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Abstract  82 

Normal and pathologic neurobiological processes influence brain morphology in coordinated 83 

ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals 84 

during brain aging and diseases. The genetic underpinnings of these patterns remain largely 85 

unknown. We apply a stochastic multivariate factorization method to a diverse population of 86 

50,699 individuals (12 studies, 130 sites) and derive data-driven, multi-scale PSCs of regional 87 

brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of 88 

which are novel, and 72% were independently replicated. Key pathways influencing PSCs 89 

involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways 90 

of breast cancer indicate potential interplays between brain metastasis and PSCs associated with 91 

neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively 92 

derive imaging signatures of several brain diseases. Our results elucidate new genetic and 93 

biological underpinnings that influence structural covariance patterns in the human brain.  94 

 95 

  96 
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Significance statement 97 

The coordinated patterns of changes in the human brain throughout life, driven by brain 98 

development, aging, and diseases, remain largely unexplored regarding their underlying genetic 99 

determinants. This study delineates 2003 multi-scale patterns of structural covariance (PSCs) and 100 

identifies 617 novel genomic loci, with the mapped genes enriched in biological pathways 101 

implicated in reelin signaling, apoptosis, neurogenesis, and appendage development. Overall, the 102 

2003 PSCs provide new genetic insights into understanding human brain morphological changes 103 

and demonstrate great potential in predicting various neurologic conditions.  104 
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Introduction 105 

Brain structure and function are interrelated via complex networks that operate at multiple scales, 106 

ranging from cellular and synaptic processes, such as neural migration, synapse formation, and 107 

axon development, to local and broadly connected circuits.1 Due to a fundamental relationship 108 

between activity and structure, many normal and pathologic neurobiological processes, driven by 109 

genetic and environmental factors, collectively cause coordinated changes in brain morphology. 110 

Structural covariance analyses investigate such coordinated changes by seeking patterns of 111 

structural covariation (PSC) across brain regions and individuals.1 For example, during 112 

adolescence, PSCs derived from magnetic resonance imaging (MRI) have been considered to 113 

reflect a coordinated cortical remodeling as the brain establishes mature networks of functional 114 

specialization.2 Structural covariance is not only related to normal brain development or aging 115 

processes but can also reflect coordinated brain change due to disease. For example, individuals 116 

with motor speech dysfunction may develop brain atrophy in Broca's inferior frontal cortex and 117 

co-occurring brain atrophy in Wernicke's area of the superior temporal cortex.3 Refer to Fig. 1C 118 

for an illustrative depiction.   119 

The human brain develops, matures, and degenerates in coordinated patterns of structural 120 

covariance at the macrostructural level of brain morphology.1 However, the mechanisms 121 

underlying structural covariance are still unclear, and their genetic underpinnings are largely 122 

unknown. We hypothesized that brain morphology was driven by multiple genes (i.e., polygenic) 123 

collectively operating on different brain areas (i.e., pleiotropic), resulting in connected networks 124 

covaried by normal aging and various disease-related processes. Along the causal pathway from 125 

underlying genetics to brain morphological changes, we sought to elucidate which genetic 126 

underpinnings (e.g., genes), biological processes (e.g., neurogenesis), cellular components (e.g., 127 
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nuclear membrane), molecular functions (e.g., nucleic acid binding), and neuropathological 128 

processes (e.g., Alzheimer's disease) might influence the formation, development, and changes 129 

of structural covariance patterns in the human brain. 130 

Previous neuroimaging genome-wide association studies (GWAS)4,5 have partially 131 

investigated the abovementioned questions and expanded our understanding of the genetic 132 

architecture of the human brain. However, they focused on conventional neuroanatomical 133 

regions of interest (ROI) instead of data-driven PSCs. In brain imaging research, prior studies 134 

have applied structural covariance analysis to elucidate underlying coordinated morphological 135 

changes in brain aging and various brain diseases,1 but have had several limitations. They often 136 

relied on pre-defined neuroanatomical ROIs to construct inter- and intra-individual structural 137 

covariance networks. These a priori ROIs might not optimally reflect the molecular-functional 138 

characteristics of the brain. In addition, most population-based studies have investigated brain 139 

structural covariance within a relatively limited scope, such as within relatively small samples, 140 

over a relatively narrow age window (e.g., adolescence2), within a single disease (e.g., 141 

Parkinson's disease6), or within datasets lacking sufficient diversity in cohort characteristics or 142 

MRI scanner protocols. These have been imposed, in part, by limitations in both available cohort 143 

size and in the algorithmic implementation of structural covariance analysis, which has been 144 

computationally restricted to modest sample sizes when investigated at full image resolution. 145 

Lastly, prior studies have examined brain structural covariance at a single fixed ROI 146 

resolution/scale/granularity. While the optimal scale is unknown and may differ by the question 147 

of interest, the highly complex organization of the human brain may demonstrate structural 148 

covariance patterns that span multiple scales.7,8  149 
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To address this gap, we modified our previously proposed orthogonally projective non-150 

negative matrix factorization (opNMF9) to its stochastic counterpart, sopNMF. This adaptation 151 

allowed us to train the model iteratively on large-scale neuroimaging datasets with a pre-defined 152 

number of PSCs (C). Non-negative matrix factorization has gained significant attention in 153 

neuroimaging due to its ability to reduce complex data into a sparse, part-based brain 154 

representation by projection onto a relatively small number of components (the PSCs). NMF has 155 

been shown to substantially improve interpretability and reproducibility compared to other 156 

unsupervised methods, such as PCA and ICA, thanks to the non-negative constraint that 157 

produces parcellation-like decompositions of complex signals. Our opNMF/sopNMF approach 158 

imposed an additional orthonormality constraint9 (Equation 1 in Method 1), further enhancing 159 

sparsity and facilitating clinical interpretability. In our previous work, we applied the opNMF 160 

method to 934 youths ages 8–20 to depict the coordinated growth of structural brain networks 161 

during adolescence – a period characterized by extensive remodeling of the human cortex to 162 

accommodate the rapid expansion of the behavioral repertoire2. Remarkably, this study revealed 163 

PSCs that exhibited a cortical organization closely aligned with established functional brain 164 

networks, such as the well-known 7-network functional parcellation proposed by Yeo et al10. 165 

Notably, this alignment emerged without prior assumptions, was data-driven and hypothesis-166 

free, and potentially reflected underlying neurobiological processes related to brain development 167 

and aging. Herein, we used large-scale neuroimaging data to investigate the underlying genetic 168 

determinant influencing such changes in structural covariance patterns in the human brain.       169 

We examined structural covariance of regional cortical and subcortical volume in the 170 

human brain using MRI from a diverse population of 50,699 people from 12 studies, 130 sites, 171 

and 12 countries, comprised of cognitively healthy individuals, as well as participants with 172 
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various diseases/conditions over their lifespan (ages 5 through 97). Herein we present results 173 

from coarse to fine scales corresponding to C = 32, 64, 128, 256, 512, and 1024. We 174 

hypothesized that PSCs at multiple scales could delineate the human brain's multi-factorial and 175 

multi-faceted morphological landscape and genetic architecture in healthy and diseased 176 

individuals. We examined the associations between these multi-scale PSCs and common genetic 177 

variants at different levels (N=8,469,833 SNPs). In total, 617 novel genomic loci were identified; 178 

key pathways (e.g., neurogenesis and reelin signaling) contributed to shaping structural 179 

covariance patterns in the human brain. In addition, we leveraged PSCs at multiple scales to 180 

better derive individualized imaging signatures of several diseases than any single-scale PSCs 181 

using support vector machines. All experimental results and the multi-scale PSCs were 182 

integrated into the MuSIC (Multi-scale Structural Imaging Covariance) atlas and made publicly 183 

accessible through the BRIDGEPORT (BRaIn knowleDGE PORTal) web portal: 184 

https://www.cbica.upenn.edu/bridgeport/. Table 1 provides an overview of the abbreviations 185 

used in the present study. 186 

  187 
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Table 1. Abbreviations used in the present study 188 

Item Abbreviation Item Abbreviation 

Pattern of structural 

covariation 
PSC 

Independent component 

analysis 
ICA 

Genome-wide 

association study 
GWAS 

BRaIn knowleDGE 

PORTal 
BRIDGEPORT 

Orthogonal projective 

non-negative matrix 

factorization 

opNMF 
Multi-scale Structural 

Imaging Covariance 
MuSIC 

Stochastic orthogonal 

projective non-negative 

matrix factorization 

sopNMF Machine learning ML 

Principal component 

analysis 
PCA UK Biobank UKBB 

Imaging-based 

coordinate SysTem for 

AGing and 

NeurodeGenerative 

diseases 

iSTAGING 

Psychosis 

Heterogeneity 

Evaluated via 

Dimensional 

Neuroimaging 

PHENOM 

Single nucleotide 

polymorphism 
SNP Region of interest ROI 

Magnetic resonance 

imaging 
MRI 

Automated anatomical 

labeling 
AAL 

MUlti-atlas region 

Segmentation utilizing 

Ensembles 

MUSE Alzheimer’s disease AD 

Spatial PAtterns for 

REcognition 
SPARE Support vector machine SVM 

  189 
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Results 190 

We summarize this work in three units (I to III) outlined in Fig. 1. In Unit I (Fig. 1A), we 191 

present the stochastic orthogonally projective non-negative matrix factorization (sopNMF) 192 

algorithm (Method 1), optimized for large-scale multivariate structural covariance analysis. The 193 

sopNMF algorithm decomposes large-scale imaging data through online learning to overcome 194 

the memory limitations of opNMF. A subgroup of participants with multiple disease diagnoses 195 

and healthy controls (ages 5-97, training population, N=4000, Method 2) were sampled from the 196 

discovery set (N=32,440, Method 2); their MRI underwent a standard imaging processing 197 

pipeline (Method 3A). The processed images were then fit to sopNMF to derive the multi-scale 198 

PSCs (N=2003) from the loadings of the factorization (Method 1). We incorporate participants 199 

with various disease conditions because previous studies have demonstrated that inter-regional 200 

correlated patterns (i.e., depicting a network) show variations in healthy and diseased 201 

populations, albeit to a differing degree.11 Multi-scale PSCs were extracted across the entire 202 

population and statistically harmonized12 (Method 3B). Unit II (Fig. 1B) investigates the 203 

harmonized data for 2003 PSCs (13 PSCs have vanished in this process for C=1024; see Method 204 

1) in two brain structural covariance analyses. Specifically, we performed i) GWAS (Method 4) 205 

that sought to discover associations of PSCs at single nucleotide polymorphism (SNP), gene, or 206 

gene set-level; and ii) pattern analysis via support vector machine (Method 5) to derive 207 

individualized imaging signatures of several brain diseases and conditions. Unit III (Fig. 1C) 208 

presents BRIDGEPORT, making these massive analytic resources publicly available to the 209 

imaging, genomics, and machine learning communities.  210 

 211 

 212 
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Figure 1: Study workflow  213 

 214 
A) Unit I: the stochastic orthogonally projective non-negative matrix factorization (sopNMF) 215 

algorithm was applied to a large, disease-diverse population to derive multi-scale patterns of 216 

structural covariance (PSC) at different scales (C=32, 64, 128, 256, 512, and 1024; C represents 217 

the number of PSCs). B) Unit II: two types of analyses were performed in this study: Genome-218 

wide association studies (GWAS) relate each of the PSCs (N=2003) to common genetic variants; 219 

pattern analysis via machine learning demonstrates the utility of the multi-scale PSCs in deriving 220 

individualized imaging signatures of various brain pathologies. C) Unit III: BRIDGEPORT is a 221 

web portal that makes all resources publicly available for dissemination. As an illustration, a 222 

Manhattan plot for PSC (C64-3, the third PSC of the C64 atlas) and its 3D brain map are 223 

displayed. 224 

 225 

Patterns of structural covariance via stochastic orthogonally projective non-negative 226 

matrix factorization 227 
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We first validated the sopNMF algorithm by showing that it converged to the global minimum of 228 

the factorization problem using the comparison population (N=800, Method 2). The sopNMF 229 

algorithm achieved similar reconstruction loss and sparsity as opNMF but at reduced memory 230 

demand (Supplementary eFigure 1). The lower memory requirements of sopNMF made it 231 

possible to generate multi-scale PSCs by jointly factorizing 4000 MRIs in the training 232 

population. The results of the algorithm were robust and obtained a high reproducibility index 233 

(RI) (Supplementary eMethod 2) in several reproducibility analyses: split-sample analysis (RI 234 

= 0.76±0.27), split-sex analysis (RI = 0.79±0.27), and leave-one-site-out analysis (RI = 0.65-235 

0.78 for C32 PSCs) (Supplementary eFigure 2). We then extracted the multi-scale PSCs in the 236 

discovery set (N=32,440) and the replication set (N=18,259, Method 2) for Unit II. These PSCs 237 

succinctly capture underlying neurobiological processes across the lifespan, including the effects 238 

of typical aging processes and various brain diseases. In addition, the multi-scale representation 239 

constructs a hierarchy of brain structure networks (e.g., PSCs in cerebellum regions), which 240 

models the human brain in a multi-scale topology.7,13 241 

 242 

Patterns of structural covariance are highly heritable 243 

The multi-scale PSCs are highly heritable (0.05< h2 <0.78), showing high SNP-based heritability 244 

estimates (h2) (Method 4B) for the discovery set (Fig. 2). Specifically, the h2 estimate was 245 

0.49±0.10, 0.39±0.14, 0.29±0.15, 0.25±0.15, 0.27±0.15, 0.31±0.15 for scales C=32, 64, 128, 246 

256, 512 and 1024 of the PSCs, respectively. The Pearson correlation coefficient between the two 247 

independent estimates of h2 was r = 0.94 (p-value < 10-6, between the discovery and replication 248 

sets) in the UK Biobank (UKBB) data. The scatter plot of the two sets of h2 estimates is shown in 249 

Supplementary eFigure 3. The h2 estimates and p-values for all PSCs are detailed in 250 
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Supplementary eFile 1 (discovery set) and eFile 2 (replication set). Our results confirm that brain 251 

structure is heritable to a large extent and identify the spatial distribution of the most highly 252 

heritable regions of the brain (e.g., subcortical gray matter structures and cerebellum regions).14 253 

 254 

Figure 2: Patterns of structural covariance are highly heritable in the human brain. 255 

 256 

Patterns of structural covariance (PSCs) of the human brain are highly heritable. The SNP-based 257 

heritability estimates are calculated for the multi-scale PSCs at different scales (C). PSCs 258 

surviving Bonferroni correction for multiple comparisons are depicted in color in the Manhattan 259 

plots (gray otherwise). Each PSC's heritability estimate (h2) was projected onto the 3D image 260 

space to show a statistical map of the brain at each scale C. The dotted line indicates each scale's 261 

top 10% of most heritable PSCs. 262 

 263 

617 novel genomic loci of patterns of structural covariance  264 

We discovered genomic locus-PSC pairwise associations (Method 4C, Supplementary 265 

eMethod 5) within the discovery set and then independently replicated these associations on the 266 

replication set. We found that 915 genomic loci had 3791 loci-PSC pairwise significant 267 

associations with 924 PSCs after Bonferroni correction (Method 4G) for the number of PSCs (p-268 

value threshold per scale: 10.3 > -log10[p-value] > 8.8) (Supplementary eFile 3, and Fig. 3A). 269 

Our results showed that the formation of these PSCs is largely polygenic; the associated SNPs 270 

might play a pleiotropic role in shaping these networks.  271 
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Compared to previous literature, out of the 915 genomic loci, the multi-scale PSCs 272 

identified 617 novel genomic loci not previously associated with any traits or phenotypes in the 273 

GWAS Catalog15 (Supplementary eFile 4, Fig. 3B, query date: April 5th, 2023). These novel 274 

associations might indicate subtle neurobiological processes that are captured thanks to the 275 

biologically relevant structural covariance expressed by sopNMF. The multi-scale PSCs 276 

identified many novel associations by constraining this comparison to previous neuroimaging 277 

GWAS12,13 using T1w MRI-derived phenotypes (e.g., regions of interest from conventional brain 278 

atlases) (Fig 3B, Supplementary eTable 3, eFile 5, 6, and 7).  279 

Our UKBB replication set analysis (Method 4H) demonstrated that 3638 (96%) exact 280 

genomic locus-PSC associations were replicated at nominal significance (-log10[p-value] > 1.31), 281 

2705 (72%) of which were significant after correction for multiple comparisons (Method 4G, -282 

log10[p-value] > 4.27). We present this validation in Supplementary eFile 8 from the replication 283 

set. The summary statistics, Manhattan, and QQ plots derived from the combined population 284 

(N=33,541) are presented in BRIDGEPORT. 285 

In addition to the abovementioned replication analyses, we also performed several 286 

sensitivity analyses (Supplementary eFigure 4a). We used the GWAS results (233 significant 287 

SNPs in 5 genomic loci) of the first PSC in C32 (C32_1) from the UKBB discovery set to 288 

demonstrate this. First, we replicated all the 233 significant SNPs in 5 genomic loci both at the 289 

nominal level (-log10[p-value] > 1.31), and the Bonferroni corrected p-value threshold (-log10[p-290 

value] > 3.67) using the combined discovery and replication sets (N=33,541) (Supplementary 291 

eFigure 4b), the 20,438 4ticipants with all ancestries in the discovery set (Supplementary 292 

eFigure 4c), and the 16,743 participants in the discovery set with four additional imaging-related 293 

covariates (3 parameters for the brain position in the lateral, longitudinal, and transverse 294 
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directions, and 1 parameter for the head motion from fMRI) (Supplementary eFigure 4d). 295 

While replicating the results in 2386 participants with non-European ancestries, we only 296 

replicated 41 SNPs (17.6%), passing the nominal significant threshold (Supplementary eFigure 297 

4e). Finally, only 14 SNPs (6.4%) were replicated when replicating the results using 1481 whole-298 

genome sequencing (WGS) data from ADNI consolidated by the AI4AD consortium16 299 

(Supplementary eFigure 4f). The low replication rates in other ancestries and independent 300 

disease-specific populations are expected due to population stratification, disease-specific 301 

effects, and reduced sample sizes. This further emphasizes the urge to enrich and diversify 302 

genetic research with non-European ancestries and disease-specific populations.    303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

  311 
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Figure 3: Patterns of structural covariance highlight novel genomic loci and pathways that 312 

shape the human brain. 313 

 314 

A) Patterns of structural covariance (PSC) in the human brain are polygenic: the number of 315 

genomic loci of each PSC is projected onto the image space to show a statistical brain map 316 

characterized by the number (C) of PSCs. In addition, common genetic variants exert pleiotropic 317 

effects on the PSCs: circular plots showed the number of associated PSCs (histograms in blue 318 

color) of each genomic loci over the entire autosomal chromosome (1-22). The histogram was 319 

plotted for the number of PSCs for each genomic locus in the circular plots. B) Novel genomic 320 

loci revealed by the multi-scale PSCs compared to previous findings from the GWAS Catalog,15 321 

T1-weighted MRI GWAS4,5, and the AAL atlas regions of interest. The green bar indicates the 322 

617 novel genomic loci not previously associated with any clinical traits in GWAS Catalog; the 323 

black bar presents the loci identified in other studies that overlap (grey bar for loci in linkage 324 

disequilibrium) with the loci from our results; the yellow bar indicates the unique loci in other 325 

studies. C) Pathway enrichment analysis highlights six unique biological pathways and 326 
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functional categories (after Bonferroni correction for 16,768 gene sets and the number of PSCs) 327 

that might influence the changes of PSCs. DSCAM: Down syndrome cell adhesion molecule.     328 

 329 

 330 

Gene set enrichment analysis highlights pathways that shape patterns of structural 331 

covariance 332 

For gene-level associations (Method 4D), we discovered that 164 genes had 2489 gene-PSC 333 

pairwise associations with 445 PSCs after Bonferroni correction for the number of genes and 334 

PSCs (p-value threshold: 8.6 > -log10[p-value] > 7.1) (Supplementary eFile 9).  335 

Based on these gene-level p-values, we performed hypothesis-free gene set pathway 336 

analysis using MAGMA17(Method 4E): a more stringent correction for multiple comparisons 337 

was performed than the prioritized gene set enrichment analysis using GENE2FUN from FUMA 338 

(Method 4F and Fig. 4). We identified that six gene set pathways had 18 gene set-PSC pairwise 339 

associations with 17 PSCs after Bonferroni correction for the number of gene sets and PSCs 340 

(N=16,768 and C from 32 to 1024, p-value threshold: 8.54 > -log10[p-value] > 7.03) (Fig. 3C, 341 

Supplementary eFile 10). These gene sets imply critical biological and molecular pathways that 342 

might shape brain morphological changes and development. The reelin signaling pathway 343 

regulates neuronal migration, dendritic growth, branching, spine formation, synaptogenesis, and 344 

synaptic plasticity.18 The appendage morphogenesis and development pathways indicate how the 345 

anatomical structures of appendages are generated, organized, and progressed over time, often 346 

related to the cell adhesion pathway. These pathways elucidate how cells or tissues can be 347 

organized to create a complex structure like the human brain.19 In addition, the integral 348 

component of the cytoplasmic side of the endoplasmic reticulum membrane is thought to form a 349 

continuous network of tubules and cisternae extending throughout neuronal dendrites and 350 

axons.20 The DSCAM (Down syndrome cell adhesion molecule) pathway likely functions as a 351 
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cell surface receptor mediating axon pathfinding. Related proteins are involved in hemophilic 352 

intercellular interactions.21 Lastly, Nikolsky et al.22 defined genes from the breast cancer 20Q11 353 

amplicon pathway that were involved in the brain might indicate the brain metastasis of breast 354 

cancer, which is usually a late event with deleterious effects on the prognosis.23 In addition, 355 

previous findings24,25 revealed an inverse relationship between Alzheimer's disease and breast 356 

cancer, which might indicate a close genetic relationship between the disease and brain 357 

morphological changes mainly affecting the entorhinal cortex and hippocampus (PSC: C128_3 358 

in Fig. 4).      359 

 360 

Illustrations of genetic loci and pathways forming two patterns of structural covariance   361 

To illustrate how underlying genetic underpinnings might form a specific PSC, we showcased 362 

two PSCs: C32_4 for the superior cerebellum and C128_3 for the hippocampus-entorhinal 363 

cortex. The two PSCs were highly heritable and polygenic in our GWAS using the entire UKBB 364 

data (Fig. 4, N=33,541). We used the FUMA26 online platform to perform SNP2GENE for 365 

annotating the mapped genes and GENE2FUNC for prioritized gene set enrichment analyses 366 

(Method 4F). The superior cerebellum PSC was associated with genomic loci that can be 367 

mapped to 85 genes, which were enriched in many biological pathways, including psychiatric 368 

disorders, biological processes, molecular functions, and cellular components (e.g., apoptotic 369 

process, axon development, cellular morphogenesis, neurogenesis, and neuro differentiation). 370 

For example, apoptosis – the regulated cell destruction – is a complicated process that is highly 371 

involved in the development and maturation of the human brain and neurodegenerative 372 

diseases.27 Neurogenesis – new neuron formation – is crucial when an embryo develops and 373 
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continues in specific brain regions throughout the lifespan.28 All significant results of this 374 

prioritized gene set enrichment analysis are presented in Supplementary eFile 11. 375 

For the hippocampus-entorhinal cortex PSC, we mapped 45 genes enriched in gene sets 376 

defined from GWAS Catalog, including Alzheimer's disease and brain volume derived from 377 

hippocampal regions. The hippocampus and medial temporal lobe have been robust hallmarks of 378 

Alzheimer's disease.29 In addition, these genes were enriched in the breast cancer 20Q11 379 

amplicon pathway22 and the pathway of metastatic breast cancer tumors30, which might indicate 380 

a specific distribution of brain metastases: the vulnerability of medial temporal lobe regions to 381 

breast cancer, 23 or highlight an inverse association between Alzheimer's disease and breast 382 

cancer.24 Lastly, the nuclear membrane encloses the cell's nucleus – the chromosomes reside 383 

inside – which is critical in cell formation activities related to gene expression and regulation. To 384 

further support the overlapping genetic underpinnings between this PSC and Alzheimer's 385 

disease, we calculated the genetic correlation (rg = -0.28; p-value=0.01) using GWAS summary 386 

statistics from the hippocampus-entorhinal cortex PSC (i.e., 33,541 people of European ancestry) 387 

and a previous independent study of Alzheimer's disease31 (i.e., 63,926 people of European 388 

ancestry) using LDSC.32 All significant results of this prioritized gene set enrichment analysis 389 

are presented in Supplementary eFile 12. 390 

 391 

  392 
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Figure 4: Illustrations of multiple genetic loci and pathways shaping specific patterns of 393 

structural covariance  394 

 395 
We demonstrate how underlying genomic loci and biological pathways might influence the 396 

formation, development, and changes of two specific PSCs: the 4th PSC of the C32 PSCs 397 

(C32_4) that resides in the superior part of the cerebellum and the 3rd PSC of the C128 PSCs 398 

(C128_3) that includes the bilateral hippocampus and entorhinal cortex. We first performed 399 

SNP2GENE to annotate the mapped genes in the Manhattan plots and then ran GENE2FUNC for 400 
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the prioritized gene set enrichment analysis (Method 4F). The mapped genes are input genes for 401 

prioritized gene set enrichment analyses. The heat map shows the significant gene sets from the 402 

GWAS Catalog, curated genes, and gene ontology (GO) that survived the correction for multiple 403 

comparisons. We selectively present the schematics for three pathways: apoptosis, neurogenesis, 404 

and nuclear membrane function. Several other key pathways are highlighted in bold, and the 3D 405 

maps of the two PSCs are presented.       406 

 407 

Multi-scale patterns of structural covariance derive disease-related imaging signatures   408 

We used the multi-scale PSCs from a diverse population to derive imaging signatures that reflect 409 

brain development, aging, and the effects of several brain diseases. We investigate the added 410 

value of the multi-scale PSCs as building blocks of imaging signatures for several brain diseases 411 

and risk conditions using linear support vector machines (SVM) (Method 5).33 The aim is to 412 

harness machine learning to drive a clinically interpretable metric for quantifying an individual-413 

level risk to each disease category. To this end, we define the signatures as SPARE-X (Spatial 414 

PAtterns for REcognition) indices, where X is the disease. For instance, SPARE-AD captures the 415 

degree of expression of an imaging signature of AD-related brain atrophy, which has been shown 416 

to offer diagnostic and prognostic value in prior studies.34  417 

The most discriminative indices in our samples were SPARE-AD and SPARE-MCI (Fig. 418 

5, Supplementary eTable 4a and eFigure 5). C=1024 achieved the best performance for the 419 

single-scale analysis (e.g., AD vs. controls; balanced accuracy: 0.90±0.02; Cohen's d: 2.50). 420 

Multi-scale representations derived imaging signatures that showed the largest effect sizes to 421 

classify the patients from the controls (Fig. 5) (e.g., AD vs. controls; balanced accuracy: 422 

0.92±0.02; Cohen's d: 2.61). PSCs obtained better classification performance than both AAL 423 

(e.g., AD vs. controls; balanced accuracy: 0.82±0.02; Cohen’s d: 1.81) and voxel-wise regional 424 

volumetric maps (RAVENS)35 (e.g., AD vs. controls; balanced accuracy: 0.85±0.02; Cohen’s d: 425 

2.04) (Supplementary eTable 4a and eFigure 5). Our classification results were higher than 426 
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previous baseline studies36,37, which provided an open-source framework to objectively and 427 

reproducibly evaluate AD classification. Using the same cross-validation procedure and 428 

evaluation metric, they reported the highest balanced accuracy of 0.87±0.02 to classify AD from 429 

healthy controls. Notably, our experiments followed good practices, employed rigorous cross-430 

validation procedures, and avoided critical methodological flaws, such as data leakage or double-431 

dipping (refer to critical reviews on this topic elsewhere36,38). 432 

To test the robustness of these SPARE indices, we performed leave-one-site-out analyses 433 

for SPARE-AD using the combined 2003 PSCs from all scales (Supplementary eTable 4b). 434 

Overall, holding the ADNI data out as independent test data resulted in a lower balanced 435 

accuracy (0.88±0.02) compared to the other cases for AIBL (0.95±0.02) and PENN data 436 

(0.95±0.02). The mean balanced accuracy (0.91±0.02) aligns with the nested cross-validated 437 

results using the full sample (Fig. 5).    438 

 439 

Figure 5: Individualized imaging signatures based on pattern analysis via machine learning. 440 

 441 
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Imaging signatures (SPARE indices) of brain diseases, derived via supervised machine learning 442 

models, are more distinctive when formed from multi-scale PSCs than single-scale PSCs. The 443 

kernel density estimate plot depicts the distribution of the patient group (blue) in comparison to 444 

the healthy control group (red), reflecting the discriminative power of the diagnosis-specific 445 

SPARE (imaging signature) indices. We computed Cohen's d for each SPARE index between 446 

groups to present the effect size of its discrimination power. * represents the model with the 447 

largest Cohen's d for each SPARE index to separate the control vs. patient groups; # represents 448 

the model with the best performance with single-scale PSCs. Our results demonstrate that the 449 

multi-scale PSCs generally achieve the largest discriminative effect sizes (ES) (Supplementary 450 

eTable 4a). As a reference, Cohen's d of ≥ 0.2, ≥ 0.5, and ≥ 0.8, respectively, refer to small, 451 

moderate, and large effect sizes.  452 

 453 

BRIDGEPORT: bridging knowledge across patterns of structural covariance, genomics, 454 

and clinical phenotypes  455 

We integrated our experimental results and the MuSIC atlas into the BRIDGEPORT online web 456 

portal. This online tool allows researchers to interactively browse the MuSIC atlas in 3D, query 457 

our experimental results via variants or PSCs, and download the GWAS summary statistics for 458 

further analyses. In addition, we allow users to search via conventional brain anatomical terms 459 

(e.g., the right thalamus proper) by automatically annotating traditional anatomic atlas ROIs, 460 

specifically from the MUSE atlas39 (Supplementary eTable 5), to MuSIC PSCs based on their 461 

degree of overlaps (Supplementary eFigure 6). Open-source software dedicated to image 462 

processing,39 genetic quality check protocols, MuSIC generation with sopNMF, and machine 463 

learning36 is also publicly available (see Code Availability for details).   464 
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Discussion 465 

The current study investigates patterns of structural covariance in the human brain at multiple 466 

scales from a large population of 50,699 people and, importantly, a very diverse cohort allowing 467 

us to capture patterns of structural covariance emanating from normal and abnormal brain 468 

development and aging, as well as from several brain diseases. Through extensive examination 469 

of the genetic architecture of these multi-scale PSCs, we confirmed genetic hits from previous 470 

T1-weighted MRI GWAS and, more importantly, identified 617 novel genomic loci and 471 

molecular and biological pathways that collectively influence brain morphological changes and 472 

development over the lifespan. Using a hypothesis-free, data-driven approach to first derive these 473 

PSCs using brain MRIs, we then uncovered their genetic underpinnings and further showed their 474 

potential as building blocks to predict various diseases. All experimental results and code are 475 

encapsulated and publicly available in BRIDGEPORT for dissemination: 476 

https://www.cbica.upenn.edu/bridgeport/, to enable various neuroscience studies to investigate 477 

these structural covariance patterns in diverse contexts. Together, the current study highlighted 478 

the adoption of machine learning methods in brain imaging genomics and deepened our 479 

understanding of the genetic architecture of the human brain.      480 

Our findings reveal new insights into genetic underpinnings that influence structural 481 

covariance patterns in the human brain. Brain morphological development and changes are 482 

largely polygenic and heritable, and previous neuroimaging GWAS has not fully uncovered this 483 

genetic landscape. In contrast, genetic variants, as well as environmental, aging, and disease 484 

effects, exert pleiotropic effects in shaping morphological changes in different brain regions 485 

through specific biological pathways. The mechanisms underlying brain structural covariance are 486 

not yet fully understood. They may involve an interplay between common underlying genetic 487 
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factors, shared susceptibility to aging, and various brain pathologies, which affect brain growth 488 

or degeneration in coordinated brain morphological changes.1 Our data-driven, multi-scale PSCs 489 

identify the hierarchical structure of the brain under the principle of structural covariance and are 490 

associated with genetic factors at different levels, including SNPs, genes, and gene set pathways. 491 

These 617 novel genomic loci, as well as those previously identified, collectively shape brain 492 

morphological changes through many key biological and molecular pathways. These pathways 493 

are widely involved in reelin signaling, apoptotic processes, axonal development, cellular 494 

morphogenesis, neurogenesis, and neuro differentiation,27,28 which may collectively influence the 495 

formation of structural covariance patterns in the brain. Strikingly, pathways involved in breast 496 

cancer shared overlapping genetic underpinnings evidenced in our MAGMA-based and 497 

prioritized (GENE2FUNC) gene set enrichment analyses (Fig. 3C and Fig. 4), which included 498 

specific pathways involved in breast cancer and metastatic breast cancer tumors. One previous 499 

study showed that common genes might mediate breast cancer metastasis to the brain,23 and a 500 

later study further corroborated that the metastatic spread of breast cancer to other organs 501 

(including the brain) accelerated during sleep in both mouse and human models.40 We further 502 

showcased that this brain metastasis of breast cancer might be associated with specific 503 

neuropathologic processes, which were captured by PSCs data driven by Alzheimer's disease-504 

related neuropathology. For example, the hippocampus-entorhinal cortex PSC (C128_3, Fig. 4) 505 

connected the bilateral hippocampus and medial temporal lobe – the salient hallmark of 506 

Alzheimer's disease. Our gene set enrichment analysis results further support this claim: the 507 

genes were enriched in the gene sets of Alzheimer's disease and breast cancer (Fig. 4). Previous 508 

research24,25 also found an inverse association between Alzheimer's disease and breast cancer. In 509 

addition, PSCs from the cerebellum were the most genetically influenced brain regions, 510 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2023. ; https://doi.org/10.1101/2022.07.20.22277727doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277727
http://creativecommons.org/licenses/by-nc/4.0/


 26 

consistent with previous neuroimaging GWAS.4,5 The cerebral cortex has been thought to largely 511 

contribute to the unique mental abilities of humans. However, the cerebellum may also be 512 

associated with a much more comprehensive range of complex cognitive functions and brain 513 

diseases than initially thought.41 Our results confirmed that many genetic substrates might 514 

support different molecular pathways, resulting in cerebellar functional organization, high-order 515 

functions, and dysfunctions in various brain disorders. 516 

The current work demonstrates that appropriate machine learning analytics can be used to 517 

shed new light on brain imaging genetics. Previous neuroimaging GWAS leveraged multimodal 518 

imaging-derived phenotypes from conventional brain atlases4,5 (e.g., the AAL atlas). In contrast, 519 

multi-scale PSCs are purely data-driven and likely to reflect the dynamics of underlying normal 520 

and pathological neurobiological processes giving rise to structural covariance. The diverse 521 

training sample from which the PSCs were derived, including healthy and diseased individuals of 522 

a wide age range, enriched the diversity of such neurobiological processes influencing the PSCs. 523 

In addition, modeling structural covariance at multiple scales (i.e., multi-scale PSCs) indicated 524 

that disease effects could be robustly and complementarily identified across scales (Fig. 5), 525 

concordant with the paradigm of multi-scale brain modeling.13 Imaging signatures of brain 526 

diseases, derived via supervised machine learning models, were consistently more distinctive 527 

when formed from multi-scale PSCs than single-scale PSCs. Multivariate learning techniques 528 

have gained significant prominence in neuroimaging and have recently attracted considerable 529 

attention in the domain of imaging genomics. These methods have proven valuable for analyzing 530 

complex and high-dimensional data, facilitating the exploration of relationships between imaging 531 

features and genetic factors. For instance, the MOSTest, a multivariate GWAS approach, 532 

preserves correlation structure among phenotypes via permutation on each SNP and derives a 533 
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genotype vector for testing the association across all phenotypes42. A separate study by Soheili-534 

Nezhad et al. demonstrated that genetic components obtained through PCA or ICA applied to 535 

neuroimaging GWAS summary statistics exhibited greater reproducibility than raw univariate 536 

GWAS effect sizes43. A recent study utilized a CNN-based autoencoder to discover new 537 

phenotypes and identify numerous novel genetic signals44. Despite the effectiveness of these 538 

multivariate approaches in GWAS, they typically conduct phenotype engineering before 539 

performing GWAS without explicitly incorporating imaging genetic associations during the 540 

modeling process. Yang et al. recently conducted a study that employed generative adversarial 541 

networks (termed GeneSGAN45) to integrate imaging and genetic variations within the modeling 542 

framework to address this limitation. By incorporating both modalities, their approach aimed to 543 

capture the complexity and heterogeneity of disease manifestations. 544 

MuSIC – with the strengths of being data-driven, multi-scale, and disease-effect 545 

informative – contributes to the century-old quest for a "universal" atlas in brain cartography46 546 

and is highly complementary to previously proposed brain atlases. For instance, Chen and 547 

colleagues47 used a semi-automated fuzzy clustering technique with MRI data from 406 twins 548 

and parcellated the cortical surface area into a genetic covariance-informative brain atlas; MuSIC 549 

was data-driven by structural covariance. Glasser and colleagues48 adopted a semi-automated 550 

parcellation procedure to create a multimodal cortex atlas from 210 healthy individuals. 551 

Although this method successfully integrates multimodal information from cortical folding, 552 

myelination, and functional connectivity, this semi-automatic approach requires significant 553 

resources, some with limited resolution. MuSIC allows flexible, multiple scales for delineating 554 

macroscopic brain topology; including patient samples exposes the model to sources of 555 

variability that may not be visible in healthy controls. Another pioneering endeavor is the Allen 556 
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Brain Atlas project,49 whose overarching goals of mapping the human brain to gene expression 557 

data via existing conventional atlases, identifying local gene expression patterns across the brain 558 

in a few individuals, and deepening our understanding of the human brain's differential genetic 559 

architecture, are complementary to ours – characterizing the global genetic architecture of the 560 

human brain, emphasizing pathogenic variability and morphological heterogeneity.  561 

Bridging knowledge across the brain imaging, genomics, and machine learning 562 

communities is another pivotal contribution of this work. BRIDGEPORT provides a platform to 563 

lower the entry barrier for whole-brain genetic-structural analyses, foster interdisciplinary 564 

communication, and advocate for research reproducibility.36,50–53 The current study demonstrates 565 

the broad applicability of this large-scale, multi-omics platform across a spectrum of 566 

neurodegenerative and neuropsychiatric diseases.  567 

The present study has certain limitations. Firstly, the sopNMF method utilized in brain 568 

parcellation considers only imaging structural covariance and overlooks the genetic determinants 569 

contributing to forming these structural networks, as indicated by our GWAS findings. 570 

Consequently, further investigations are needed to integrate imaging and genetics into brain 571 

parcellation. Additionally, it is important to note that our GWAS analyses primarily involved 572 

participants of European ancestry. To enhance genetic findings for underrepresented ethnic 573 

groups, future studies should prioritize the inclusion of diverse ancestral backgrounds, thereby 574 

promoting a more comprehensive understanding of the genetic underpinnings across different 575 

populations.  576 
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Methods 577 

Method 1: Structural covariance patterns via stochastic orthogonally projective non-578 

negative matrix factorization 579 

The sopNMF algorithm is a stochastic approximation built and extended based on opNMF9,54. 580 

We consider a dataset of 𝑛 MR images and 𝑑 voxels per image. We represent the data as a 581 

matrix X where each column corresponds to a flattened image: 𝑿 =  [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑿 ∈  ℝ≥0
𝑑×𝑛. 582 

The sopNMF algorithm factorizes X into two low-rank (𝑟) matrices 𝑾 ∈  ℝ≥0
𝑑×𝑟 and 𝑯 ∈  ℝ≥0

𝑟×𝑛 583 

under the constraints of non-negativity and column-orthonormality. Using the Frobenius norm, 584 

the loss of this factorization problem can be formulated as 585 

‖𝑿 − 𝑾𝑯‖𝐹
2    586 

subject to 𝑯 = 𝑾𝑻𝑿 , 𝑾 ≥ 0  and 𝑾𝑻𝑾 = 𝑰   (1) 587 

where I stands for the identity matrix. The columns  𝑤𝑖 ∈ ℝ𝑑 , ‖𝑤𝑖‖
2 = 1, ∀ 𝑖 ∈ {1. . 𝑟} of the so-588 

called component matrix 𝑾 =  [𝑤1, 𝑤2, … , 𝑤𝑟] are part-based representations promoting sparsity 589 

in data in this lower-dimensional subspace. From this perspective, the loading coefficient matrix 590 

𝑯 represents the importance (weights) of each feature above for a given image. Instead of 591 

optimizing the non-convex problem in a batch learning paradigm (i.e., reading all images into 592 

memory) as opNMF,9 sopNMF subsamples the number of images at each iteration, thereby 593 

significantly reducing its memory demand by randomly drawing data batches 𝑿𝒃 ∈  ℝ≥0
𝑑×𝑏 of 𝑏 ≤594 

𝑛 images (b is the batch size; b=32 was used in the current analyses); this is done without 595 

replacement so that all data goes through the model once (⌈𝑛/𝑏⌉). In this case, the updating rule 596 

can be rewritten as 597 

𝑾𝑡+1 = 𝑾𝑡

(𝑿𝒃𝑿𝒃
𝑻𝑾)

𝑡

(𝑾𝑾𝑇𝑿𝒃𝑿𝒃
𝑻𝑾)𝑡

   (2) 598 
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We calculate the loss on the entire dataset at the end of each epoch (i.e., the loss is incremental 599 

across all batches) with the following expression: 600 

∑ ‖𝑿𝒃_𝒊 − 𝑾𝑾𝑻𝑿𝒃𝒊‖𝐹

2

⌈𝑛/𝑏⌉

𝑖=1

    (3) 601 

We evaluated the training loss and the sparsity of W at the end of each iteration. Moreover, early 602 

stopping was implemented to improve training efficiency and alleviate overfitting. We 603 

summarize the sopNMF algorithm in Supplementary Algorithm 1. An empirical comparison 604 

between sopNMF and opNMF is detailed in Supplementary eMethod 1.  605 

We applied sopNMF to the training population (N=4000). The component matrix W was 606 

sparse after the algorithm converged with a pre-defined maximum number of epochs (100 by 607 

default) with an early stopping criterion. To build the MuSIC atlas, we clustered each voxel 608 

(row-wise) into one of the 𝑟 features/PSCs as follows: 609 

𝑴𝑗 = argmax𝑘(𝑾𝑗,𝑘) (4) 610 

where M is a d-dimensional vector and 𝑗 ∈ {1. . 𝑑}. The j-th element of M equals k if 𝑾𝑗,𝑘 is the 611 

maximum value of the j-th row. Intuitively, M indicates which of the r PSCs each voxel belongs 612 

to. We finally projected the vector 𝑴 ∈  ℝ≥0
𝑑  into the original image space to visualize each PSC 613 

of the MuSIC atlas (Fig. 1). Of note, 13 PSCs have vanished in this process for C=1024: all 0 for 614 

these 13 vectors.  615 

 616 

Method 2: Study population  617 

We consolidated a large-scale multimodal consortium (N=50,699) consisting of imaging, 618 

cognition, and genetic data from 12 studies, 130 sites, and 12 countries (Supplementary eTable 619 

1): the Alzheimer's Disease Neuroimaging Initiative55 (ADNI) (N=1765); the UK Biobank56 620 
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(UKBB) (N=39,564); the Australian Imaging, Biomarker, and Lifestyle study of aging57 (AIBL) 621 

(N=830); the Biomarkers of Cognitive Decline Among Normal Individuals in the Johns Hopkins 622 

University58 (BIOCARD) (N=288); the Baltimore Longitudinal Study of Aging59,60 (BLSA) 623 

(N=1114); the Coronary Artery Risk Development in Young Adults61 (CARDIA) (N=892); the 624 

Open Access Series of Imaging Studies62 (OASIS) (N=983), PENN (N=807); the Women's 625 

Health Initiative Memory Study63 (WHIMS) (N=995), the Wisconsin Registry for Alzheimer's 626 

Prevention64 (WRAP) (N=116); the Psychosis Heterogeneity (evaluated) via dimEnsional 627 

NeurOiMaging65 (PHENOM) (N=2125); and the Autism Brain Imaging Data Exchange66 628 

(ABIDE) (N=1220).  629 

 We present the demographic information of the population under study in 630 

Supplementary eTable 1. This large-scale consortium reflects the diversity of MRI scans over 631 

different races, disease conditions, and ages over the lifespan. To be concise, we defined four 632 

populations or data sets per analysis across the paper: 633 

• Discovery set: It consists of a multi-disease and lifespan population that includes 634 

participants from all 12 studies (N=32,440). Note that this population does not contain 635 

the entire UKBB population but only our first download (July 2017, N=21,305). 636 

• Replication set: We held 18,259 participants from the UKBB dataset to replicate the 637 

GWAS results. We took these data from our second download of the UKBB dataset 638 

(November 2021, N=18,259).  639 

• Training population: We randomly drew 250 patients (PT), including AD, MCI, SCZ, 640 

ASD, MDD, HTN (hypertension), DM (diabetes mellitus), and 250 healthy controls 641 

(CN) per decade from the discovery set, ensuring that the PT and CN groups have 642 

similar sex, study and age distributions. The resulting set of 4000 imaging data was used 643 
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to generate the MuSIC atlas with the sopNMF algorithm. The rationale is to maximize 644 

variability across a balanced sample of multiple diseases or risk conditions, age, and 645 

study protocols rather than overfit the entire data by including all images in training. 646 

• Comparison population: To validate sopNMF compared to the original opNMF 647 

algorithm, we randomly subsampled 800 participants from the training population (100 648 

per decade for balanced CN and PT). For this scale of sample size, opNMF can load all 649 

images into memory for batch learning.67 650 

All individual studies were approved by their local corresponding Institutional Review 651 

Boards (IRB). The iSTAGING and PHENOM consortia consolidated all individual imaging and 652 

clinical data; imputed genotype data were directly downloaded from the UKBB website. Data 653 

from the UKBB for this project pertains to application 35148. For iSTAGING, the IRB at the 654 

University of Pennsylvania (protocol number: 825722) reviewed the research proposal on 655 

August 31st, 2016, and updated it on August 31st, 2022. No human subjects were recruited or 656 

scanned. Existing de-identified data will be used in this mega-analysis study pooling data from 657 

17 studies: BLSA, ADNI1, ADNI2, ADNI3, ACCORD-MIND, LookAhead, SPRINT, 658 

CARDIA, MESA, SHIP, BIOCARD, WRAP, Penn-ADC, WHIMS-MRI, AIBL, OASIS, 659 

UKBB, MESA, HANDLS. For PHENOM, the IRB at the University of Pennsylvania (protocol 660 

number: 828077) reviewed the research proposal on August 19th, 2017. No human subjects were 661 

recruited or scanned. Existing de-identified data will be used in this meta-analysis study pooling 662 

data from 10 studies at Penn, Ludwick-Maximmilian University of Munich, Kings College-663 

London, University of Utrecht, University of Melbourne, University of Cantabria, University of 664 

Sao Paolo, Xijing Hospital Shaanxi, Tianjin Anning Hospital, and Institute of Mental Health 665 

Peking University.  666 
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 667 

Method 3: Image processing and statistical harmonization 668 

(A): Image processing. Images that passed the quality check (Supplementary eMethod 4) were 669 

first corrected for magnetic field intensity inhomogeneity.68 Voxel-wise regional volumetric 670 

maps (RAVENS)35 for each tissue volume were then generated by using a registration method to 671 

spatially align the skull-stripped images to a template in MNI-space.69 We applied sopNMF to 672 

the RAVENS maps to derive MuSIC.  673 

 674 

(B): Statistical harmonization of MuSIC PSCs: We applied MuSIC to the entire population 675 

(N=50,699) to extract the multi-scale PSCs. Specifically, MuSIC was applied to each individual's 676 

RAVENS gray matter map to extract the sum of brain volume in each PSC. Subsequently, the 677 

PSCs were statistically harmonized by an extensively validated approach, i.e., ComBat-GAM 12 678 

(Supplementary eMethod 3) to account for site-related differences in the imaging data. After 679 

harmonization, the PSCs were normally distributed (skewness = 0.11±0.17, and kurtosis = 680 

0.67±0.68) (Supplementary eFigure 7A and B). To alleviate the potential violation of normal 681 

distribution in downstream statistical learning, we quantile-transformed all PSCs. In agreement 682 

with the literature,70,71 males were found to have larger brain volumes than females on average 683 

(Supplementary eFigure 7C). Overall, the Combat-GAM model slightly improved data 684 

normality across sites (Supplementary eFigure 7E-H). The AAL ROIs underwent the same 685 

statistical harmonization procedure.   686 

 687 

Method 4: Genetic analyses 688 
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Genetic analyses were restricted to the discovery and replication set from UKBB (Method 2). 689 

We processed the array genotyping and imputed genetic data (SNPs). The two data sets went 690 

through a "best-practice" imaging-genetics quality check (QC) protocol (Method 4A) and were 691 

restricted to participants of European ancestry. This resulted in 18,052 participants and 8,430,655 692 

SNPs for the discovery set and 15,243 participants and 8,470,709 SNPs for the replication set. 693 

We reperformed the genetic QC and genetic analyses for the combined populations for 694 

BRIDGEPORT, resulting in 33,541 participants and 8,469,833 SNPs. Method 4G details the 695 

correction for multiple comparisons throughout our analyses.    696 

 697 

(A): Genetic data quality check protocol. First, we excluded related individuals (up to 2nd-698 

degree) from the complete UKBB sample (N=488,377) using the KING software for family 699 

relationship inference.72 We then removed duplicated variants from all 22 autosomal 700 

chromosomes. We also excluded individuals for whom either imaging or genetic data were not 701 

available. Individuals whose genetically identified sex did not match their self-acknowledged sex 702 

were removed. Other excluding criteria were: i) individuals with more than 3% of missing 703 

genotypes; ii) variants with minor allele frequency (MAF) of less than 1%; iii) variants with larger 704 

than 3% missing genotyping rate; iv) variants that failed the Hardy-Weinberg test at 1x10-10. To 705 

adjust for population stratification,73 we derived the first 40 genetic principle components (PC) 706 

using the FlashPCA software74. The genetic pipeline was also described elsewhere75. 707 

 708 

(B): Heritability estimates and genome-wide association analysis. We estimated the SNP-709 

based heritability explained by all autosomal genetic variants using GCTA-GREML.76 We 710 

adjusted for confounders of age (at imaging), age-squared, sex, age-sex interaction, age-squared-711 
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sex interaction, ICV, and the first 40 genetic principal components (PC), guided by a previous 712 

neuroimaging GWAS4. In addition, Elliot et al.5 investigated more than 200 confounders in 713 

another study. Therefore, our sensitivity analyses included four additional imaging-related 714 

covariates (i.e., brain positions and head motion). One-side likelihood ratio tests were performed 715 

to derive the heritability estimates. In GWAS, we performed a linear regression for each PSC 716 

and included the same covariates as in the heritability estimates using PLINK.77 717 

 718 

(C): Identification of novel genomic loci. Using PLINK, we clumped the GWAS summary 719 

statistics based on their linkage disequilibrium to identify the genomic loci (see Supplementary 720 

eMethod 5 for the definition of the index, candidate, independent significant, lead SNP, and 721 

genomic locus). In particular, the threshold for significance was set to 5×10-8 (clump-p1) for the 722 

index SNPs and 0.05 (clump-p2) for the candidate SNPs. The threshold for linkage 723 

disequilibrium-based clumping was set to 0.60 (clump-r2) for independent significant SNPs 724 

and 0.10 for lead SNPs. The linkage disequilibrium physical-distance threshold was 250 725 

kilobases (clump-kb). Genomic loci consider linkage disequilibrium (within 250 kilobases) when 726 

interpreting the association results. The GWASRAPIDD78 package (version: 0.99.14) was then 727 

used to query the genomic loci for any previously-reported associations with clinical phenotypes 728 

documented in the NHGRI-EBI GWAS Catalog15 (p-value < 1.0×10-5, default inclusion value of 729 

GWAS Catalog). We defined a genomic locus as novel when it was not present in GWAS 730 

Catalog (query date: April 5th, 2023). 731 

 732 

(D): Gene-level associations with MAGMA. We performed gene-level association analysis 733 

using MAGMA.17 First, gene annotation was performed to map the SNPs (reference variant 734 
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location from Phase 3 of 1,000 Genomes for European ancestry) to genes (human genome Build 735 

37) according to their physical positions. The second step was to perform the gene analysis based 736 

on the GWAS summary statistics to obtain gene-level p-values between the pairwise 2003 PSCs 737 

and the 18,097 protein-encoding genes containing valid SNPs. 738 

 739 

(E): Hypothesis-free gene set enrichment analysis with MAGMA. Using the gene-level 740 

association p-values, we performed gene set enrichment analysis using MAGMA. Gene sets 741 

were obtained from Molecular Signatures Database (MsigDB, v7.5.1),79 including 6366 curated 742 

gene sets and 10,402 Gene Ontology (GO) terms. All other parameters were set by default for 743 

MAGMA. This hypothesis-free analysis resulted in a more stringent correction for multiple 744 

comparisons (i.e., by the total number of tested genes and PSCs) than the FUMA-prioritized 745 

gene set enrichment analysis (see below F).   746 

 747 

(F): FUMA analyses for the illustrations of specific PSCs. In SNP2GENE, three different 748 

methods were used to map the SNPs to genes. First, positional mapping maps SNPs to genes if 749 

the SNPs are physically located inside a gene (a 10 kb window by default). Second, expression 750 

quantitative trait loci (eQTL) mapping maps SNPs to genes showing a significant eQTL 751 

association. Lastly, chromatin interaction mapping maps SNPs to genes when there is a 752 

significant chromatin interaction between the disease-associated regions and nearby or distant 753 

genes.26 In addition, GENE2FUNC studies the expression of prioritized genes and tests for the 754 

enrichment of the set of genes in pre-defined pathways. We used the mapped genes as prioritized 755 

genes. The background genes were specified as all genes in FUMA, and all other parameters 756 

were set by default. We only reported gene sets with adjusted p-value < 0.05.   757 
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 758 

(G): Correction for multiple comparisons. We practiced a conservative procedure to control 759 

for the multiple comparisons. In the case of GWAS, we chose the default genome-wide 760 

significant threshold (5.0x10-8, and 0.05 for all other analyses) and independently adjusted for 761 

multiple comparisons (Bonferroni methods) at each scale by the number of PSCs. We corrected 762 

the p-values for the number of phenotypes (N=6) for genetic correlation analyses. We adjusted 763 

the p-values for the number of PSCs at each scale for heritability estimates. For gene analyses, 764 

we controlled for both the number of PSCs at each scale and the number of genes. We adopted 765 

these strategies per analysis to correct the multiple comparisons because PSCs of different scales 766 

are likely hierarchical and correlated – avoiding the potential of "overcorrection". 767 

 768 

(H): Replication analysis for genome-wide association studies. We performed GWAS by 769 

fitting the same linear regressing models as the discovery set. Also, following the same 770 

procedure for consistency, we corrected the multiple comparisons using the Bonferroni method. 771 

We corrected it for the number of genomic loci (N=915) found in the discovery set with a 772 

nominal p-value of 0.05, which thereby resulted in a stringent test with an equivalent p-value 773 

threshold of 3.1x10-5 (i.e., (-log10[p-value] = 4.27). We performed a replication for the 915 774 

genomic loci, but, in reality, SNPs in linkage disequilibrium with the genomic loci are likely 775 

highly significant. 776 

 777 

Method 5: Pattern analysis via machine learning for individualized imaging signatures 778 

SPARE-AD captures the degree of expression of an imaging signature of AD, and prior studies 779 

have shown its diagnostic and prognostic values.34 Here, we extended the concept of the SPARE 780 
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imaging signature to multiple diseases (SPARE-X, X represents disease diagnoses). Following 781 

our reproducible open-source framework37, we performed nested cross-validation 782 

(Supplementary eMethod 6) for the machine learning models and derived imaging signatures to 783 

quantify individualized disease vulnerability.  784 

SPARE indices. MuSIC PSCs were fit into a linear support vector machine (SVM) to derive 785 

SPARE-AD, MCI, SCZ, DM, HTN, MDD, and ASD. Specifically, the SVM aims to classify the 786 

patient group (e.g., AD) from the control group and outputs a continuous variable  (i.e., the 787 

SPARE indices), which indicates the proximity of each participant to the hyperplane in either the 788 

patient or control space. We compared the classification performance using different sets of 789 

features: i) the single-scale PSC from 32 to 1024, ii) the multi-scale PSCs by combining all 790 

features (with and without feature selections embedded in the CV); iii) the ROIs from the AAL 791 

atlas; and iv) voxel-wise RAVENS maps. The samples selected for each task are presented in 792 

Supplementary eTable 2. 793 

No statistical methods were used to predetermine the sample size. The experiments were 794 

not randomized, and the investigators were not blinded to allocation during experiments and 795 

outcome assessment.  796 
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Data Availability 797 

The GWAS summary statistics corresponding to this study are publicly available on the 798 

BRIDGEPORT web portal (https://www.cbica.upenn.edu/bridgeport/) and the MEDICINE web 799 

portal (http://labs.loni.usc.edu/medicine/). The GWAS summary statistics used in the genetic 800 

correlation analyses were fetched from the GWAS Catalog platform 801 

(https://www.ebi.ac.uk/gwas), although each study provided the original links; The GWAS 802 

Catalog platform was used to query if the SNPs identified by MuSIC were previously reported.  803 
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Code Availability 804 

The software and resources used in this study are all publicly available:  805 

• sopNMF: https://pypi.org/project/sopnmf/, MuSIC, and sopNMF (developed for this 806 

study) 807 

• BRIDGEPORT: https://www.cbica.upenn.edu/bridgeport/, (developed for this study) 808 

• MLNI: https://pypi.org/project/mlni/, machine learning (developed for this study) 809 

• MUSE: https://www.med.upenn.edu/sbia/muse.html, image preprocessing 810 

• PLINK: https://www.cog-genomics.org/plink/, GWAS 811 

• GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates  812 

• LDSC: https://github.com/bulik/ldsc, genetic correlation estimates 813 

• MAGMA: https://ctg.cncr.nl/software/magma, gene analysis 814 

• GWASRAPIDD: https://rmagno.eu/gwasrapidd/articles/gwasrapidd.html, GWAS 815 

Catalog query  816 

• MsigDB: https://www.gsea-msigdb.org/gsea/msigdb/, gene sets database 817 

  818 
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eMethod 1: Empirical validation of sopNMF. 1188 

For the empirical validation of sopNMF, the comparison population (Method 1 in the main 1189 

manuscript) was used so that the machine's memory could be sufficient to read the entire data for 1190 

opNMF. For sopNMF, different choices of batch size (i.e., BS=32, 64, 128, and 256) were 1191 

tested. We hypothesized that sopNMF could approximate the optima of opNMF during 1192 

optimization, i.e., resulting in similar parts-based representation, training loss, and sparsity. 1193 

TensorboardX was embedded into the sopNMF framework to monitor the training process 1194 

dynamically. All experiments were performed on an Ubuntu machine with a maximum RAM of 1195 

32 GB and 8 CPUs. The predefined maximum number of epochs for all experiments is 50,000, 1196 

and the tolerance of early stopping criteria is 100 epochs based on the training loss. 1197 

We qualitatively compared the extracted PSCs and quantitatively for the training loss, the 1198 

sparsity of the component matrix W, and the memory consumption for C=20 (number of PSCs). 1199 

The 20 PSCs were spatially consistent between opNMF and sopNMF, despite that some regions 1200 

were decomposed into different PSCs (i.e., the white ellipse in eFig. 1A). For the training loss, 1201 

opNMF obtained the lowest loss (1.103 x 106), and the loss of sopNMF were 1.107 x106, 1.108 1202 

x106, 1.111 x106 and 1.210 x106 for BS =256, 128, 64, and 32, respectively (eFig. 1D). For the 1203 

sparsity of the component matrix, all models obtained comparable results (sparsity ≈ 0.83, eFig. 1204 

1E). The estimated memory consumptions during the training process were 28.65, 4.02, 3.81, 1205 

2.60, 1.47 GB for opNMF and sopNMF (BS =256, 128, 64, and 32), respectively 1206 

(Fig. e1F). 1207 
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eMethod 2: Reproducibility index. 1209 

We proposed a reproducibility index (RI) to test the reproducibility of sopNMF for brain 1210 

parcellation: 1211 

• We used the Hungarian match algorithm80 to match the pairs of PSCs between two splits 1212 

under the specific condition that maximizes the similarity (i.e., minimizes the cost of 1213 

workers/jobs in its original formulation). 1214 

• For each pair of PSCs, we calculated the inner product of the vectors (𝑅𝑑), referred to as 1215 

RI. This index takes values between [0, 1], with higher values indicating higher 1216 

reproducibility. 1217 

• For each scale C, we presented the mean/standard deviation of the RIs for all PSCs. 1218 

 1219 

 1220 
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eMethod 3: Inter-site image harmonization  1222 

We used an extensively validated statistical harmonization approach, i.e., ComBat-GAM,12 to 1223 

harmonize the extracted multi-scale PSCs. This method estimates the variability in volumetric 1224 

measures due to differences in site/cohort-specific imaging protocols based on variances observed 1225 

within and across control groups while preserving normal variances due to age, sex, and 1226 

intracranial volume (ICV) differences. The model was initially trained on the discovery set and 1227 

then applied to the replication set. 1228 
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eMethod 4: Quality check of the image processing pipeline.  1230 

Raw T1-weighted MRIs were first quality checked (QC) for motion, image artifacts, or restricted 1231 

field-of-view. Another QC was performed: First, the images were examined by manually 1232 

evaluating for pipeline failures (e.g., poor brain extraction, tissue segmentation, and registration 1233 

errors). Furthermore, a second step automatically flagged images based on outlying values of 1234 

quantified metrics (i.e., PSC values); those flagged images were re-evaluated. 1235 
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eMethod 5: Definition of the index, candidate, independent significant, and lead SNP and 1237 

genomic locus. 1238 

Index SNP 1239 

They are defined as SNPs with a p-value threshold ≤ 5e-8 (clump-p1) from GWAS summary 1240 

statistics. 1241 

Independent significant SNP  1242 

They are defined as the index SNPs, which are independent of each other (not in linkage 1243 

disequilibrium) with r2 ≤ 0.6 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away 1244 

from each other.  1245 

Lead SNP and genomic loci 1246 

They are defined as the independent significant SNPs, which are independent of each other with 1247 

a more stringent r2 ≤ 0.1 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away 1248 

from each other. Each of these clumps is defined as a genomic locus. 1249 

Candidate SNP 1250 

With each genomic locus, candidate SNPs are defined as the SNPs whose association p-values 1251 

are smaller than 0.05 (clump-p2). The definitions followed instructions from FUMA26 and 1252 

Plink77 software.   1253 
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eMethod 6: Cross-validation procedure for PAML.  1254 

Nested cross-validation was adopted for all tasks following the good-practice guidelines 1255 

proposed in our previous works36,37,53. In particular, an outer loop was used to evaluate the task 1256 

performance (250 repetitions of random hold-out splits with 80% of data for training). In 1257 

contrast, an inner loop focused on tuning the hyperparameters (10-fold splits). We computed the 1258 

balanced accuracy (BA) to evaluate the classification tasks. We calculated the effect size 1259 

(Cohen's d) and p-value for each SPARE index to quantify its discriminative power. 1260 
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 1262 
eFigure 1: Comparison between opNMF and sopNMF. (A) Qualitative evaluation: The 1263 

extracted components are shown in the original image space, with each PSC displayed in a 1264 

distinct color. The white ellipse indicates the region where the models diverge. Quantitative 1265 

evaluation: training loss (B, D) and sparsity (C, E) demonstrated similar patterns between 1266 

models, except that batch size (BS) = 32 had a larger loss than the other models. Comparing the 1267 

estimated memory consumption during training across models shows significant advantages for 1268 

all sopNMF models compared to opNMF.  1269 
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 1270 
eFigure 2: Reproducibility of the sopNMF brain parcellation. In general, sopNMF 1271 

demonstrated high reproducibility under various conditions. For each brain PSC, the 1272 

reproducibility index (RI) was calculated (Supplementary eMethod 2). (A) Split-sample 1273 

analyses, where the training population (N=4000) was randomly split into two halves while 1274 

maintaining similar age, sex, and site distribution between groups. (B) Split-sex analyses, where 1275 

the training population was divided into males and females. Colored PSCs on the brain template 1276 

illustrate the same PSC independently derived from the two splits. (C) Leave-one-site-out 1277 

analyses for C32 PSCs., where the training populations excluding participants from each site 1278 

(BIOCARD, ADNI, WARP, AIBL, ABIDE, BLSA, OASIS, CARDIA, PHENOM, PENN, 1279 

UKBB, and WHIMS) were independently trained with sopNMF. The RI indices were compared 1280 

to the sopNMF results using the full training sample (N=4000).  1281 
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 1283 

 1284 
eFigure 3: Scatter plot for the h2 estimates from the discovery and replication sets. The 1285 

SNP-based heritability was estimated independently for the discovery set (N=18,052) and 1286 

replication set (N=15,243). In particular, the two estimates were highly correlated (r = 0.94, p-1287 

value < 10-6), demonstrating a highly similar genetic architecture across different sets of UKBB 1288 

data. 1289 
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 1291 
eFigure 4: Sensitivity check for the GWAS results using the discovery set in UKBB. A) The 1292 

GWAS results for participants with European ancestry in the discovery set. B) The GWAS 1293 

results for participants with European ancestry in the discovery and replication sets. C) The 1294 

GWAS results for participants with all different ancestries in the discovery set. D) The GWAS 1295 
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results for participants with European ancestry in the discovery set by adding four additional 1296 

imaging-related covariates. E) The GWAS results for participants with non-European ancestry in 1297 

the discovery set. F) The GWAS results for participants with the independent ADNI WGS data.     1298 
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 1299 
eFigure 5: Machine learning performance for disease classification. Balanced accuracy (BA) 1300 

for each classification task using different features from multi-scale MuSIC, AAL, and RAVENS 1301 

(higher score better). Details are presented in eTable 4. 1302 
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 1304 
eFigure 6: Annotation of MUSE ROIs to MuSIC PSCs based on the overlap index. We 1305 

automatically annotated the 119 MUSE GM PSCs to the MuSIC atlases at all six scales (C=32, 1306 

64, 128, 256, 512, and 1024). To this end, we calculated an overlap index (OI) to quantify the 1307 

spatial overlaps between MUSE and MuSIC. For instance, for each MUSE PSC (eTable 5) vs. 1308 

each of the 32 PSCs of MuSIC at C=32 scale, the OI equals the proportion of the number of 1309 

overlap voxels and the total number of voxels in the MUSE PSC. Here we illustrate by mapping 1310 

the right thalamus of MUSE to all 6 MuSIC atlases. The highest OIs are 0.82, 0.70, 0.86, 0.30, 1311 

0.09, 0.05 for C32_1, C64_42, C128_114, C256_110, C512_249, and C1024_249 PSCs. This 1312 

functionality is available in BRIDGEPORT: 1313 

https://www.cbica.upenn.edu/bridgeport/MUSE/Right%20Thalamus%20Proper     1314 
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 1316 
eFigure 7: Summary statistics of the multi-scale PSCs of MuSIC. Multi-scale PSCs show 1317 

considerable normal distributions, i.e., symmetrical distribution (A) with a low kurtosis (B). 1318 

Moreover, we fit the Generalized Additive Model for Location, Scale, and Shape (GAMLSS)81 1319 

model (fractional polynomials with 2 degrees) to each PSC to delineate the age trajectory over 1320 

the lifespan in males (solid lines) and females (dotted lines), respectively (C). For visualization 1321 
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purposes, we selectively display the first 10 PSCs from each scale of the MuSIC atlases. In 1322 

general, males have larger brain volumes than females. For D-F, we selectively showed the 1323 

distribution of age (D) and the distribution of PSC volume before harmonization (E) and after 1324 

harmonization (F) for C32_1 within each site in the discovery set. For G and H, we tested the 1325 

normality of the PSC volume (C32_1) from each pair of sites using the Shapiro-Wilk test 1326 

(scipy.stats.shapiro function) in the discovery set before (G) harmonization and after 1327 

harmonization (H). A higher -log10(P) indicates the data are less likely to be normally 1328 

distributed. As a general trend, our statistical harmonization techniques demonstrated a slight 1329 

improvement in the normality of the data. Additionally, we consistently applied normality 1330 

transformations to all statistical analyses, including GWAS, to mitigate any non-normality. 1331 
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eTable 1. Study cohort characteristics. 1333 

The current study consists of two main populations/sets: the discovery set (N=32,440, including 1334 

participants from the first download of the UKBB data) and the replication set (N=18,259, the 1335 

second download of the UKBB data). To train the sopNMF model for MuSIC, we selected 250 1336 

patients (PT) and 250 healthy controls (CN) for each decade of the discovery set, resulting in 1337 

4000 participants in total, referred to as the training population. Age ranges from 5 to 97 years 1338 

and is shown with mean and standard deviation. Sex is displayed with the number and 1339 

percentage of female participants. Data was collected from 12 studies, 130 sites, and 12 1340 

countries. The number of sites (country) per study is detailed as follows:  1341 

• ADNI: 63 sites (USA) 1342 

• UKBB: 5 sites (UK) 1343 

• AIBL: 2 sites (Australia) 1344 

• BIOCARD: 2 sites (USA) 1345 

• BLSA: 1 site (USA) 1346 

• CARDIA: 3 sites (USA) 1347 

• OASIS: 1 site (USA) 1348 

• PENN: 1 site (USA) 1349 

• WHIMS: 14 sites (USA) 1350 

• WRAP 1 site (USA) 1351 

• PHENOM: 12 sites (China, Brazil, Australia, Germany, Spain, USA, Netherlands) 1352 

• ABIDE: 25 sites (USA, Netherlands, Belgium, Germany, Ireland, Switzerland, France) 1353 

Abbreviations: CN: healthy control; AD: Alzheimer's disease; MCI: mild cognitive impairment; 1354 

SCZ: schizophrenia; ASD: autism spectrum disorder; MDD: major depressive disorder; DM: 1355 

diabetes; HTN: hypertension. 1356 
aUKBB data were separately downloaded two times: the first was the N=21,305 in the discovery 1357 

set, and the second was the replication set. 1358 
bWe define CN (healthy controls) as participants that do not have any of the diseases listed here. 1359 

These CN participants might have diagnoses of other illnesses or comorbidities (e.g., participants 1360 

from UKBB have a wide range of pathology based on ICD-10). 1361 

 1362 

Study 
N 

(50,699) 

Age 

(5-97 

year) 

Sex 

(female/%

) 

CNb 

 
AD MCI SCZ ASD MDD DM HTN 

Discovery 

set 
32,440 

60.04± 

14.87 
16,868/52 

24,98

0 
954 1288 1094 597 1476 1093 958 

ADNI 1765 
73.66± 

7.19 
798/45 297 343 875 NA NA NA NA 250 

UKBBa 21,305 
62.58± 

7.48 
10,101/53 

18,73

5 
1 NA NA NA 1476 1093 NA 

AIBL 830 
71.36± 

6.78 
471/57 625 86 115 NA NA NA NA 4 

BIOCARD 288 
58.15± 

10.54 
115/60 283 1 4 NA NA NA NA NA 

BLSA 1114 
65.44± 

14.11 
589/53 729 9 11 NA NA NA NA 365 

CARDIA 892 
51.21± 

3.98 
471/53 620 NA NA NA NA NA NA 272 

OASIS 983 
69.92± 

9.75 
557/57 759 220 NA NA NA NA NA 4 
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PENN 807 
72.63± 

10.65 
333/59 173 294 283 NA NA NA NA 57 

WHIMS 995 
69.61± 

3.64 
995/100 986 NA NA NA NA NA NA 6 

WRAP 116 
63.36± 

6.06 
79/68 116 NA NA NA NA NA NA NA 

PHENOM 2125 
30.21± 

10.60 
854/40 1031 NA NA 1094 NA NA NA NA 

ABIDE 1220 
17.92± 

9.01 
203/17 623 NA NA NA 597 NA NA NA 

Replication 

seta 
18,259 

54.70± 

7.43 
9742/53 NA NA NA NA NA NA NA NA 

 1363 
  1364 
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eTable 2: Clinical phenotypes and diagnoses used in machine learning classification.  1365 

We harmonized the population of the phenotypes of interest per study definitions:  1366 

• We combined AD and MCI patients from ADNI, PENN, and AIBL but excluded OASIS 1367 

subjects because of the different diagnostic criteria of an AD patient in OASIS.  1368 

• For several binary disease phenotypes, we used the ICD-10 diagnosis 1369 

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41270). Note that ICD-10 diagnoses are 1370 

generally collected from the participants' medical inpatient records. We first included 1371 

diseases from the following categories:  1372 

o Diseases of the blood and blood-forming organs and certain disorders involving the 1373 

immune mechanism (D-XXX, XXX represents the ID of a specific disease); 1374 

o  Endocrine, nutritional, and metabolic diseases (E-XXX);  1375 

o Mental and behavioral disorders (F-XXX);  1376 

o Diseases of the nervous system (G-XXX);  1377 

o Diseases of the circulatory system (I-XXX).  1378 

We then set a threshold of 75 patients for any ICD-10 diagnosis. We finally randomly 1379 

selected age and sex-matched healthy controls (excluding all patients in all diagnoses). a: 1380 

For major depressive disorder, we used the inclusion criteria from our previous work.75 1381 

• For cognitive scores, we included:  1382 

o Tower rearranging (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21004) 1383 

o Matrix pattern (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6373) 1384 

o TMT-A (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348) 1385 

o TMT-B (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350) 1386 

o DSST (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23324) 1387 

o Pairs matching (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399) 1388 

o Numerical memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282) 1389 

o Prospective memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4288) 1390 

o Reaction time (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023) 1391 

o Fluid intelligence (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016) 1392 

AD: Alzheimer's disease; MCI: mild cognitive impairment; SCZ: schizophrenia; DM: diabetes 1393 

mellitus; MDD: major depressive disorder; HTN: hypertension; ASD: autism spectrum disorder; 1394 

CN: healthy control; PT: patient; N: number of participants. We decided not to harmonize 1395 

cognitive scores from different studies. 1396 

 1397 
Trait (ICD-10 code 

or ID) 

Sample size 

(CN/PT or N) 
Site Trait (ICD-10 code or ID) 

Sample size 

(CN/PT or N) 
Site 

AD 1095/723 

ADNI, 

PENN, & 

AIBL 

Carpal tunnel syndrome 

(G560) 
901/901 UKBB 

MCI 1273/1095 

ADNI, 

PENN, & 

AIBL 

Lesion of ulnar nerve 

(G562) 
104/104 UKBB 

SCZ 1031/1094 PHENOM 
Lesion of plantar nerve 

(G576) 
163/163 UKBB 

DM 1093/1093 UKBB Angina pectoris (I20) 1535/1535 UKBB 

MDDa 1476/1476 UKBB 
Acute myocardial 

infarction (I21) 
769/769 UKBB 

HTN 934/887 

ADNI, 

BLSA & 

CARDIA 

Chronic ischaemic heart 

disease (I25) 
2217/2217 UKBB 
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 1398 
  1399 

ASD 623/597 ABIDE Pulmonary embolism (I20) 351/351 UKBB 

Iron deficiency 

anemia (D50) 
1012/1012 UKBB Cardiomyopathy (I42) 116/116 UKBB 

Vitamin B12 

deficiency anemia 

(D50) 

78/78 UKBB 
Paroxysmal tachycardia 

(I47) 
320/320 UKBB 

Agranulocytosis 

(D70) 
245/245 UKBB Heart failure (I50) 436/436 UKBB 

Thyrotoxicosis 

(E05) 
205/205 UKBB Cerebral infarction (I63) 291/291 UKBB 

Vitamin D 

deficiency (E55) 
180/180 UKBB 

Vitamin B deficiency 
(E53) 

130/130 UKBB 

Obesity (E66) 1481/1481 UKBB Hemiplegia (G81) 111/111 UKBB 

Lipoprotein 

metabolism disorder 

(E78) 

3880/3880 UKBB 
Facial nerve disorders 

(G51) 
95/95 UKBB 

Mineral metabolism 

disorder (E83) 
291/291 UKBB Tower rearranging (21004) 8412 UKBB 

Volume depletion 240/240 UKBB Matrix pattern (6373) 8501 UKBB 

Delirium 92/92 UKBB TMT-A (6348) 8599 UKBB 

Alcohol abuse 341/341 UKBB TMT-B (6350) 8599 UKBB 

Tobacco abuse 863/863 UKBB DSST (23324) 8523 UKBB 

Bipolar affective 

disorder 
77/77 UKBB Pairs matching (399) 20945 UKBB 

Phobic anxiety 

disorder 
84/84 UKBB Numerical memory (4282) 9323 UKBB 

Multiple sclerosis 109/109 UKBB 
Prospective memory 

(4288) 
19681 UKBB 

Epilepsy 250/250 UKBB Reaction time (20023) 21258 UKBB 

Migraine 508/508 UKBB Fluid intelligence (20016) 19184 UKBB 

Sleep disorders 590/590 UKBB 
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eTable 3: Comparison of variants identified via MuSIC with other studies. Using the AAL 1400 

atlas, we found (using the same data in the current study) that 269 independent significant SNPs 1401 

had 356 pairwise associations with 54 AAL brain regions. 230 out of the 269 SNPs matched with 1402 

the SNPs in MuSIC. Among the 39 unmatched SNPs, 15 SNPs were in linkage disequilibrium 1403 

(LD, r2 > 0.6) with MuSIC SNPs (Supplementary eFile 5). As a second example, Zhao et al.4 1404 

reported that 251 independent significant SNPs had 346 pairwise associations with 43 GM regions 1405 

using the Mindboggle atlas on the UKBB (N=19,629).82 129 of the 251 SNPs matched with SNPs 1406 

identified by MuSIC. Among these non-matching SNPs (127), 31 were in LD with MuSIC SNPs 1407 

(Supplementary eFile 6). Similarly, Elliot et al.5 (N=8428) discovered that 20 independent 1408 

significant SNPs had 58 pairwise associations with 52 GM regions from atlases in Freesurfer and 1409 

FSL software. Out of the 20 SNPs, 16 coincided with MuSIC SNPs. Among the four unmatched 1410 

SNPs, 1 SNP was in LD with MuSIC SNPs (Supplementary eFile 7). Note that the definition of 1411 

independent significant SNPs or genomic loci might slightly differ between studies. 1412 

Study/Atlas 

Identified 

genomic 

loci 

Matched loci Loci in LD 
Novel 

loci 
Database 

Sample 

size 
Ancestry 

MuSIC 915 NA NA NA UKBB 18,052 European 

AAL 218 162 13 740 UKBB 18,052 European 

Zhao et al.4 251 73 14 828 UKBB 19,629 European 

Elliot et al.5 20 16 1 898 UKBB 8428 European 

GWAS Catalog NA 298 NA 617 NA NA NA 

 1413 
  1414 
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eTable 4: Classification balanced accuracy for disease classification and effect size of these 1415 

imaging signatures. 1416 

Disease classification performance is presented using balanced accuracy. The mean and standard 1417 

deviation are presented. Cohen's d was computed to compare the SPARE scores between groups. 1418 

Multi-scale classificationa: All 2003 PSCs from multiple scales were fit into the classifier.  1419 

Multi-scale classificationb: PSCs from all scales were fit into the classifier with a nested feature 1420 

selection procedure (SVM-REF). The motivation is that PSCs from different scales are 1421 

hierarchical and correlated. The nested feature selection can select the features most relevant to 1422 

the specific task. We avoided any statistical comparison of the performance of machine learning 1423 

models because available statistical tests are liberal and often lead to false-positive conclusions 1424 

due to the complexity of the cross-validation procedure.83   1425 

a): Classification results for all subjects in all sites using a nested CV procedure 1426 
PSC AD d MCI d SCZ d DM d HTN d MDD d ASD d 

C32 
0.78±
0.02 

1.52 
0.62±
0.02 

0.59 
0.55±
0.02 

0.30 
0.56±
0.02 

0.35 
0.55±
0.02 

0.28 
0.52±
0.02 

0.16 
0.50±
0.02 

0.07 

C64 
0.81±
0.02 

1.73 
0.63±
0.02 

0.66 
0.57±
0.02 

0.41 
0.57±
0.02 

0.40 
0.56±
0.02 

0.31 
0.53±
0.02 

0.17 
0.53±
0.02 

0.19 

C128 
0.82±
0.02 

1.82 
0.65±
0.02 

0.76 
0.59±
0.02 

0.47 
0.56±
0.02 

0.33 
0.55±
0.02 

0.30 
0.52±
0.02 

0.15 
0.52±
0.02 

0.15 

C256 
0.85±
0.02 

2.08 
0.66±
0.02 

0.91 
0.59±
0.02 

0.50 
0.56±
0.02 

0.47 
0.54±
0.02 

0.31 
0.51±
0.02 

0.13 
0.52±
0.02 

0.16 

C512 
0.88±
0.02 

2.34 
0.67±
0.02 

1.06 
0.62±
0.02 

0.62 
0.57±
0.02 

0.54 
0.56±
0.02 

0.42 
0.52±
0.02 

0.05 
0.54±
0.02 

0.24 

C1024 
0.90±
0.02 

2.50 
0.72±
0.02 

1.12 
0.65±
0.02 

0.75 
0.60±
0.02 

0.59 
0.59±
0.02 

0.46 
0.56±
0.02 

0.13 
0.55±
0.02 

0.29 

Multi-

scalea 

0.91±
0.02 

2.54 
0.72±
0.02 

1.12 
0.66±
0.02 

0.77 
0.61±
0.02 

0.64 
0.59±
0.02 

0.47 
0.55±
0.02 

0.23 
0.56±
0.02 

0.30 

Multi-

scaleb 

0.92±
0.02 

2.61 
0.73±
0.02 

1.13 
0.67±
0.02 

0.78 
0.64±
0.02 

0.67 
0.61±
0.02 

0.49 
0.55±
0.02 

0.26 
0.58±
0.02 

0.32 

AAL 
0.82±
0.02 

1.81 
0.66

±0.02 
0.75 

0.59±
0.02 

0.46 
0.57±
0.02 

0.32 
0.57±
0.02 

0.35 
0.52±
0.02 

0.08 
0.52±
0.02 

0.14 

RAVENS 
0.85±
0.02 

2.04 
0.64

±0.02 
0.74 

0.60±
0.02 

0.45 
0.58±
0.02 

0.33 
0.55±
0.02 

0.34 
0.50±
0.02 

0.05 
0.54±
0.02 

0.15 

 1427 
b): The classification results of the balanced accuracy (BA) from the test data in the nested CV 1428 

and the independently left-out site for the task of AD vs. CN were assessed using all available 1429 

multi-scale PSCsa. Three sites, namely ADNI, AIBL, and PENN, were considered for this 1430 

analysis. However, UKBB, BIOCARD, and BLSA data were excluded due to limited AD cases 1431 

(eTable 1). Similarly, data from OASIS were excluded due to discrepancies in the diagnosis 1432 

criteria for AD, as previously stated in our previous work36. 1433 
Left-out site Test BA in CV Test BA in the left-out site 

ADNI 0.90±0.02 0.88±0.02 

AIBL 0.88±0.02 0.95±0.02 

PENN 0.90±0.02 0.95±0.02 

  1434 
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eTable 5: 119 MUSE gray matter regions of interest. 1435 

L: Left hemisphere; R: Right hemisphere; ROI: region of interest. 1436 

  1437 

MUSE ROI MUSE ROI MUSE ROI 

Precentral gyrus (R) Occipital fusiform gyrus (R) Anterior insula (L) 

Precentral gyrus (L) Planum temporale (R) Anterior orbital gyrus (R) 

Accumbens area (R) Cerebellar vermal lobules I-V Anterior orbital gyrus (L) 

Accumbens area (L) Cerebellar vermal lobules VI-VII Angular gyrus (R) 

Amygdala (R) Cerebellar vermal lobules VIII-X Angular gyrus (L) 

Amygdala (L) Basal forebrain (R) Calcarine cortex (R) 

Occipital pole (L) Basal forebrain (L) Calcarine cortex (L) 

Caudate (R) Middle temporal gyrus (L) Central operculum (R) 

Caudate (L) Occipital pole (R) Central operculum (L) 

Cerebellum exterior (R) Planum temporale (L) Cuneus (R) 

Cerebellum exterior (L) Parietal operculum (L) Cuneus (L) 

Planum polare (L) Postcentral gyrus (R) Entorhinal area (R) 

Middle temporal gyrus (R) Postcentral gyrus (L) Entorhinal area (L) 

Hippocampus (R) Posterior orbital gyrus (R) Frontal operculum (R) 

Hippocampus (L) Temporal pole (R) Frontal operculum (L) 

Precentral gyrus medial 

segment (R) Temporal pole (L) Frontal pole (R) 

Precentral gyrus medial 

segment (L) 

Triangular part of the inferior frontal gyrus 

(R) Frontal pole (L) 

Superior frontal gyrus 

medial segment (R) 

Triangular part of the inferior frontal gyrus 

(L) Fusiform gyrus (R) 

Superior frontal gyrus 

medial segment (L) Transverse temporal gyrus (R) Fusiform gyrus (L) 

Pallidum (R) Superior frontal gyrus medial segment (L) Gyrus rectus (R) 

Pallidum (L) Planum polare (R) Gyrus rectus (L) 

Putamen (R) Transverse temporal gyrus (L) Inferior occipital gyrus (R) 

Putamen (L) Anterior cingulate gyrus (R) Inferior occipital gyrus (L) 

Thalamus proper (R) Anterior cingulate gyrus (L) Inferior temporal gyrus (R) 

Thalamus proper (L) Anterior insula (R) Inferior temporal gyrus (L) 

Lingual gyrus (R) Occipital fusiform gyrus (L) Subcallosal area (R) 

Lingual gyrus (L) Opercular part of inferior frontal gyrus (R) Subcallosal area (L) 

Lateral orbital gyrus (R) Opercular part of inferior frontal gyrus (L) Superior frontal gyrus (R) 

Lateral orbital gyrus (L) Orbital part of inferior frontal gyrus (R) Superior frontal gyrus (L) 

Middle cingulate gyrus (R) Orbital part of inferior frontal gyrus (L) Supplementary motor cortex (R) 

Middle cingulate gyrus (L) Posterior cingulate gyrus (R) Supplementary motor cortex (L) 

Medial frontal cortex (R) Posterior cingulate gyrus (L) Supramarginal gyrus (R) 

Medial frontal cortex (L) Precuneus (R) Supramarginal gyrus (L) 

Middle frontal gyrus (R) Precuneus (L) Superior occipital gyrus (R) 

Middle frontal gyrus (L) Parahippocampal gyrus (R) Superior occipital gyrus (L) 

Middle occipital gyrus (R) Parahippocampal gyrus (L) Superior parietal lobule (R) 

Middle occipital gyrus (L) Posterior insula (R) Superior parietal lobule (L) 

Medial orbital gyrus (R) Posterior insula (L) Superior temporal gyrus (R) 

Medial orbital gyrus (L) Parietal operculum (R) Superior temporal gyrus (L) 

Superior frontal gyrus 

medial segment (R) 

 

Posterior orbital gyrus (L) 
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eAlgorithm 1: Algorithm for sopNMF. 1438 

The source code of the Python implementation of sopNMF is available here: 1439 

https://github.com/anbai106/SOPNMF 1440 

 1441 
 1442 

  1443 
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