically significant. 

Distribution of data were assessed on histograms and using Shapiro-Wilk test. Continuous 

variables are expressed as mean ± 1 standard deviation (SD) or median (interquartile range) as 

appropriate; categorical variables, as counts and percent.  

In the main analysis, we compared non-APOE ε4 carriers with APOE ε4 carriers. Given the skewed 

distributions of echocardiographic and CMR data, generalized linear models with gamma 

distribution and log link were used to investigate the association of APOE ε4 genotypes as the 

exposures to predict the continuous echocardiographic and CMR variables as the outcomes. As 

the longitudinal and radial PDSR also spanned negative values, generalized linear models with 

Gaussian distribution and identity link were used instead. Being a combination of gene variants, 

APOE ε genotype is expected to be an instrumental variable and therefore unconfounded. Thus, 

Model 1 was unadjusted. To obtain more precise regression estimates, Model 2 was adjusted for 

factors associated with the outcome, namely age, sex, and SEP. To explore the mechanistic 

pathway downstream of APOE ε genotype but upstream of the echocardiographic outcomes, 

subsequent models were adjusted for mediators as follows: Model 3 for BMI; Model 4 for the 

presence of CVD; Model 5 for diabetes; Model 6 for high cholesterol; and Model 7 for 
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hypertension (Figure 1). Model assumptions were verified with regression diagnostics and found 

to be satisfied.   

For all the models, regression estimates were obtained separately for NSHD, SABRE and UK 

Biobank (i.e., cohort specific analyses).   Since both NSHD and SABRE participants had 

echocardiography, random-effects meta-analyses were performed across these 2 cohorts. 

Heterogeneity was evaluated using the Cochran Q test and Higgins I2 statistic.  Since UK Biobank 

had CMR data, it was not included in the meta-analysis.  

To explore dose responses, APOE ε4 genotypes were recoded as an ordered category based on the 

number of ε4 possessed. Thus, class 0 = ε2ε2, ε2ε3, ε2ε3; class 1= ε2ε4 and ε3 ε4; and class 2 = 

ε4ε4. Given the existence of 3 classes, generalized linear models with gamma distribution (or 

Gaussian distribution for longitudinal and radial PDSR) and orthogonal polynomial contrasts with 

2 equally spaced levels (i.e., linear and quadratic) were employed to look for a dose response by 

ε4 variants.  

As a sensitivity analyses, APOE ε4 carriers were split into heterozygous-APOE ε4 (ε2ε4 and ε3ε4) 

and homozygous-APOE ε4 (ε4ε4), and all the analyses were replicated as above.  

 

RESULTS 

Participant characteristics  

Participants with available APOE ε4 genotype and at least one cardiac imaging metric were 

included yielding a total of 35568 participants (n=1467 from NSHD, n=1187 from SABRE and 

n=32972 from UK Biobank). Their characteristics are shown in Table 1. In total, there were 816 

(2.29%) homozygous-APOE ε4, and 9103 (25.59%) heterozygous-APOE ε4 individuals with a 

good agreement between NSHD, SABRE and UK Biobank.  SABRE participants were more likely 
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to be males (76.75%), have a higher BMI (median 27 years) or suffer from hypertension (58.98%) 

compared to NSHD and UK Biobank. On the other hand, UK Biobank participants were least 

likely to suffer from CVD (6.53%), diabetes (18.64%) or hypertension (27.62%).  

 

Associations between APOE ε4 genotypes and echocardiographic data 

In NSHD, when compared to the non-APOE ε4 group, APOE ε4 carriers had a 6% higher MCF 

(95% confidence interval [CI] 0-12%, p=0.050) which persisted after adjusting for sex and SEP 

(95% CI 0-12%, p=0.038) and diabetes (95% CI 0-12%, p=0.056),  was attenuated to 5% after 

adjusting for BMI (95% CI 0-11%, p=0.064), CVD (95% CI 0-12%, p=0.112) and hypertension 

(95% CI 1-11%, p=0.081), and was increased to 8% after adjusting for high cholesterol (95% CI 

1-14%, p=0.020, Supplementary Table  S1).  Similarly, APOE ε4 carriers had a 5% higher 

LVmass p=0.057 which was increased to 6% after adjusting for CVD (p=0.040) and hypertension 

(p=0.040), and to 7% after adjusting for diabetes p=0.024. No significant associations were found 

in SABRE (Supplementary Table S2).  

In the meta-analyses, compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac 

phenotypes in terms of EF, E/e’, LVPWTs/d, IVSs/d and LVmass but had a 4% higher MCF (95% 

CI 1–7%, p=0.016) which persisted after adjustment for sex and SEP (95% CI 1–7%, p=0.008) 

and was attenuated to 3% after adjustment for CVD, diabetes and hypertension (all 95% CI 0–6%, 

all p<0.070, Table 2, Figure 1). However, no significant dose response of APOE ε4 carriage was 

found in the association of APOE ε4 genotype with MCF (Table 4, Supplementary Table S3).  

In the sensitivity analysis, only heterozygous-APOE ε4 carriers had a 4% higher MCF (95% CI 1-

7%, p=0.016) which persisted after adjusting for sex and SEP (95% CI 1-7%, p=0.013), and BMI 

(95% CI 1-7%, p=0.018) but was attenuated to 3% after adjusting for CVD (95% CI 0-6%, 
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p=0.043, diabetes (95% 0-7%, p=0.060), and hypertension (95% CI 0-6%, p=0.028, Table 5, 

Supplementary Table S4).  

 

Associations between APOE ε4 genotypes and CMR data 

In UK Biobank, when compared to the non-APOE ε4 group, APOE ε4 carriers had a 1% higher 

MCF 95% (CI 0-1%, p=0.020) which persisted after adjusting for age, sex and SEP (Model 2, 

p=0.080), CVD (Model 4, p=0.006), high cholesterol (Model 5, p=0.0001) and hypertension 

(Model 7, p=0.034) but was attenuated to 0% (95% CI 0-1%) after adjusting for BMI (Model 3, 

p=0.079) or diabetes (p=0.058, Table 3, Figure 1).  There was a dose-response relationship 

especially when adjusting for CVD in Model 4 (p=0.036) and high cholesterol in Model 6 

(p=0.006, Table 4). However, although heterozygous-APOE ε4 carriers had a higher MCF, the 

association was not significant for homozygous-APOE ε4 carriers (Table 5). 

In addition, APOE ε4 carriers had a 2% higher longitudinal PDSR (95% CI 0-3%, p=0.045), which 

persisted after adjusting for CVD and diabetes, but was attenuated to 0% in Model 2 and to 1% 

after adjusting for diabetes (Model 5). Conversely, they had a 5% lower radial PDSR (95% CI 

0.90-1.00, p=0.05) which behaved similar to longitudinal PDSR on adjustment (Table 3).  

 

DISCUSSION 

Data from >35,000 British older adults show that APOE ε4 carriage associates with slightly 

advantageous myocardial performance manifesting as higher MCF and longitudinal strain rates, 

but slightly lower radial strain rates. A graphical abstract of this work is presented in Figure 2. 

APOE ε4 might be another example of antagonistic pleiotropy6 as ε4 carriage appears to be both 

beneficial (e.g., fertility and resistance to infections7) and detrimental (e.g., Alzheimer’s disease) 
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to human health. The occurrence of the latter further down the fertility timeline in older age might 

explain the allele’s persistence in spite of natural selection.  

In terms of cardiovascular health, APOE ε4 carriage was previously associated with CVD (IHD14 

and myocardial infarction32) and CVD risk factors (such as hypertension12 and diabetes13). 

Although the exact mechanism is yet to be elucidated, it is postulated that APOE ε4 might 

contribute to the development of metabolic syndrome33. APOE ε4 differs from APOE ε3 at amino 

acid position 112 where arginine (positively charged side chain) is present instead of cysteine (non-

polar side chain). Given its ability to bind to peripheral and hepatic lipoprotein receptors, it is 

plausible for the APOE ε isoforms to have different binding affinities explaining the link with 

dyslipidemia14. However, emerging evidence points to more a complex mechanism as APOE ε can 

also alter the levels of APOB34 which is itself also associated with CVD35. In addition, APOE ε is 

mainly produced by the liver, but can also be synthesized in and regulate the activity of 

adipocytes36 which might explain the relationship between APOE ε4 and insulin resistance 33,37.  

Here we show that APOE ε4 carriage appears to associate with a higher MCF. The MCF is a 

volumetric index of LV myocardial shortening which captures maladaptive myocardial 

hypertrophy otherwise missed by conventional biomarkers such as EF, mass, and wall thickness, 

as it considers the relationship between LVmass and SV38. It has been previously associated with 

CV morbidity and mortality independent of conventional risk factors39. In addition, it is regarded 

as a highly-sensitive metric of systolic function, and low values have been linked to negative 

outcomes even in the presence of apparently normal LV EF40 indicating its strength as a subclinical 

disease marker. A higher MCF in the context of APOE ε4 carriage might mean a slightly 

advantageous cardiac phenotype in terms of heart function. Dissociable effects of APOE ε4 

carriage have been previously reported in the context of better attention despite the higher risk of 
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Alzheimer’s disease10. Although the literature is sparse, APOE ε4 carriage has been previously 

linked to higher levels of androgens41 or dysregulated glucose and ketone metabolism7 which could 

putatively increase myocardial contractility leading to a higher stroke volume per unit of LV mass 

which is being captured by the MCF42
.  We go on to show that there is likely to be a dose response 

relationship based on the number of ε4 alleles carried by an individual, as per the polynomial 

contrasts analyses (in the sensitivity analysis the association of homozygous APOE ε4 with MCF 

likely did not persist as only 2.29% of individuals (816) were homozygous for APOE ε4). Another 

explanation is that healthier APOE ε4 carriers may have been more likely to survive and/or to 

participate in the studies resulting in selection bias. This would fit with the known effects of APOE 

ε4 carriage on IHD, HT, lipids, and cognitive function. Previous studies have described cognitive 

advantages in heterozygotes that were not replicated in the homozygotes43 mirroring our data. 

Indeed, APOE ε4 carriage was associated with a greater longitudinal but lower radial strain 

suggesting that different myocardial contraction dynamics might be contributing to the observed 

association with MCF. The observed trend linking APOE ε4 carriage with slightly better 

echocardiographic LV filling pressures (lower E/e’ may suggest less ventricular stiffness in some 

but not all cases44), albeit attenuated in multivariable models, lends plausibility to this theory.  The 

CMR analyses indicated a slight association between APOE ε4 carriage and thinner ventricular 

walls, and similarly the echocardiographic analyses found no association between APOE ε4 

carriage and LV hypertrophy biomarkers (LVPWTs/d, IVSs/d, LVmass). These data collectively 

suggest that the observed MCF enhancement is not mediated by pathological ventricular 

thickening but through improved myocardial energetics and contractility, with calcium potentially 

implicated41,42.  
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The main strength of our study is that we were able to replicate the findings in three independent 

cohorts encompassing >35000 individuals, across imaging modalities (echocardiography and 

CMR). In addition, as the MRC NSHD is a birth cohort, the participants were implicitity age-

matched across all the analyses, exposed to similar epoch-related risk factors and had access to 

similar treatment facilities across the decades. Since both SABRE and NSHD were longitudinal 

cohorts in which timing of genotyping and echocardiography were not necessarily 

contemporaneous, selective follow-up may have potentially excluded homozygous or 

heterozygous individuals who already passed away with the worst cardiac phenotypes.  

 

CONCLUSION 

APOE ε4 carriage associates with improved myocardial performance in older age resulting in 

greater LV stroke volume generation per 1 mL of myocardium and better longitudinal strain rates 

compared to non APOE ε4 carriers. This potentially favorable cardiac phenotype adds to the 

growing number of reported survival advantages attributed to APOE ε4 carriage that might 

collectively explain its persistence in humans.  
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Table 1. General characteristics of study participants.  

 
  NSHD SABRE UK Biobank 

Variable  Count (%), n=1467 Count (%), n=1187 Cohort (%), n=32972 

Exposure: APOE ε4 genotype      ε2ε2 8 (0.55%) 6 (0.51%) 178 (0.54%) 

      ε2ε3 169 (11.54%) 130 (11.95%) 4046 (12.27%) 

      ε2ε4 44 (3.00%) 27 (2.28%) 773 (2.34%) 

      ε3ε3 855 (57.36%) 726 (61.16%) 19587 (59.41%) 

      ε3ε4 343 (23.41%) 269 (22.66%) 7647 (23.19%) 

      ε4ε4 46 (3.14%) 29 (2.44%) 741 (2.25%) 

Echo at 60-64 years APOE ε4 status Median (IQR) Median (IQR) Median (IQR) 

EF –/– 65.06 (60.02, 69.27) 62.17 (55.81, 68.51) 59.75 (55.84, 63.69) 

 +/– 64.73 (59.33, 69.43) 63.05 (57.66, 69.74) 59.64 (55.85, 63/66) 

 +/+ 66.68 (61.94, 69.34) 62.07 (56.71, 67.73) 60.10 (56.37, 63.95) 

E/e’ –/– 7.72 (6.51, 9.20) 8.12 (7.11, 10.78) N/A 

 +/– 7.52 (6.30, 8.87) 8.91 (7.51, 10.53) N/A 

 +/+ 7.18 (6.07, 8.37) 8.35 (6.73, 9.86) N/A 

LPDSR –/– N/A N/A 1.59 (1.23, 2.00) 

 +/–  N/A N/A 1.61 (1.25, 2.01) 

 +/+  N/A N/A 1.62 (1.27, 2.00) 

RPDSR –/– N/A N/A -5.70 (-7.03, -4.38) 

 +/–  N/A N/A -5.77 (-7.05, -4.43) 

 +/+  N/A N/A -5.71 (-7.05, -4.43) 

LVmass –/– 108.89 (92.86, 131.80) 93.38 (79.59, 107.72) 82.71 (68.41, 100.79) 

 +/–  108.38 (87.62, 137.70) 93.75 (80.83, 109.64) 82.53 (68.51, 100.49) 

 +/+  113.25 (98.08, 127.13) 91.24 (80.83, 109.2) 81.69 (68.78, 100.88) 

MCF –/– 0.47 (0.37, 0.59) 0.58 (0.49, 0.70) 1.07 (0.95, 1.21) 

 +/–  0.51 (0.39, 0.65) 0.60 (0.50, 0.71) 1.08 (0.95, 1.22) 

 +/+  0.53 (0.42, 0.60) 0.62 (0.55, 0.68) 1.09 (0.97, 1.23) 

LVPWTs –/– 1.57 (1.40, 1.74) 1.48 (1.35, 1.62) N/A 

 +/–  1.58 (1.42, 1.80) 1.45 (1.32, 1.59) N/A 

 +/+  1.60 (1.47, 1.74) 1.39 (1.26, 1.60) N/A 

LVPWTd –/– 0.98 (0.87, 1.09) 1.02 (0.92, 1.13) 5.65 (5.14, 6.21) 

 +/–  0.98 (0.88, 1.10) 1.01 (0.91, 1.12) 5.64 (5.15, 6.23) 

 +/+  0.96 (0.87, 1.04) 0.98 (0.90, 1.10) 5.67 (5.17, 6.26) 

IVSs –/– 1.50 (1.34, 1.68) 1.58 (1.42, 1.74) N/A 

 +/–  1.51 (1.35, 1.69) 1.57 (1.40, 1.76) N/A 

 +/+  1.50 (1.36, 1.64) 1.51 (1.44, 1.70) N/A 
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IVSd –/– 1.04 (0.91, 1.18) 1.15 (1.03, 1.30) 5.59 (4.98, 6.13) 

 +/–  1.04 (0.90, 1.18) 1.14 (1.01, 1.29) 27.96 (24.92, 30.61) 

5.58 (4.98, 6.12) 

 +/+  1.09 (0.93, 1.15)  1.09 (1.04, 1.21) 5.58 (4.97, 6.12) 

Covariates Count (%) or Median (IQR) Count (%) or Median (IQR) Count (%) or Median (IQR) 

Age 62 (0) 52.08 (7.27) 63.63 (7.57%) 

Sex, male  708 (48.32%) 911 (76.75%) 15750 (47.77%) 

BMI 26.94 (24.49, 30.22) 27.00 (24.35, 29.90) 25.84 (23.46, 28.77) 

CVD, Yes 875 (8.72%) 232 (19.55%) 2153 (6.53%) 

Diabetes, Yes 321 (21.88%) 256 (21.57%) 1991 (6.04%) 

High cholesterol, Yes 282 (19.22%) 235 (19.80%) 6145 (18.64%) 

Hypertension 719 (50.65%) 700 (58.98%) 9106 (27.62%) 

Participants were included in the study if they had the apolipoprotein APOE ε genotype and at least one echocardiographic parameter available. 
–/–, no APOE ε4 carriage;  +/–, heterozygous APOE ε4 carriage;  +/+, homozygous APOE ε4 carriage; APOE, apolipoprotein E, BMI, body mass index; CVD, cardiovascular disease; Echo, 

echocardiography; EF, ejection fraction; IQR, interquartile, IVSs/d, interventricular septal thickness in systole/diastole; LVmassi, left ventricular mass indexed to body surface area, LVPWT s/d left 

ventricular posterior wall thickness in systole/diastole; MCFi, myocardial contraction fraction; N/A, not applicable; NSHD, National Survey of Health and Development; L/RPDSR, longitudinal/radial peak 

diastolic strain rate; SABRE, Southall and Brent Revisited.   
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Table 2. Associations between APOE ε4 genotypes and echocardiographic data in older age by comparing non-APOE ε4 (ε2ε2, 

ε2ε3, ε2ε3) with APOE ε4 (ε2ε4, ε3ε4 and ε4ε4) genotypes in the meta-analysis pooling SABRE and NSHD data.  
 

s  Model 1 

(unadjusted) 

Model 2 

(adjusted for 

age, sex, and 

SEP) 

Model 3+ 

(adjusted for 

BMI) 

Model 4 

(adjusted for 

CVD) 

Model 5 

(adjusted for 

diabetes) 

Model 6  

(adjusted for 

high 

cholesterol) 

Model 7 

(adjusted for 

HT) 

Outcome APOE ε4 

status 

n Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-value 

EF No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

 1.00 

(0.98, 

1.03) 

0.670 1.00 

(0.99, 

1.02) 

0.687 1.00 

(0.98, 

1.03) 

0.677 1.00 (0.99, 

1.02) 

0.773 1.00 

(0.98, 

1.02) 

0.981 1.01 

(0.98, 

1.03) 

0.689 1.00 (0.98, 

1.02) 

0.697 

E/e’ No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

 0.99 

(0.96, 

1.01) 

0.263 0.99 

(0.97, 

1.02) 

0.453 0.99 

(0.96, 

1.01) 

0.274 0.98 (0.96, 

1.01) 

0.214 0.99 

(0.95, 

1.03) 

0.529 0.98 

(0.95, 

1.01) 

0.116 0.99 

(0.96, 

1.04) 

0.302 

LVmass No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

 1.02 

(0.98, 

1.07) 

0.347 1.01 

(0.98, 

1.04) 

0.607 1.03 

(0.98, 

1.07) 

0.258 1.03 (0.97, 

1.09) 

0.320 1.03 

(0.98, 

1.09) 

0.249 1.02 

(0.98, 

1.06) 

0.294 1.03 

(0.98, 

1.08) 

0.308 

MCF No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

2074 1.04 

(1.01, 

1.07) 

0.016 1.04 

(1.01, 

1.07) 

0.008 1.04 

(1.01, 

1.07) 

0.007 1.03 (1.00, 

1.06) 

0.046 1.03 

(1.00, 

1.07) 

0.069 1.05 

(1.00, 

1.09) 

0.038 1.03 

(1.00, 

1.06) 

0.030 

LVPWTs No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 
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 APOE ε4 

carriers 

 1.00 

(0.97, 

1.03) 

0.859 0.99 

(0.97,

1.02) 

0.621 1.00 

(0.97, 

1.03) 

0.847 1.00 (0.96, 

1.03) 

0.907 1.00 

(0.97, 

1.04) 

0.891 1.00 

(0.97, 

1.03) 

0.971 1.00 

(0.97, 

1.03) 

0.882 

LVPWTd 

 

No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

 1.00 

(0.97, 

1.04) 

0.780 1.00 

(0.98, 

1.02) 

0.967 1.01 

(0.97, 

1.04) 

0.745 1.00 (0.97, 

1.04) 

0.805 1.01 

(0.98, 

1.04) 

0.710 1.00 

(0.98, 

1.02) 

0.807 1.01 

(0.97, 

1.04) 

0.751 

IVSs 

 

No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

 1.00 

(0.98, 

1.01) 

0.843 0.99 

(0.98, 

1.01) 

0.480 0.99 

(0.98, 

1.01) 

0.478 1.00 (0.99, 

1.02) 

0.262 1.00 

(0.99, 

1.02) 

0.881 0.99 

(0.98, 

1.01) 

0.518 1.00 

(0.99, 

1.02) 

0.992 

IVSd 

 

No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

 1.00 

(0.98, 

1.02) 

0.776 1.00 

(0.98, 

1.02) 

0.972 1.00 

(0.99, 

1.02) 

0.758 1.00 (0.99, 

1.02) 

0.644 1.01 

(0.99, 

1.03) 

0.389 1.00 

(0.98, 

1.03) 

0.759 1.00 

(0.99, 

1.02) 

0.605 

 

 
All reported analyses here consisted of random-effects meta-analyses of coefficients derived from generalized linear models with gamma distribution and log link from both NSHD and SABRE. 

Significant p-values are highlighted in bold. 

β, beta regression coefficient; CI, confidence interval; exp, exponentiated; ref, reference. Other abbreviations as in Table 1.   
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Table 3. Associations between APOE ε4 genotypes and echocardiographic data in older age by comparing non-APOE ε4 (ε2ε2, 

ε2ε3, ε2ε3) with APOE ε4 (ε2ε4, ε3ε4 and ε4ε4) genotypes in UK Biobank.  

 

s  Model 1 

(unadjusted) 

Model 2 

(adjusted for 

age, sex, and 

SEP) 

Model 3+ 

(adjusted for 

BMI) 

Model 4 

(adjusted for 

CVD) 

Model 5 

(adjusted for 

diabetes) 

Model 6  

(adjusted for 

high 

cholesterol) 

Model 7 

(adjusted for HT) 

Outcome APOE ε4 

status 

n Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-value 

EF No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

32644 1.00 

(1.00, 

1.00) 

0.916 1.00 

(1.00, 

1.00) 

0.453 1.00 

(1.00, 

1.00) 

0.902 1.00 (1.00, 

1.00) 

0.836 1.00 

(1.00, 

1.00) 

0.830 1.00 

(1.00, 

1.00) 

0.840 1.00 

(1.00, 

1.00) 

0.914 

LPDSR No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

32505 1.02 

(1.00, 

1.03) 

0.045 1.00 

(0.99, 

1.02) 

0.657 1.02 

(1.00, 

1.03) 

0.063 1.02 (1.00, 

1.03) 

0.032 1.01 

(1.00, 

1.03) 

0.095 1.02 

(1.01, 

1.04) 

0.002 1.02 

(1.00, 

1.03) 

0.059 

RPDSR No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

32505 0.95 

(0.90, 

1.00) 

0.05 0.98 

(0.94, 

1.04) 

0.536 0.96 

(0.91, 

1.01) 

0.102 0.95 (0.90, 

1.00) 

0.034 0.96 

(0.91, 

1.01) 

0.106 0.93 

(0.88, 

0.98) 

0.004 0.95 

(0.90, 

1.00) 

0.063 

LVmass 

 

No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

32644 1.00 

(0.99, 

1.01) 

0.568 1.00 

(1.00, 

1.01) 

0.242 1.00 

(0.99, 

1.01) 

0.798 1.00 (0.99, 

1.00) 

0.350 1.00 

(0.99, 

1.01) 

0.815 1.00 

(0.99, 

1.00) 

0.127 1.00 

(0.99, 

1.01) 

0.695 

MCF No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

32643 1.01 

(1.00, 

1.01) 

0.020 1.01 

(1.00, 

1.01) 

0.080 1.00 

(1.00, 

1.01) 

0.079 1.01 (1.00, 

1.01) 

0.006 1.00 

(1.00, 

1.01) 

0.058 1.01 

(1.01, 

1.01) 

0.000

1 

1.01 

(1.00, 

1.01) 

0.034 

PWT No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 

APOE ε4 

carriers 

32605 1.00 

(0.99, 

1.00) 

0.094 1.00 

(1.00, 

1.00) 

0.881 1.00 

(1.00, 

1.00) 

0.448 1.00 (0.99, 

1.00) 

0.037 1.00 

(1.00, 

1.00) 

0.257 0.99 

(0.99, 

1.00) 

0.002 1.00 

(1.00, 

1.00) 

0.132 

IVS No APOE ε4 ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref 
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APOE ε4 

carriers 

32605 1.00 

(0.99, 

1.00) 

0.128 1.00 

(1.00, 

1.00) 

0.986 1.00 

(1.00, 

1.00) 

0.537 1.00 (0.99, 

1.00) 

0.056 1.00 

(0.99, 

1.00) 

0.281 1.00 

(0.99, 

1.00) 

0.003 1.00 

(0.99, 

1.00) 

0.179 

All reported analyses here consisted of generalized linear models with gamma distribution and log link, except for the longitudinal and radial PDSR analyses where generalized linear models with 

Gaussian distribution and identity link were used instead. Significant p-values are highlighted in bold.  Abbreviations as in Tables 1 and 2.  
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Table 4.  Dose response of APOE ε4 carriage when assessing the association between APOE ε4 genotype and echocardiographic 

and CMR data in older age. 

 
   Model 1 

(unadjusted) 

Model 2 

(adjusted for 

age, sex and 

SEP) 

Model 3 

(adjusted for 

BMI) 

Model 4 

(adjusted for 

CVD) 

Model 5 

(adjusted for 

diabetes) 

Model 6  

(adjusted for 

high 

cholesterol) 

Model 7 

(adjusted for 

HT) 

Outco

me: 

Cohort Analysis  n Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

MCF UK 

biobank 

APOE ε4-

linear 

32644 1.01 

(1.00, 

1.02) 

0.082 1.01 

(1.00, 

1.02) 

0.152 1.01 

(1.00, 

1.02) 

0.239 1.01 

(1.00, 

1.02) 

0.036 1.01 

(1.00, 

1.02) 

0.123 1.01 

(1.00, 

1.02) 

0.006 1.01 

(1.00, 

1.02) 

0.109 

SABRE+

NSHD 

meta-

analysis 

APOE ε4-

linear  

2074 1.02 

(0.96, 

1.08) 

0.544 1.02 

(0.96, 

1.08) 

0.516 1.03 

(0.97, 

1.09) 

0.906 1.01 

(0.95, 

1.07) 

0.729 1.00 

(0.95, 

1.07) 

0.870 1.01 

(0.94, 

1.08) 

0.780 1.01 

(0.96, 

1.07) 

0.670 

UK 

biobank 

APOE ε4 -

quadratic 

32644 1.00 

(0.99, 

1.01) 

0.770 1.00 

(1.00, 

1.01) 

0.424 1.00 

(0.99, 

1.01) 

0.972 1.00 

(1.00, 

1.01) 

0.687 1.00 

(1.00, 

1.01) 

0.711 1.00 

(1.00, 

1.01) 

0.723 1.00 

(0.99, 

1.01)  

0.803 

SABRE+

NSHD 

meta-

analysis 

APOE ε4 -

quadratic 

2074 0.98 

(0.93, 

1.03) 

0.475 0.98 

(0.93, 

1.03) 

0.451 0.99 

(0.94, 

1.04) 

0.675 0.98 

(0.94, 

1.02) 

0.327 0.98 

(0.94, 

1.02) 

0.251 0.97 

(0.92, 

1.01) 

0.174 0.98 

(0.94, 

1.02) 

0.312 

Longitu

dinal 

PDSR 

UK 

biobank 

APOE ε4-

linear 

32505 1.01 

(0.98, 

1.04) 

0.557 1.00 

(0.97, 

1.03) 

0.855 1.01 

(0.97, 

1.04) 

0.756 1.01 

(0.98, 

1.04) 

0.476 1.01 

(0.98, 

1.04) 

0.678 1.02 

(0.99, 

1.05) 

0.199 1.01 

(0.97, 

1.04) 

0.630 

UK 

biobank 

APOE ε4 -

quadratic 

0.99 

(0.97, 

1.01) 

0.499 1.00 

(0.98, 

1.02) 

0.640 0.99 

(0.97, 

1.01) 

0.388 0.99 

(0.97, 

1.02) 

0.524 0.99 

(0.97, 

1.02) 

0.524 0.99 

(0.97, 

1.02) 

0.526 0.99 

(0.97, 

1.01) 

0.477 

Radial 

PDSR 

UK 

biobank 

APOE ε4-

linear 

32505 0.98 

(0.88, 

1.09) 

0.725 1.02 

(0.92, 

1.13) 

0.786 0.99 

(0.89, 

1.10) 

0.282 0.97 

(0.87, 

1.08) 

0.614 0.99 

(0.89, 

1.10) 

0.858 0.95 

(0.85, 

1.06) 

0.321 0.99 

(0.88, 

1.10) 

0.789 

UK 

biobank 

APOE ε4 -

quadratic 

1.03 

(0.96, 

1.11) 

0.379 1.02 

(0.96, 

1.10) 

0.503 1.03 

(0.96, 

1.11) 

0.416 1.03 

(0.96, 

1.11) 

0.405 1.03 

(0.96, 

1.11) 

0.400 1.03 

(0.96, 

1.11) 

0.399 1.04 

(0.96, 

1.11) 

0.365 

The APOE ε4 genotypes were coded as an ordered category based on the number of ε4 possessed. Thus, level 0 encompassed ε2ε2, ε2ε3, ε2ε3, level 1 ε2ε4 and ε3 ε4 and level 2 ε4ε4. Given the 

existence of two levels, generalized linear models and orthogonal polynomial contrasts with 2 equally spaced levels (i.e., linear and quadratic) were employed to look for a dose response by ε4 variants. 

Significant p-values are highlighted in bold. Abbreviations as in Table 2.  
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Table 5. Associations between APOE ε4 genotypes and echocardiographic data in older age by comparing non-APOE ε4 (ε2ε2, 

ε2ε3, ε2ε3) with heterozygous-APOE ε4 (ε2ε4 and ε3ε4) and homozygous-APOE ε4 (ε4ε4) genotypes. 
 

   Model 1 

(unadjusted) 

Model 2 

(adjusted for 

sex and SEP) 

Model 3 

(adjusted for 

BMI) 

Model 4 

(adjusted for 

CVD) 

Model 5 

(adjusted for 

diabetes) 

Model 6  

(adjusted for 

high 

cholesterol) 

Model 7 

(adjusted for 

HT) 

Outco

me: 

Cohort Analysis  n Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

Exp β 

(95% 

CI) 

p-

value 

MCF UK 

Biobank 

Heterozygo

us-APOE 

ε4 

31909 1.01 

(1.00, 

1.01) 

0.047 1.00 

(0.99, 

1.01) 

0.140 1.00 

(1.00, 

1.01) 

0.120 1.01 

(1.00, 

1.01) 

0.019 1.00 

(1.00, 

1.01) 

0.116 1.01 

(1.00, 

1.01) 

0.000

8 

1.00 

(1.00, 

1.01) 

0.069 

SABRE+

NSHD 

meta-

analysis 

Heterozygo

us-APOE 

ε4 

2019 1.04 

(1.01, 

1.07) 

0.016 1.04 

(1.01, 

1.07) 

0.013 1.04 

(1.01, 

1.07) 

0.018 1.03 

(1.00, 

1.06) 

0.043 1.03 

(1.00, 

1.07) 

0.060 1.05 

(1.00, 

1.10) 

0.040 1.03 

(1.00, 

1.06) 

0.028 

UK 

Biobank 

Homozygo

us-APOE 

ε4 

25086 1.01 

(1.00, 

1.03) 

0.083 1.01 

(1.00, 

1.02) 

0.166 1.01 

(1.00, 

1.02) 

0.252 1.01 

(1.00, 

1.03) 

0.034 1.01 

(1.00, 

1.02) 

0.115 1.02 

(1.01, 

1.03) 

0.006 1.01 

(1.00, 

1.02)  

0.123 

SABRE+

NSHD 

meta-

analysis 

Homozygo

us-APOE 

ε4 

1539 1.03 

(0.95, 

1.11) 

0.544 1.03 

(0.95, 

1.11) 

0.517 1.04 

(0.96, 

1.13) 

0.350 1.02 

(0.92, 

1.10) 

0.704 1.01 

(0.93, 

1.09) 

0.874 1.01 

(0.92, 

1.11) 

0.812 1.02 

(0.94, 

1.10) 

0.652 

Longitu

dinal 

PDSR 

UK 

biobank 

Heterozygo

us-APOE 

ε4 

31909 1.02 

(1.00, 

1.03) 

0.049 1.00 

(0.99, 

1.02) 

0.610 1.02 

(1.00, 

1.03) 

0.059 1.02 

(1.00, 

1.03) 

0.038 1.01 

(1.00, 

1.03) 

0.099 1.02 

(1.01, 

1.04) 

0.004 1.02 

(1.00, 

1.03) 

0.062 

UK 

biobank 

Heterozygo

us-APOE 

ε4 

24965 1.01 

(0.97, 

1.06) 

0.556 1.00 

(0.96, 

1.04) 

0.843 1.01 

(0.96, 

1.05) 

0.754 1.02 

(0.97, 

1.06) 

0.469 1.01 

(0.97, 

1.06) 

0.679 1.03 

(0.98, 

1.08) 

0.206 1.01 

(0.97, 

1.06) 

0.631 

Radial 

PDSR 

UK 

biobank 

Heterozygo

us-APOE 

ε4 

31773 0.95 

(0.90, 

1.00) 

0.049 0.98 

(0.93, 

1.03) 

0.467 0.96 

(0.90, 

1.01) 

0.094 0.94 

(0.89, 

1.00) 

0.035 0.96 

(0.91, 

1.01) 

0.097 0.93 

(0.88, 

0.98) 

0.005 0.95 

(0.90, 

1.00) 

0.058 

UK 

biobank 

Heterozygo

us-APOE 

ε4 

24965 0.97 

(0.83, 

1.14) 

0.726 1.02 

(0.88, 

1.18) 

0.772 0.98 

(0.84, 

1.15) 

0.820 0.96 

(0.82, 

1.12) 

0.605 0.99 

(0.85, 

1.15) 

0.859 0.93 

(0.80, 

1.08) 

0.327 0.98 

(0.84, 

1.14) 

0.789 

All reported analyses here consisted of generalized linear models with gamma distribution and log link. Significant p-values are highlighted in bold.  Abbreviations as in Table 2.  
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Figure 1. Associations between APOE ε4 genotypes and echocardiographic and cardiac MRI data in older age. 

As APOE ε4 carriers had a higher myocardial contraction fraction, the mechanistic pathways were explored by adjusting the models 

for mediators (body mass index, cardiovascular disease, diabetes, high cholesterol, and hypertension).  

 
EF, ejection fraction; IVS, interventricular septal thickness; LVmass, left ventricular mass, LVPW left ventricular posterior wall thickness; MCF myocardial contraction fraction; PDSR, longitudinal/radial 
peak diastolic strain rate.  
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Figure 2. Graphical abstract. 

Combining data from three British cohorts–1946 National Survey of Health and Development (NSHD), Southall and Brent Revised 

(SABRE) and UK Biobank–we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) 

structural and functional parameters by echocardiography and cardiovascular magnetic resonance (CMR) in older age. Based on the 

presence of APOE ε4, genotypes were divided into: APOE ε4 (ε2ε4, ε3ε4, ε4ε4) and non-APOE ε4 carriers. Compared to the non-APOE 

ε4 group, APOE ε4 carriers had a higher myocardial contraction fraction resulting in greater LV stroke volume generation per 1 mL of 

myocardium and better longitudinal strain rates compared to non APOE ε4 carriers. 
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