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Abstract  

Normal and pathologic neurobiological processes influence brain morphology in coordinated 

ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals 

during brain aging and brain diseases. The genetic underpinnings of these patterns remain largely 

unknown. We apply a stochastic multivariate factorization method to a diverse population of 

50,699 individuals (12 studies, 130 sites) and derive data-driven, multi-scale PSCs of regional 

brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of 

which are novel, and 72% were independently replicated. Key pathways influencing PSCs 

involved reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways 

of breast cancer indicate potential interplays between brain metastasis and PSCs associated with 

neurodegeneration and dementia. Using machine learning, multi-scale PSCs effectively derive 

imaging signatures of several brain diseases. Our results elucidate new genetic and biological 

underpinnings that influence structural covariance patterns in the human brain.   
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Main 

Brain structure and function are interrelated via complex networks that operate at multiple scales, 

ranging from cellular and synaptic processes, such as neural migration, synapse formation, and 

axon development, to local and broadly connected circuits.1 Due to a fundamental relationship 

between activity and structure, many normal and pathologic neurobiological processes, driven by 

genetic and environmental factors, collectively cause coordinated changes in brain morphology. 

Structural covariance analyses investigate such coordinated changes by seeking patterns of 

structural covariation (PSC) across brain regions and individuals.1 For example, during 

adolescence, PSCs derived from magnetic resonance imaging (MRI) have been considered to 

reflect a coordinated cortical remodeling as the brain establishes mature networks of functional 

specialization.2 Structural covariance is not only related to normal brain development or aging 

processes but can also reflect coordinated brain change due to disease. For example, individuals 

with motor speech dysfunction may develop brain atrophy in Broca's inferior frontal cortex and 

co-occurring brain atrophy in Wernicke's area of the superior temporal cortex.3 See Fig. 1C for 

an example.   

The human brain develops, matures, and degenerates in coordinated patterns of structural 

covariance at the macrostructural level of brain morphology.1 However, the mechanisms 

underlying structural covariance are still unclear, and their genetic underpinnings are largely 

unknown. We hypothesized that brain morphology was driven by multiple genes (i.e., polygenic) 

collectively operating on different brain areas (i.e., pleiotropic), resulting in connected networks 

covaried by normal aging and various disease-related processes. Along the causal pathway from 

underlying genetics to brain morphological changes, we sought to elucidate which genetic 

underpinnings (e.g., genes), biological processes (e.g., neurogenesis), cellular components (e.g., 
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nuclear membrane), molecular functions (e.g., nucleic acid binding), and neuropathological 

processes (e.g., Alzheimer's disease) might influence the formation, development, and changes 

of structural covariance patterns in the human brain. 

Previous neuroimaging genome-wide association studies (GWAS)4,5 have partially 

investigated the abovementioned questions and expanded our understanding of the genetic 

architecture of the human brain. However, their focus was on conventional neuroanatomical 

regions of interest (ROI) instead of data-driven PSCs. In brain imaging research, prior studies 

have applied structural covariance analysis to elucidate underlying coordinated morphological 

changes in brain aging and various brain diseases,1 but have had several limitations. They often 

relied on pre-defined neuroanatomical ROIs to construct inter- and intra-individual structural 

covariance networks. These a priori ROIs might not optimally reflect the molecular-functional 

characteristics of the brain. In addition, most population-based studies have investigated brain 

structural covariance within a relatively limited scope, such as within relatively small samples, 

over a relatively narrow age window (e.g., adolescence2), within a single disease (e.g., 

Parkinson's disease6), or within datasets lacking sufficient diversity in cohort characteristics or 

MRI scanner protocols. These have been imposed, in part, by limitations in both available cohort 

size and in the algorithmic implementation of structural covariance analysis, which has been 

computationally restricted to modest sample sizes when investigated at full image resolution. 

Lastly, prior studies have examined brain structural covariance at a single fixed ROI 

resolution/scale/granularity. While the optimal scale is unknown and may differ by the question 

of interest, the highly complex organization of the human brain may demonstrate structural 

covariance patterns that span multiple scales.7,8  
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We examined structural covariance of regional cortical and subcortical volume in the 

human brain using MRI from a diverse population of 50,699 people from 12 studies, 130 sites, 

and 12 countries, comprised of cognitively healthy individuals, as well as participants with 

various diseases/conditions over their lifespan (ages 5 through 97). In order to enable such a 

large-scale study, we developed a stochastic adaptation of the orthogonally projective non-

negative matrix factorization9 to derive multi-scale PSCs. This method allowed us to derive 

PSCs at any desirable scale, which is defined by the number, C, of derived PSCs. Herein we 

present results from coarse to fine scales corresponding to C = 32, 64, 128, 256, 512, and 1024. 

We hypothesized that PSCs at multiple scales could delineate the human brain's multi-factorial 

and multi-faceted morphological landscape and genetic architecture in healthy and diseased 

individuals. We examined the associations between these multi-scale PSCs and common genetic 

variants at different levels (N=8,469,833 SNPs). In total, 617 novel genomic loci were identified; 

key pathways (e.g., neurogenesis and reelin signaling) contributed to shaping structural 

covariance patterns in the human brain. In addition, we leveraged PSCs at multiple scales to 

better derive individualized imaging signatures of several diseases than any single scale PSCs 

using machine learning. All experimental results and the multi-scale PSCs were integrated into 

the MuSIC (Multi-scale Structural Imaging Covariance) atlas and made publicly accessible 

through the BRIDGEPORT (BRaIn knowleDGE PORTal) web portal: 

https://www.cbica.upenn.edu/bridgeport/. 
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Results 

We summarize this work in three units (I to III) outlined in Fig. 1. In Unit I (Fig. 1A), we 

present the stochastic orthogonally projective non-negative matrix factorization (sopNMF) 

algorithm (Method 1), optimized for large-scale multivariate structural covariance analysis. The 

sopNMF algorithm decomposes large-scale imaging data through online learning to overcome 

the memory limitations of opNMF. A subgroup of participants with multiple disease diagnoses 

and healthy controls (ages 5-97, training population, N=4000, Method 2) were sampled from the 

discovery set (N=32,440, Method 2); their MRI underwent a standard imaging processing 

pipeline (Method 3A). The processed images were then fit to sopNMF to derive the multi-scale 

PSCs (N=2003) from the loadings of the factorization (Method 1). We incorporate participants 

with various disease conditions because previous studies have demonstrated that inter-regional 

correlated patterns (i.e., depicting a network) show variations in healthy and diseased 

populations, albeit to a differing degree.10 Multi-scale PSCs were extracted across the entire 

population and statistically harmonized11 (Method 3B). Unit II (Fig. 1B) investigates the 

harmonized data for 2003 PSCs (13 PSCs have vanished in this process for C=1024; see Method 

1) in two brain structural covariance analyses. Specifically, we performed i) GWAS (Method 4) 

that sought to discover associations of PSCs at single nucleotide polymorphism (SNP), gene, or 

gene set-level; and ii) pattern analysis via machine learning (Method 5) to derive individualized 

imaging signatures of several brain diseases and conditions. Unit III (Fig. 1C) presents 

BRIDGEPORT, making these massive analytic resources publicly available to the imaging, 

genomics, and machine learning communities.  
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Figure 1: Study workflow  

 
A) Unit I: the stochastic orthogonally projective non-negative matrix factorization (sopNMF) 

algorithm was applied to a large, disease-diverse population to derive multi-scale patterns of 

structural covariance (PSC) at different scales (C=32, 64, 128, 256, 512, and 1024; C represents 

the number of PSCs). B) Unit II: two types of analyses were performed in this study: Genome-

wide association studies (GWAS) relate each of the PSCs (N=2003) to common genetic variants; 

pattern analysis via machine learning demonstrates the utility of the multi-scale PSCs in deriving 

individualized imaging signatures of various brain pathologies. C) Unit III: BRIDGEPORT is a 

web portal that makes all resources publicly available for dissemination. As an illustration, a 

Manhattan plot for PSC (C64-3, the third PSC of the C64 atlas) and its 3D brain map are 

displayed. 

 

Patterns of structural covariance via stochastic orthogonally projective non-negative 

matrix factorization 
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We first validated the sopNMF algorithm by showing that it converged to the global minimum of 

the factorization problem using the comparison population (N=800, Method 2). The sopNMF 

algorithm achieved similar reconstruction loss and sparsity as opNMF but at reduced memory 

demand (Supplementary eFigure 1). The lower memory requirements of sopNMF made it 

possible to generate the multi-scale PSCs by jointly factorizing 4000 MRIs in the training 

population. The results of the algorithm were robust and obtained a high reproducibility index 

(RI) (Supplementary eMethod 2) in reproducibility analyses: split-sample analysis (RI = 

0.76±0.27) and split-sex analysis (RI = 0.79±0.27) (Supplementary eFigure 2). We then 

extracted the multi-scale PSCs in the discovery set (N=32,440) and the replication set 

(N=18,259, Method 2) for Unit II. These PSCs succinctly capture underlying neurobiological 

processes across the lifespan, including the effects of typical aging processes and various brain 

diseases. In addition, the multi-scale representation constructs a hierarchy of brain structure 

networks (e.g., PSCs in cerebellum regions), which models the human brain in a multi-scale 

topology.7,12 

 

Patterns of structural covariance are highly heritable 

The multi-scale PSCs are highly heritable (0.05< h2 <0.78), showing high SNP-based heritability 

estimates (h2) (Method 4B) for the discovery set (Fig. 2). Specifically, the h2 estimate was 

0.49±0.10, 0.39±0.14, 0.29±0.15, 0.25±0.15, 0.27±0.15, 0.31±0.15 for scales C=32, 64, 128, 

256, 512 and 1024 of the PSCs, respectively. The Pearson correlation coefficient between the two 

independent estimates of h2 was r = 0.94 (p-value < 10-6, between the discovery and replication 

sets) in the UK Biobank (UKBB) data. The scatter plot of the two sets of h2 estimates is shown in 

Supplementary eFigure 3. The h2 estimates and p-values for all PSCs are detailed in 
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Supplementary eFile 1 (discovery set) and eFile 2 (replication set). Our results confirm that brain 

structure is heritable to a large extent and identify the spatial distribution of the most highly 

heritable regions of the brain (e.g., subcortical gray matter structures and cerebellum regions).13 

 

Figure 2: Patterns of structural covariance are highly heritable in the human brain. 

 

Patterns of structural covariance (PSCs) of the human brain are highly heritable. The SNP-based 

heritability estimates are calculated for the multi-scale PSCs at different scales (C). PSCs 

surviving Bonferroni correction for multiple comparisons are depicted in color in the Manhattan 

plots (gray otherwise). The heritability estimate (h2) of each PSC was projected onto the 3D 

image space to show a statistical map of the brain at each scale C. The dotted line indicates the 

top 10% most heritable PSCs on each scale. 

 

617 novel genomic loci of patterns of structural covariance  

We discovered genomic locus-PSC pairwise associations (Method 4C, Supplementary 

eMethod 5) within the discovery set and then independently replicated these associations on the 

replication set. We found that 915 genomic loci had 3791 loci-PSC pairwise significant 

associations with 924 PSCs after Bonferroni correction (Method 4G) for the number of PSCs (p-

value threshold per scale: 10.3 > -log10[p-value] > 8.8) (Supplementary eFile 3, and Fig. 3A). 

Our results showed that the formation of these PSCs is largely polygenic; the associated SNPs 

might play a pleiotropic role in shaping these networks.  
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Compared to previous literature, out of the 915 genomic loci, the multi-scale PSCs 

identified 617 novel genomic loci not previously associated with any traits or phenotypes in the 

GWAS Catalog14 (Supplementary eFile 4, Figure 3B). These novel associations might indicate 

subtle neurobiological processes that are captured thanks to the biologically relevant structural 

covariance expressed by sopNMF. The multi-scale PSCs identified many novel associations by 

constraining this comparison to previous neuroimaging GWAS12,13 using T1w MRI-derived 

phenotypes (e.g., regions of interest from conventional brain atlases) (Fig 3B, Supplementary 

eTable 3, eFile 5, 6, and 7).  

To replicate these genomic loci, our UKBB replication set analysis (Method 4H) 

demonstrated that 3638 (96%) exact genomic locus-PSC associations were replicated at nominal 

significance (-log10[p-value] > 1.31), 2705 (72%) of which were significant after correction for 

multiple comparisons (Method 4G, -log10[p-value] > 4.27). We present this validation in 

Supplementary eFile 8 from the replication set. The summary statistics, Manhattan, and QQ 

plots derived from the combined population (N=33,541) are presented in BRIDGEPORT. 
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Figure 3: Patterns of structural covariance highlight novel genomic loci and pathways that 

shape the human brain. 

 

A) Patterns of structural covariance (PSC) in the human brain are polygenic: the number of 

genomic loci of each PSC is projected onto the image space to show a statistical brain map 

characterized by the number (C) of PSCs. In addition, common genetic variants exert pleiotropic 

effects on the PSCs: circular plots showed the number of associated PSCs (histograms in blue 

color) of each genomic loci over the entire autosomal chromosomes (1-22). The histogram was 

plotted for the number of PSCs for each genomic locus in the circular plots. B) Novel genomic 

loci revealed by the multi-scale PSCs compared to previous findings from GWAS Catalog,14 T1-

weighted MRI GWAS,4,5 and the AAL atlas regions of interest. The green bar indicates the 617 

novel genomic loci not previously associated with any clinical traits in GWAS Catalog; the black 

bar presents the loci identified in other studies that overlap (grey bar for loci in linkage 

disequilibrium) with the loci from our results; the yellow bar indicates the unique loci in other 

studies. C) Pathway enrichment analysis highlights six unique biological pathways and 
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functional categories (after Bonferroni correction for 16,768 gene sets and the number of PSCs) 

that might influence the changes of PSCs. DSCAM: Down syndrome cell adhesion molecule.     

 

 

Gene set enrichment analysis highlights pathways that shape patterns of structural 

covariance 

For gene-level associations (Method 4D), we discovered that 164 genes had 2489 gene-PSC 

pairwise associations with 445 PSCs after Bonferroni correction for the number of genes and 

PSCs (p-value threshold: 8.6 > -log10[p-value] > 7.1) (Supplementary eFile 9).  

Based on these gene-level p-values, we performed hypothesis-free gene set pathway 

analysis using MAGMA15(Method 4E): a more stringent correction for multiple comparisons 

was performed than the prioritized gene set enrichment analysis using GENE2FUN from FUMA 

(Method 4F, Fig. 4). We identified that six gene set pathways had 18 gene set-PSC pairwise 

associations with 17 PSCs after Bonferroni correction for the number of gene sets and PSCs 

(N=16,768 and C from 32 to 1024, p-value threshold: 8.54 > -log10[p-value] > 7.03) (Fig. 3C, 

Supplementary eFile 10). These gene sets imply critical biological and molecular pathways that 

might shape brain morphological changes and development. The reelin signaling pathway exerts 

vital functions in regulating neuronal migration, dendritic growth, branching, spine formation, 

synaptogenesis, and synaptic plasticity.16 The appendage morphogenesis and development 

pathways indicate how the anatomical structures of appendages are generated, organized and 

progressed over time, which are often related to the cell adhesion pathway. These pathways 

elucidate how cells or tissues can be organized to create a complex structure like the human 

brain.17 In addition, the integral component of the cytoplasmic side of the endoplasmic reticulum 

membrane is thought to form a continuous network of tubules and cisternae extending 

throughout neuronal dendrites and axons.18 The DSCAM (Down syndrome cell adhesion 
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molecule) pathway likely functions as a cell surface receptor mediating axon pathfinding. 

Related proteins are involved in hemophilic intercellular interactions.19 Lastly, Nikolsky et al.20 

defined genes from the breast cancer 20Q11 amplicon pathway were involved in the brain might 

indicate the brain metastasis of breast cancer, which is usually a late event with deleterious 

effects on the prognosis.21 In addition, previous findings22,23 revealed an inverse relationship 

between Alzheimer's disease and breast cancer, which might indicate a close genetic relationship 

between the disease and brain morphological changes mainly affecting the entorhinal cortex and 

hippocampus (PSC: C128_3 in Fig. 4).      

 

Illustrations of genetic loci and pathways forming two patterns of structural covariance   

To illustrate how underlying genetic underpinnings might form a specific PSC, we showcased 

two PSCs: C32_4 for the superior cerebellum and C128_3 for the hippocampus-entorhinal 

cortex. The two PSCs were highly heritable and polygenic in our GWAS using the entire UKBB 

data (Fig. 4, N=33,541). We used the FUMA24 online platform to perform SNP2GENE for 

annotating the mapped genes and GENE2FUNC for prioritized gene set enrichment analyses 

(Method 4F). The superior cerebellum PSC was associated with genomic loci that can be 

mapped to 85 genes, which were enriched in many biological pathways, including psychiatric 

disorders, biological processes, molecular functions, and cellular components (e.g., apoptotic 

process, axon development, cellular morphogenesis, neurogenesis, and neuro differentiation). 

For example, apoptosis – the regulated cell destruction – is a complicated process that is highly 

involved in the development and maturation of the human brain and neurodegenerative 

diseases.25 Neurogenesis – new neuron formation – is crucial when an embryo develops and 
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continues in specific brain regions throughout the lifespan.26 All significant results of this 

prioritized gene set enrichment analysis are presented in Supplementary eFile 11. 

For the hippocampus-entorhinal cortex PSC, we mapped 45 genes enriched in gene sets 

defined from GWAS Catalog, including Alzheimer's disease and brain volume derived from 

hippocampal regions. The hippocampus and medial temporal lobe have been robust hallmarks of 

Alzheimer's disease.27 In addition, these genes were enriched in the breast cancer 20Q11 

amplicon pathway20 and the pathway of metastatic breast cancer tumors28, which might indicate 

a specific distribution of brain metastases: the vulnerability of medial temporal lobe regions to 

breast cancer, 21 or highlight an inverse association between Alzheimer's disease and breast 

cancer.22 Lastly, the nuclear membrane encloses the cell's nucleus – the chromosomes reside 

inside – which is critical in cell formation activities related to gene expression and regulation. To 

further support the overlapping genetic underpinnings between this PSC and Alzheimer's 

diseases, we calculated the genetic correlation (rg = -0.28; p-value=0.01) using GWAS summary 

statistics from the hippocampus-entorhinal cortex PSC (i.e., 33,541 people of European ancestry) 

and a previous independent study of Alzheimer's disease29 (i.e., 63,926 people of European 

ancestry) using LDSC.30 All significant results of this prioritized gene set enrichment analysis 

are presented in Supplementary eFile 12. 
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Figure 4: Illustrations of multiple genetic loci and pathways shaping specific patterns of 

structural covariance  

 
We demonstrate how underlying genomic loci and biological pathways might influence the 

formation, development, and changes of two specific PSCs: the 4th PSC of the C32 PSCs 

(C32_4) that resides in the superior part of the cerebellum and the 3rd PSC of the C128 PSCs 

(C128_3) that includes the bilateral hippocampus and entorhinal cortex. We first performed 

SNP2GENE to annotate the mapped genes in the Manhattan plots and then ran GENE2FUNC for 
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the prioritized gene set enrichment analysis (Method 4F). The mapped genes are used as input 

genes for prioritized gene set enrichment analyses. The heat map shows the significant gene sets 

from the GWAS Catalog, curated genes, and gene ontology (GO) that survived the correction for 

multiple comparisons. We selectively present the schematics for three pathways: apoptosis, 

neurogenesis, and nuclear membrane function. Several other key pathways are highlighted in 

bold, and the 3D maps of the two PSCs are presented.       

 

Multi-scale patterns of structural covariance derive disease-related imaging signatures   

The diversity of the population we used to derive the PSCs allowed us to derive PSCs that reflect 

brain development, aging, and the effects of several brain diseases. We investigate the added 

value of the multi-scale PSCs as building blocks of imaging signatures for several brain diseases 

and risk conditions using machine learning methods (herein, we opted for linear support vector 

machines (SVM)) (Method 5).31 The aim is to harness machine learning to drive a clinically 

interpretable metric for quantifying an individual-level risk to each disease category. To this end, 

we define the signatures as SPARE-X (Spatial PAtterns for REcognition) indices, where X is the 

disease. For instance, SPARE-AD captures the degree of expression of an imaging signature of 

AD-related brain atrophy, which has been shown to offer diagnostic and prognostic value in 

prior studies.32  

In our samples, the most discriminative indices were SPARE-AD and SPARE-MCI (Fig. 

5, Supplementary eTable 4, eFigure 4). C=1024 achieved the best performance for the single-

scale analysis (e.g., AD vs. controls; balanced accuracy: 0.90±0.02; Cohen's d: 2.50). Multi-

scale representations derived imaging signatures that showed the largest effect sizes to classify 

the patients from the controls (Fig. 5) (e.g., AD vs. controls; balanced accuracy: 0.92±0.02; 

Cohen's d: 2.61). PSCs obtained better classification performance than both AAL (e.g., AD vs. 

controls; balanced accuracy: 0.82±0.02; Cohen’s d: 1.81) and voxel-wise regional volumetric 

maps (RAVENS)33 (e.g., AD vs. controls; balanced accuracy: 0.85±0.02; Cohen’s d: 2.04) 
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(Supplementary eTable 4 and eFigure 6). Our classification results were higher than previous 

baseline studies,34,35 which provided an open-source framework to objectively and reproducibly 

evaluate AD classification using machine learning. Using the same cross-validation procedure 

and evaluation metric, they reported the highest balanced accuracy of 0.87±0.02 to classify AD 

from healthy controls. Notably, our machine learning experiments followed good practices, 

employed rigorous cross-validation procedures, and avoided critical methodological flaws, such 

as data leakage or double-dipping (see critical reviews on this topic elsewhere34,36). 

 

Figure 5: Individualized imaging signatures based on pattern analysis via machine learning. 

 

Imaging signatures (SPARE indices) of brain diseases, derived via supervised machine learning 

models,  are more distinctive when formed from multi-scale PSCs than single-scale PSCs. The 

kernel density estimate plot depicts the distribution of the patient group (blue) in comparison to 

the healthy control group (red), reflecting the discriminative power of the diagnosis-specific 

SPARE (imaging signature) indices. We computed Cohen's d for each SPARE index between 

groups to present the effect size of its discrimination power. * represents the model with the 

largest Cohen's d for each SPARE index to separate the control vs. patient groups; # represents 

the model with the best performance with single-scale PSCs. Our results demonstrate that the 

multi-scale PSCs generally achieve the largest discriminative effect sizes (ES) (Supplementary 
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eTable 4). As a reference, Cohen's d of ≥ 0.2, ≥ 0.5, and ≥ 0.8 respectively refer to small, 

moderate, and large effect sizes.  

 

BRIDGEPORT: bridging knowledge across patterns of structural covariance, genomics, 

and clinical phenotypes  

We integrated our experimental results and the MuSIC atlas into the BRIDGEPORT online web 

portal. This online tool allows researchers to interactively browse the MuSIC atlas in 3D, query 

our experimental results via variants or PSCs, and download the GWAS summary statistics for 

further analyses. In addition, we allow users to search via conventional brain anatomical terms 

(e.g., the right thalamus proper) by automatically annotating traditional anatomic atlas ROIs, 

specifically from the MUSE atlas37 (Supplementary eTable 5), to MuSIC PSCs based on their 

degree of overlaps (Supplementary eFigure 5). Open-source software dedicated to image 

processing,37 genetic quality check protocols, MuSIC generation with sopNMF, and machine 

learning34 is also publicly available (see Code Availability for details).   
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Discussion 

The current study investigates patterns of structural covariance in the human brain at multiple 

scales from a large population of 50,699 people and, importantly, a very diverse cohort allowing 

us to capture patterns of structural covariance emanating from normal and abnormal brain 

development and aging, as well as from several brain diseases. Through extensive examination 

of the genetic architecture of these multi-scale PSCs, we confirmed genetic hits from previous 

T1-weighted MRI GWAS and, more importantly, identified 617 novel genomic loci and 

molecular and biological pathways that collectively influence brain morphological changes and 

development over the lifespan. Using a hypothesis-free, data-driven approach, we elucidated that 

underlying genetics and biological pathways can form multi-scale structural covariance patterns, 

which can be further used as building blocks to predict various diseases. All experimental results 

and code are encapsulated and publicly available in BRIDGEPORT for dissemination: 

https://www.cbica.upenn.edu/bridgeport/, in order to enable various neuroscience studies to 

investigate these patterns of structural covariance in diverse contexts. Together, the current study 

highlighted the adoption of machine learning methods in brain imaging genomics and deepened 

our understanding of the genetic architecture of the human brain.      

Our findings reveal new insights into genetic underpinnings that influence patterns of 

structural covariance in the human brain. Brain morphological development and changes are 

largely polygenic and heritable, and previous neuroimaging GWAS has not fully uncovered this 

genetic landscape. In contrast, genetic variants, as well as environmental, aging, and disease 

effects, exert pleiotropic effects in shaping morphological changes in different brain regions 

through specific biological pathways. The mechanisms underlying brain structural covariance are 

not yet fully understood. They may involve an interplay between common underlying genetic 
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factors, shared susceptibility to aging, and various brain pathologies, which affect brain growth 

or degeneration in coordinated brain morphological changes.1 Our data-driven, multi-scale PSCs 

identify the hierarchical structure of the brain under the principle of structural covariance and are 

associated with genetic factors at different levels, including SNPs, genes, and gene set pathways. 

These 617 novel genomic loci, as well as those previously identified, collectively shape brain 

morphological changes through many key biological and molecular pathways. These pathways 

are widely involved in reelin signaling, apoptotic processes, axonal development, cellular 

morphogenesis, neurogenesis, and neuro differentiation,25,26 which may collectively influence the 

formation of structural covariance patterns in the brain. Strikingly, pathways involved in breast 

cancer shared overlapping genetic underpinnings evidenced in our MAGMA-based and 

prioritized (GENE2FUNC) gene set enrichment analyses (Fig. 3C and Fig. 4), which included 

specific pathways involved in breast cancer and metastatic breast cancer tumors. One previous 

study showed that common genes might mediate breast cancer metastasis to the brain,21 and a 

later study further corroborated that the metastatic spread of breast cancer to other organs 

(including the brain) accelerated during sleep in both mouse and human models.38 We further 

showcased that this brain metastasis of breast cancer might be associated with specific 

neuropathologic processes, which were captured by PSCs data driven by Alzheimer's disease-

related neuropathology. For example, the hippocampus-entorhinal cortex PSC (C128_3, Fig. 4) 

connected the bilateral hippocampus and medial temporal lobe – the salient hallmark of 

Alzheimer's disease. Our gene set enrichment analysis results further support this claim: the 

genes were enriched in the gene sets of Alzheimer's disease and breast cancer (Fig. 4). Previous 

research22,23 also found an inverse association between Alzheimer's disease and breast cancer. In 

addition, PSCs from the cerebellum were the most genetically influenced brain regions, 
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consistent with previous neuroimaging GWAS.4,5 The cerebral cortex has been thought to largely 

contribute to the unique mental abilities of humans. However, the cerebellum may also be 

associated with a much more comprehensive range of complex cognitive functions and brain 

diseases than initially thought.39 Our results confirmed that many genetic substrates might 

support different molecular pathways, resulting in the cerebellar functional organization, high-

order functions, and dysfunctions in various brain disorders. 

The current work demonstrates that appropriate machine learning analytics can be used to 

shed new light on brain imaging genetics. Previous neuroimaging GWAS leveraged multimodal 

imaging-derived phenotypes from conventional brain atlases4,5 (e.g., ROIs from the AAL atlas). 

In contrast, multi-scale PSCs are purely data-driven and likely to reflect the dynamics of 

underlying normal and pathological neurobiological processes giving rise to structural 

covariance. The diverse training sample from which the PSCs were derived, including healthy 

and diseased individuals of a wide age range, enriched the diversity of such neurobiological 

processes influencing the PSCs. In addition, modeling structural covariance at multiple scales 

(i.e., multi-scale PSCs) indicated that disease effects could be robustly and complementarily 

identified across scales (Fig. 6), concordant with the paradigm of multi-scale modeling of the 

brain.12 Imaging signatures of brain diseases, derived via supervised machine learning models,  

were consistently more distinctive when formed from multi-scale PSCs compared to single-scale 

PSCs.  

MuSIC – with the strengths of being data-driven, multi-scale, and disease-effect 

informative – contributes to the century-old quest for a "universal" atlas in brain cartography40 

and is highly complementary to previously proposed brain atlases. For instance, Chen and 

colleagues41 used a semi-automated fuzzy clustering technique with MRI data from 406 twins 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.22277727doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277727
http://creativecommons.org/licenses/by-nc/4.0/


 23 

and parcellated the cortical surface area into a genetic covariance-informative brain atlas; MuSIC 

was data-driven by structural covariance. Glasser and colleagues42 adopted a semi-automated 

parcellation procedure to create a multimodal cortex atlas from 210 healthy individuals. 

Although this method was successful in integrating multimodal information from cortical 

folding, myelination, and functional connectivity, this semi-automatic approach requires 

significant resources, some with limited resolution. MuSIC allows flexible, multiple scales for 

delineating macroscopic brain topology; the inclusion of patient samples exposes the model to 

sources of variability that may not be visible in healthy controls. Another pioneering endeavor is 

the Allen Brain Atlas project,43 whose overarching goals of mapping the human brain to gene 

expression data via existing conventional atlases, identifying local gene expression patterns 

across the brain in a few individuals, and deepening our understanding of the human brain's 

differential genetic architecture, are complementary to ours – characterizing the global genetic 

architecture of the human brain, emphasizing pathogenic variability and morphological 

heterogeneity.  

Bridging knowledge across the brain imaging, genomics, and machine learning 

communities is another pivotal contribution of this work. BRIDGEPORT provides a platform to 

lower the entry barrier for whole-brain genetic-structural analyses, foster interdisciplinary 

communication, and advocate for research reproducibility.34,44–47 The current study demonstrates 

the broad applicability of this large-scale, multi-omics platform across a spectrum of 

neurodegenerative and neuropsychiatric diseases.  
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Methods 

Method 1: Structural covariance patterns via stochastic orthogonally projective non-

negative matrix factorization 

The sopNMF algorithm is a stochastic approximation built and extended based on opNMF9,48. 

We consider a dataset of 𝑛 MR images and 𝑑 voxels per image. We represent the data as a 

matrix X where each column corresponds to a flattened image: 𝑿 =  [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑿 ∈  ℝ≥0
𝑑×𝑛. 

The sopNMF algorithm factorizes X into two low-rank (𝑟) matrices 𝑾 ∈  ℝ≥0
𝑑×𝑟 and 𝑯 ∈  ℝ≥0

𝑟×𝑛 

under the constraints of non-negativity and column-orthonormality. Using the Frobenius norm, 

the loss of this factorization problem can be formulated as 

‖𝑿 − 𝑾𝑯‖𝐹
2    

subject to 𝑯 = 𝑾𝑻𝑿 , 𝑾 ≥ 0  and 𝑾𝑻𝑾 = 𝑰   (1) 

where I stands for the identity matrix. The columns  𝑤𝑖 ∈ ℝ𝑑 , ‖𝑤𝑖‖
2 = 1, ∀ 𝑖 ∈ {1. . 𝑟} of the so-

called component matrix 𝑾 =  [𝑤1, 𝑤2, … , 𝑤𝑟] are part-based representations promoting sparsity 

in data in this lower-dimensional subspace. From this perspective, the loading coefficient matrix 

𝑯 represents the importance (weights) of each of the features above for a given image. Instead of 

optimizing the non-convex problem in a batch learning paradigm (i.e., reading all images into 

memory) as opNMF,9 sopNMF subsamples the number of images at each iteration, thereby 

significantly reducing its memory demand, by randomly drawing data batches 𝑿𝒃 ∈  ℝ≥0
𝑑×𝑏 of 

𝑏 ≤ 𝑛 images (b is the batch size); this is done without replacement so that all data goes through 

the model once (⌈𝑛/𝑏⌉). In this case, the updating rule can be rewritten as 

𝑾𝑡+1 = 𝑾𝑡

(𝑿𝒃𝑿𝒃
𝑻𝑾)

𝑡

(𝑾𝑾𝑇𝑿𝒃𝑿𝒃
𝑻𝑾)𝑡

   (2) 
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We calculate the loss on the entire dataset at the end of each epoch (i.e., the loss is incremental 

across all batches) with the following expression 

∑ ‖𝑿𝒃_𝒊 − 𝑾𝑾𝑻𝑿𝒃𝒊‖𝐹

2

⌈𝑛/𝑏⌉

𝑖=1

    (3) 

We evaluated the training loss and the sparsity of W at the end of each iteration. Moreover, early 

stopping was implemented to improve training efficiency and alleviate overfitting. We 

summarize the sopNMF algorithm in Supplementary Algorithm 1. An empirical comparison 

between sopNMF and opNMF is detailed in Supplementary eMethod 1.  

We applied sopNMF to the training population (N=4000). After the algorithm converged, 

the component matrix W was sparse and the loading coefficient matrix was used as the multi-

scale PSCs. To build the MuSIC atlas, we clustered each voxel (row-wise) into one of the 𝑟 

features/PSCs as follows: 

𝑴𝑗 = argmax𝑘(𝑾𝑗,𝑘) (4) 

where M is a d-dimensional vector and 𝑗 ∈ {1. . 𝑑}. The j-th element of M equals k if 𝑾𝑗,𝑘 is the 

maximum value of the j-th row. We finally projected the vector 𝑴 ∈  ℝ≥0
𝑑  into the original image 

space to visualize each PSC of the MuSIC atlas (Fig. 1). Of note, 13 PSCs have vanished in this 

process for C=1024: all 0 for these 13 vectors.  

 

Method 2: Study population  

We consolidated a large-scale multimodal consortium (N=50,699) consisting of imaging, 

cognition, and genetic data from 12 studies, 130 sites, and 12 countries (Supplementary eTable 

1): the Alzheimer's Disease Neuroimaging Initiative49 (ADNI) (N=1765); the UK Biobank50 

(UKBB) (N=39,564); the Australian Imaging, Biomarker, and Lifestyle study of aging51 (AIBL) 
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(N=830); the Biomarkers of Cognitive Decline Among Normal Individuals in the Johns Hopkins 

University52 (BIOCARD) (N=288); the Baltimore Longitudinal Study of Aging53,54 (BLSA) 

(N=1114); the Coronary Artery Risk Development in Young Adults55 (CARDIA) (N=892); the 

Open Access Series of Imaging Studies56 (OASIS) (N=983), PENN (N=807); the Women's 

Health Initiative Memory Study57 (WHIMS) (N=995), the Wisconsin Registry for Alzheimer's 

Prevention58 (WRAP) (N=116); the Psychosis Heterogeneity (evaluated) via dimEnsional 

NeurOiMaging59 (PHENOM) (N=2125); and the Autism Brain Imaging Data Exchange60 

(ABIDE) (N=1220). All studies were approved by the corresponding Institutional Review 

Boards. Each participant consented to be part of the imaging, cognition, and/or genetic biobanks. 

Data from the UKBB for this project pertains to application 35148. 

 We present the demographic information of the population under study in 

Supplementary eTable 1. This large-scale consortium reflects the diversity of MRI scans over 

different races, disease conditions, and ages over the lifespan. To be concise, we defined four 

populations or data sets per analysis across the paper: 

 Discovery set: It consists of a multi-disease and lifespan population that includes 

participants from all 12 studies (N=32,440). Note that this population does not contain 

the entire UKBB population but only our first download (July 2017, N=21,305). 

 Replication set: We held out 18,259 participants from the UKBB dataset to replicate the 

GWAS results. We took these data from our second download of the UKBB dataset 

(November 2021, N=18,259).  

 Training population: We randomly drew 250 patients (PT), including AD, MCI, SCZ, 

ASD, MDD, HTN (hypertension), DM (diabetes mellitus), and 250 healthy controls 

(CN) per decade from the discovery set, ensuring that the PT and CN groups have 
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similar sex, study and age distributions. The resulting set of 4000 imaging data was used 

to generate the MuSIC atlas with the sopNMF algorithm. The rationale is to maximize 

variability across a balanced sample of multiple diseases or risk conditions, age, and 

study protocols rather than overfit the entire data by including all images in training. 

 Comparison population: To validate sopNMF by comparison to the original opNMF 

algorithm, we randomly subsampled 800 participants from the training population (100 

per decade for balanced CN and PT). For this scale of sample size, opNMF can load all 

images into memory for batch learning.61 

 

Method 3: Image processing and statistical harmonization 

(A): Image processing. Images that passed the quality check (Supplementary eMethod 4) were 

first corrected for magnetic field intensity inhomogeneity.62 Voxel-wise regional volumetric 

maps (RAVENS)33 for each tissue volume were then generated by using a registration method to 

spatially align the skull-stripped images to a template in MNI-space.63 We applied sopNMF to 

the RAVENS maps to derive MuSIC.  

 

(B): Statistical harmonization of MuSIC PSCs: We applied MuSIC to the entire population 

(N=50,699) to extract the multi-scale PSCs. Specifically, MuSIC was applied to each individual's 

RAVENS gray matter map to extract the sum of brain volume in each PSC. Subsequently, the 

PSCs were statistically harmonized by an extensively validated approach, i.e., ComBat-GAM 11 

(Supplementary eMethod 3). After harmonization, the PSCs were considerably normally 

distributed (skewness = 0.11±0.17, and kurtosis = 0.67±0.68) (Supplementary eFigure 6A and 

B). To alleviate the potential violation of normal distribution in downstream statistical learning, 
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we quantile-transformed all PSCs. In agreement with the literature,64,65 males were found to have 

larger brain volumes than females on average (Supplementary eFigure 6C). The AAL ROIs 

underwent the same statistical harmonization procedure.   

 

Method 4: Genetic analyses 

Genetic analyses were restricted to the discovery and replication set from UKBB (Method 2). 

We processed the array genotyping and imputed genetic data (SNPs). The two data sets went 

through a "best-practice" imaging-genetics quality check (QC) protocol (Method 4A) and were 

restricted to participants of European ancestry. This resulted in 18,052 participants and 8,430,655 

SNPs for the discovery set, and 15,243 participants and 8,470,709 SNPs for the replication set. 

We reperformed the genetic QC and genetic analyses for the combined populations for 

BRIDGEPORT, resulting in 33,541 participants and 8,469,833 SNPs. Method 4G details the 

correction for multiple comparisons throughout our analyses.    

 

(A): Genetic data quality check protocol. First, we excluded related individuals (up to 2nd-

degree) from the complete UKBB sample (N=488,377) using the KING software for family 

relationship inference.66 We then removed duplicated variants from all 22 autosomal 

chromosomes. We also excluded individuals for whom either imaging or genetic data were not 

available. Individuals whose genetically-identified sex did not match their self-acknowledged sex 

were removed. Other excluding criteria were: i) individuals with more than 3% of missing 

genotypes; ii) variants with minor allele frequency (MAF) of less than 1%; iii) variants with larger 

than 3% missing genotyping rate; iv) variants that failed the Hardy-Weinberg test at 1x10-10. To 

adjust for population stratification,67 we derived the first 40 genetic principle components (PC) 
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using the FlashPCA software68. The genetic pipeline was described elsewhere,69 and documented 

online: https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_protocol.pdf. 

 

(B): Heritability estimates and genome-wide association analysis. We estimated the SNP-

based heritability explained by all autosomal genetic variants using GCTA-GREML.70 We 

adjusted for confounders of age (at imaging), age-squared, sex, age-sex interaction, age-squared-

sex interaction, ICV, and the first 40 genetic principal components (PC). One-side likelihood 

ratio tests were performed to derive the heritability estimates. In GWAS, we performed a linear 

regression for each PSC and included the same covariates as in the heritability estimates using 

PLINK.71 

 

(C): Identification of novel genomic loci. Using PLINK, we clumped the GWAS summary 

statistics based on their linkage disequilibrium to identify the genomic loci (see Supplementary 

eMethod 5 for the definition of the index, candidate, independent significant, lead SNP, and 

genomic locus). In particular, the threshold for significance was set to 5×10-8 (clump-p1) for the 

index SNPs and 0.05 (clump-p2) for the candidate SNPs. The threshold for linkage 

disequilibrium-based clumping was set to 0.60 (clump-r2) for independent significant SNPs 

and 0.10 for lead SNPs. The linkage disequilibrium physical-distance threshold was 250 

kilobases (clump-kb). Genomic loci take into account linkage disequilibrium (within 250 

kilobases) when interpreting the association results. The GWASRAPIDD72 software was then 

used to query the genomic loci for any previously-reported associations with clinical phenotypes 

documented in the NHGRI-EBI GWAS Catalog14 (p-value < 1.0×10-5, default inclusion value of 
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GWAS Catalog). We defined a genomic locus as novel when it was not present in GWAS 

Catalog. 

 

(D): Gene-level associations with MAGMA. We performed gene-level association analysis 

using MAGMA.15 First, gene annotation was performed to map the SNPs (reference variant 

location from Phase 3 of 1,000 Genomes for European ancestry) to genes (human genome Build 

37) according to their physical positions. The second step was to perform the gene analysis based 

on the GWAS summary statistics to obtain gene-level p-values between the pairwise of 2003 

PSCs and the 18,097 protein-encoding genes containing valid SNPs. 

 

(E): Hypothesis-free gene set enrichment analysis with MAGMA. Using the gene-level 

association p-values, we performed gene set enrichment analysis using MAGMA. Gene sets 

were obtained from Molecular Signatures Database (MsigDB, v7.5.1),73 including 6366 curated 

gene sets and 10,402 Gene Ontology (GO) terms. All other parameters were set by default for 

MAGMA. This hypothesis-free analysis resulted in a more stringent correction for multiple 

comparisons (i.e., by the total number of tested genes and the number of PSCs) than the FUMA 

prioritized gene set enrichment analysis (see below F).   

 

(F): FUMA analyses for the illustrations of specific PSCs. In SNP2GENE, three different 

methods were used to map the SNPs to genes. First, positional mapping maps SNPs to genes if 

the SNPs are physically located inside a gene (a 10 kb window by default). Second, expression 

quantitative trait loci (eQTL) mapping maps SNPs to genes showing a significant eQTL 

association. Lastly, chromatin interaction mapping maps SNPs to genes when there is a 
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significant chromatin interaction between the disease-associated regions and nearby or distant 

genes.24 In addition, GENE2FUNC studies the expression of prioritized genes and tests for 

enrichment of the set of genes in pre-defined pathways. We used the mapped genes as prioritized 

genes. The background genes were specified as all genes in FUMA, and all other parameters 

were set by defaults. We only reported gene sets with adjusted p-value < 0.05.   

 

(G): Correction for multiple comparisons. We practiced a conservative procedure to control 

for the multiple comparisons. In the case of GWAS, we chose the default genome-wide 

significant threshold (5.0x10-8, and 0.05 for all other analyses) and independently adjusted for 

multiple comparisons (Bonferroni methods) at each scale by the number of PSCs. We corrected 

the p-values for the number of phenotypes (N=6) for genetic correlation analyses. For heritability 

estimates, we adjusted the p-values for the number of PSCs at each scale. For gene analyses, we 

controlled for both the number of PSCs at each scale and the number of genes. We adopted these 

strategies per analysis to correct the multiple comparisons because PSCs of different scales are 

likely hierarchical and correlated – avoiding the potential of "overcorrection". 

 

(H): Replication analysis for genome-wide association studies. We performed GWAS by 

fitting the same linear regressing models as the discovery set. Also, following the same 

procedure for consistency, we corrected for the multiple comparisons using the Bonferroni 

method. In particular, we corrected it for the number of genomic loci (N=915) found in the 

discovery set with a nominal p-value of 0.05, which thereby resulted in a stringent test with an 

equivalent p-value threshold of 3.1x10-5 (i.e., (-log10[p-value] = 4.27). We performed a 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.22277727doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277727
http://creativecommons.org/licenses/by-nc/4.0/


 32 

replication for the 915 genomic loci, but, in reality, SNPs in linkage disequilibrium with the 

genomic loci are likely highly significant. 

 

Method 5: Pattern analysis via machine learning for individualized imaging signatures 

SPARE-AD captures the degree of expression of an imaging signature of AD, and prior studies 

have shown its diagnostic and prognostic values.32 We generalized the SPARE imaging signature 

to multiple diseases (SPARE-X, X represents disease diagnoses). Following our reproducible 

open-source framework35, we performed nested cross-validation (Supplementary eMethod 6) 

for the machine learning models and derived imaging signatures to quantify individualized 

disease vulnerability.  

SPARE indices. MuSIC PSCs were fit into a linear support vector machine (SVM) to derive 

SPARE-AD, MCI, SCZ, DM, HTN, MDD, and ASD. Specifically, the SVM aims to classify the 

patient group (e.g., AD) from the control group and outputs a decision function that indicates 

how close each participant is to the hyperplane. The samples selected for each task are presented 

in Supplementary eTable 2.  

No statistical methods were used to predetermine sample size. The experiments were not 

randomized, and the investigators were not blinded to allocation during experiments and 

outcome assessment.  
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Data Availability 

The GWAS summary statistics corresponding to this study are publicly available on the 

BRIDGEPORT web portal (https://www.cbica.upenn.edu/bridgeport/). The GWAS summary 

statistics used in the genetic correlation analyses were fetched from the GWAS Catalog platform 

(https://www.ebi.ac.uk/gwas), although each study provided the original links; The GWAS 

Catalog platform was used to query if the SNPs identified by MuSIC were previously reported.  
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Code Availability 

The software and resources used in this study are all publicly available:  

 sopNMF: https://pypi.org/project/sopnmf/, MuSIC, and sopNMF (developed for this 

study) 

 BRIDGEPORT: https://www.cbica.upenn.edu/bridgeport/, (developed for this study) 

 BIGS: https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_protocol.pdf, 

genetic processing protocol (developed for this study) 

 MLNI: https://pypi.org/project/mlni/, machine learning (developed for this study) 

 MUSE: https://www.med.upenn.edu/sbia/muse.html, image preprocessing 

 Clinica: http://www.clinica.run/, machine learning and image preprocessing 

 PLINK: https://www.cog-genomics.org/plink/, GWAS 

 GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates  

 LDSC: https://github.com/bulik/ldsc, genetic correlation estimates 

 MAGMA: https://ctg.cncr.nl/software/magma, gene analysis 

 GWASRAPIDD: https://rmagno.eu/gwasrapidd/articles/gwasrapidd.html, GWAS 

Catalog query  

 MsigDB: https://www.gsea-msigdb.org/gsea/msigdb/, gene sets database 
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