1	CSF metabolites associated with biomarkers of
2	Alzheimer's disease pathology
3	Ruocheng Dong1, Qiongshi Lu2, Hyunseung Kang2, Ivonne
4	Suridjan³, Gwendlyn Kollmorgen⁴, Norbert Wild⁴, Yuetiva
5	Deming ^{1,5,6} , Carol A.Van Hulle ^{5,6} , Rozalyn M. Anderson ^{5,7} , Henrik
6	Zetterberg ⁸⁻¹² , Kaj Blennow ^{8,9} , Cynthia M. Carlsson ⁵⁻⁷ , Sanjay
7	Asthana ⁵⁻⁷ , Sterling C. Johnson ^{5-7,13} , Corinne D. Engelman ^{1,6,13*}
8	
9	¹ Department of Population Health Sciences, University of
10	Wisconsin-Madison School of Medicine and Public Health,
11	Madison, WI, USA
12	² Department of Biostatistics and Medical Informatics, University
13	of Wisconsin-Madison School of Medicine and Public Health,
14	Madison, WI, USA
15	³ Roche Diagnostics International Ltd, Rotkreuz, Switzerland
16	⁴ Roche Diagnostics GmbH, Penzberg, Germany
17	⁵ Department of Medicine, School of Medicine and Public Health,
18	University of Wisconsin-Madison, Madison, Wisconsin, USA
19	⁶ Wisconsin Alzheimer's Disease Research Center, University of
20	Wisconsin-Madison School of Medicine and Public Health,
21	Madison, WI, USA
22	⁷ Geriatrics Research Education and Clinical Center, Middleton VA
23	Hospital, Madison, WI, USA
24	⁸ Department of Psychiatry and Neurochemistry, Institute of
25	Neuroscience and Physiology, The Sahlgrenska Academy at
26	University of Gothenburg, Mölndal, S-43180, Sweden

27	⁹ Clinical Neurochemistry Laboratory, Sahlgrenska University
28	Hospital, Mölndal, S-43180, Sweden
29	¹⁰ UK Dementia Research Institute at UCL, London, WC1E6BT, UK
30	¹¹ Department of Neurodegenerative Disease, UCL Institute of
31	Neurology, London, WC1H0AL, UK
32	¹² Hong Kong Center for Neurodegenerative Diseases, Clear Water
33	Bay, Hong Kong, China
34	¹³ Wisconsin Alzheimer's Institute, University of Wisconsin-
35	Madison School of Medicine and Public Health, Madison, WI, USA
36	*Correspondence:
37	Corinne D. Engelman
38	608-265-5491
39	<u>cengelman@wisc.edu</u>
40	Abstract
40 41	Abstract INTRODUCTION:
40 41 42	Abstract INTRODUCTION: Metabolomics technology facilitates studying
40 41 42 43	Abstract INTRODUCTION: Metabolomics technology facilitates studying associations between small molecules and disease processes.
40 41 42 43 44	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) with
40 41 42 43 44 45	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) withAlzheimer's disease (AD) CSF biomarkers may elucidate
40 41 42 43 44 45 46	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) withAlzheimer's disease (AD) CSF biomarkers may elucidateadditional changes that are associated with early AD
40 41 42 43 44 45 46 47	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) withAlzheimer's disease (AD) CSF biomarkers may elucidateadditional changes that are associated with early ADpathology and enhance our knowledge of the disease.
40 41 42 43 44 45 46 47 48	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) withAlzheimer's disease (AD) CSF biomarkers may elucidateadditional changes that are associated with early ADpathology and enhance our knowledge of the disease.KETHODS:
40 41 42 43 44 45 46 47 48 49	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) withAlzheimer's disease (AD) CSF biomarkers may elucidateadditional changes that are associated with early ADpathology and enhance our knowledge of the diseases.METHODS:The relative abundance of untargeted metabolites may
40 41 42 43 44 45 46 47 48 49 50	AbstractINTRODUCTION:Metabolomics technology facilitates studyingassociations between small molecules and disease processes.Correlating metabolites in cerebrospinal fluid (CSF) withAlzheimer's disease (AD) CSF biomarkers may elucidateadditional changes that are associated with early ADpathology and enhance our knowledge of the disease. METHODS: The relative abundance of untargeted metabolites mayassessed in 161 individuals. A metabolome-wide association

3

52	and protein biomarkers reflecting brain amyloidosis, tau
53	pathology, neuronal and synaptic degeneration, and
54	astrocyte or microglial activation and neuroinflammation.
55	Linear mixed-effects regression analyses were performed
56	with random intercepts for sample relatedness and repeated
57	measurements and fixed effects for age, sex, and years of
58	education. The metabolome-wide significance was
59	determined by a false discovery rate threshold of 0.05. The
60	significant metabolites were replicated in 154 independent
61	individuals. Mendelian randomization was performed using
62	genome-wide significant single nucleotide polymorphisms
63	from a CSF metabolites genome-wide association study.
64	RESULTS:
65	MWAS results showed several significantly associated
66	metabolites for all the biomarkers except A β 42/40 and IL-6.
67	Genetic variants associated with metabolites and Mendelian
68	randomization analysis provided evidence for a causal
69	association of metabolites for soluble triggering receptor
70	expressed on myeloid cells 2 (sTREM2), amyloid β (A β 40),

71 α -synuclein, total tau, phosphorylated tau, and neurogranin,

for example, palmitoyl sphingomyelin ($d_{18:1/16:0}$) for

73 sTREM2, and erythritol for Aβ40 and α-synuclein.

74 **DISCUSSION:**

75 This study provides evidence that CSF metabolites :	are
--	-----

- 76 associated with AD-related pathology, and many of these
- 77 associations may be causal.
- 78
- 79 Keywords: Alzheimer's disease, metabolomics, CSF
- 80 NeuroToolKit biomarkers, Mendelian randomization
- 81
- 82

5

83 1. Introduction

84	The neuropathological changes of Alzheimer's disease
85	(AD) consist of extracellular amyloid- β (A β) plaques and
86	intracellular neurofibrillary tangles of hyperphosphorylated
87	tau proteins in the brain[1]. Well-established core
88	biomarkers that reflect AD pathology and show promising
89	performance in evaluating AD risk and diagnosing AD are
90	the 42 amino acid form A β (A β 42), the ratio of A β 42/40,
91	phosphorylated tau (P-tau), and total tau (T-tau) in the
92	cerebrospinal fluid (CSF)[2]. However, it has been suggested
93	that other pathophysiology such as neuroinflammation
94	through glial activation and neuronal and synaptic
95	degeneration also contribute to symptomatic AD, and CSF
96	biomarkers of these may provide valuable information about
97	disease progression[2]. Thus, the NeuroToolKit (NTK), a
98	panel of automated CSF immunoassays, was introduced to
99	complement the established core AD biomarkers[3]. The
100	NTK panel includes S100 calcium-binding protein B
101	(S100b), chitinase-3-like protein 1 (YKL-40), and glial
102	fibrillary acidic protein (GFAP) as markers of astrocyte
103	activation; soluble triggering receptor expressed on myeloid
104	cells 2 (sTREM2) and interleukin-6 (IL-6) as markers of
105	microglial activation and inflammation; and neurofilament

106	light (NfL), neurogranin, and α -synuclein as markers of
107	axonal injury and synaptic dysfunction[4].
108	Untargeted metabolomics technology is a promising
109	approach that can simultaneously identify and quantify a
110	large number of small molecules (<1500 Da, <i>e.g.</i> , lipids) in a
111	biological sample[5]. Previous research has shown that
112	metabolomic changes in the human brain and CSF were
113	associated with AD status and AD pathological
114	alterations[6]. For example, Koal <i>et al.</i> [6] identified eight
115	metabolites that were significantly increased in the CSF
116	samples with AD-like pathology including an acylcarnitine
117	(C3), two sphingomyelins [SM (d18:1/18:0) and SM
118	(d18:1/18:1)], and five glycerophospholipids (PC aa C32:0,
119	PC aa C34:1, PC aa C36:1, PC aa C38:4, and PC aa C38:6).
120	However, no studies have examined associations between
121	the untargeted CSF metabolome and a broad panel of
122	biomarkers such as the NTK panel. Thus, our study aims to
123	link CSF metabolites with established and developing AD
124	biomarkers with the goals of (1) identifying individual CSF
125	metabolites that are associated with the CSF NTK
126	biomarkers and (2) conducting Mendelian randomization
127	(MR) to determine if the CSF metabolites significantly
128	associated with NTK biomarkers are likely to be in the causal

- 129 pathway instead of simply changing with, or as a result of,
- 130 AD biomarker changes.
- 131 2. Methods

132 2.1 Participants

- 133The Wisconsin Registry for Alzheimer's Prevention
- 134 (WRAP) began recruitment in 2001 as a prospective cohort
- 135 study, with initial follow-up four years after baseline and
- 136 subsequent ongoing follow-up every two years. WRAP is
- 137 comprised of initially cognitively-unimpaired, asymptomatic,
- 138 middle-aged (between 40 and 65) adults enriched for
- 139 parental history of clinical AD[7]. At each visit, the
- 140 participants undergo comprehensive medical and cognitive
- 141 evaluations. Additional details of the study design and
- 142 methods of WRAP have been described previously[7]. From
- 143 the WRAP cohort, we identified 161 self-reported non-

144 Hispanic white individuals with longitudinal CSF biomarker

- 145 and metabolomic data. The sample size for other
- 146 racial/ethnic groups was too small (n < 10) to include in the
- 147 analyses.
- The Wisconsin Alzheimer's Disease Research Center's
 (ADRC) clinical core cohorts started in 2009 and are
 comprised of well-characterized participants who undergo
 cognitive testing and physical exams every two years[8]. The
- 152 Wisconsin ADRC has a cohort of initially cognitively-

- unimpaired, asymptomatic middle-aged (between 45 and 65)
- adults with a similar study design to WRAP (the
- 155 Investigating Memory in Preclinical AD-Causes and
- 156 Treatments [IMPACT] cohort)[9–11]. From the IMPACT
- 157 cohort, we identified 154 self-reported non-Hispanic white
- 158 participants with cross-sectional CSF biomarker and
- 159 metabolomic data. As with WRAP, the sample size for other
- 160 racial/ethnic groups was too small (n < 10) to include in the
- 161 analyses.
- 162 This study was conducted with the approval of the
- 163 University of Wisconsin Institutional Review Board, and all
- 164 participants provided signed informed consent before
- 165 participation.
- 166 **2.2 CSF sample collection and biomarkers**
- 167 quantification
- 168 Fasting CSF samples were collected via lumbar
- 169 puncture using a Sprotte 25- or 24-gauge spinal needle at the
- 170 $L_{3/4}$ or $L_{4/5}$ interspace with gentle extraction into
- 171 polypropylene syringes. More details can be found in the
- 172 previous study[9]. The CSF collection for WRAP and the
- 173 Wisconsin ADRC followed the same protocol, and the
- 174 lumbar puncture for both studies was performed by the same
- 175 group of well-trained individuals.

176	All CSF samples were batched together and assayed
177	for the NTK biomarkers at the Clinical Neurochemistry
178	Laboratory, University of Gothenburg, using the same lot of
179	reagents, under strict quality control procedures. The
180	immunoassays of Elecsys ($A\beta(1-42)$, P-tau(181P) and T-tau,
181	as well as S100b and IL-6, were performed on a cobas e 601
182	analyzer[3]. The remaining NTK panel was assayed on a
183	cobas e 411 analyzer including A β (1-40), α -synuclein, GFAP,
184	YKL-40, sTREM2, NfL, and neurogranin[3].
185	2.3 CSF metabolomic profiling and quality control
186	CSF metabolomic analyses and quantification were
187	performed in one batch by Metabolon (Durham, NC) using
188	an untargeted approach, based on Ultrahigh Performance
189	Liquid Chromatography 🗆 Tandem Mass Spectrometry
190	platform (UPLC MS/MS)[12]. Details of the metabolomic
191	profiling were described in an earlier study[13].
192	A total of 412 CSF metabolites were identified and quality
193	control procedures were performed. First, 46 metabolites
194	missing for at least 80% of the individuals were excluded.
195	Then the values for each of the remaining metabolites were
196	scaled so that the median equaled 1. Two metabolites with an
197	interquartile range (IQR) of zero were excluded and no
198	metabolites had zero variability between individuals. Log10
199	transformation was applied to normalize the data. After

200	quality control, 269 metabolites with known biochemical
201	names remained for this investigation. The missing
202	percentage of each metabolite in WRAP and Wisconsin
203	ADRC is available in Supplemental Table 1.
204	2.4 Genotyping and quality control
205	In the WRAP participants, DNA was extracted from
206	whole blood using the PUREGENE® DNA Isolation Kit, and
207	the concentrations were quantified using the Invitrogen™
208	Quant-iT™ PicoGreen™ dsDNA Assay Kit. More details can
209	be found in the previous study[13]. Genotyping data were
210	generated by the University of Wisconsin Biotechnology
211	Center using the Illumina Multi-Ethnic Genotyping Array. In
212	the WRAP genetic data, (1) duplicate samples were used to
213	calculate a concordance rate of 99.99%, and discordant
214	genotypes were set to missing; (2) samples missing
215	genotypes for >5% of the single nucleotide polymorphisms
216	(SNPs) were excluded, while SNPs missing in >5% of
217	individuals were also excluded; (3) samples were excluded if
218	the self-reported and genetic sex were inconsistent; (4) SNPs
219	that were not in Hardy-Weinberg equilibrium (HWE;
220	p<3.08E-8) or were monomorphic were removed; (5)
221	individuals that were not of European ancestry were
222	removed due to small sample sizes of other ancestries; (6)
223	the imputation was performed through the Michigan

224	Imputation Server v1.0.328, using the Haplotype Reference
225	Consortium (HRC)[14–16] and the SNPs with a quality score
226	R ² <0.80, minor allele frequency (MAF)<0.001, or that were
227	out of HWE were excluded; (7) genetic ancestry was assessed
228	by using Principal Components Analysis in Related Samples
229	(PC-AiR) because of the sibling relationships present in the
230	WRAP cohort[13].
231	Genetic data in the Wisconsin ADRC were generated
232	from DNA extracted from blood samples at baseline and
233	genotyped with either the Infinium OmniExpressExome-8
234	Kit or the Infinium Global Screening Array-24 Kit. Genetic
235	data for the Wisconsin ADRC underwent the same quality
236	control (QC) and imputation as the WRAP data except
237	samples and SNPs missing in >2% were excluded and HWE
238	threshold was p<1e-6 due to differences in sample sizes and
239	the number of SNPs between the two cohorts.
240	2.5 Statistical analysis
241	2.5.1 Metabolome-wide association study
242	A metabolome-wide association study (MWAS) was
243	conducted in the WRAP cohort between 269 individual CSF
244	metabolites and 13 CSF NTK biomarkers using linear mixed-
245	effects regression models with random intercepts to account
246	for repeated measures and family relationships (10 families
247	with two or more siblings) and fixed effects for age at CSF

12

248	collection, sex, and years of education. Replication of each
249	CSF metabolite significantly associated with one or more
250	biomarkers in WRAP was then conducted in the Wisconsin
251	ADRC cohort using linear regression adjusting for the same
252	covariates. Both Bonferroni and false discovery rate (FDR)
253	methods were used to correct the p-values for multiple
254	testing; the FDR corrected q value was used to determine
255	statistical significance in each analysis. Potential functional
256	pathways of the replicated significant metabolites were
257	identified by pathway analyses using the web-based software
258	Metabo-analyst 5.0[17] based on the Kyoto Encyclopedia of
259	Genes and Genomes (KEGG) Homo sapiens pathway. The
260	hypergeometric test and relative-betweenness centrality
261	were employed to evaluate the pathway importance, and the
262	pathways were considered as important if the impact was
263	≥0.1.
264	2.5.2 Prediction performance and elastic net
265	regression
266	The variance for each biomarker explained by its
267	corresponding significant metabolites was evaluated using r ²
268	in the combined cohorts of WRAP and the Wisconsin ADRC.
269	For this analysis, we only included the first available
270	measures of independent participants from WRAP. Since the

271 number of significant metabolites for each biomarker was

272	large and some	of the metabolites	were highly correlated,
-----	----------------	--------------------	-------------------------

- elastic net regression[18] was employed to select the
- 274 important independent metabolites. Then the r² of elastic
- 275 net-selected metabolites was re-calculated. For each
- biomarker, we fit three types of models, the (1) base model,
- 277 which only included the demographics of age, sex, years of
- education, and cohort, (2) metabolite model, which included
- the demographics in the base model plus all the replicated
- 280 significant metabolites, and (3) elastic net-selected
- 281 metabolite model, which contained the demographics and
- 282 elastic-net-selected metabolites.

283 2.5.3 Mendelian randomization

The genome-wide significant SNPs ($p < 5 \times 10^{-8}$) 284 from a previous genome-wide meta-analysis of CSF 285 metabolites[19] were extracted for each elastic net-selected 286 metabolite (5863 SNPs for 52 metabolites). These SNPs (or 287 the top 100 SNPs if there were more than 100 genome-wide 288 significant SNPs for a metabolite) were used as instrumental 289 variables (IV) for the metabolite in an MR analysis for each 290 elastic net-selected metabolite-NTK biomarker association 291 pair in the combined WRAP and Wisconsin ADRC cohort. 292 For each MR test, we first checked the strength of the IVs 293 294 using F statistics. Typically, an IV with an F statistic greater

than 10 is considered to be strong, while instruments with F

296	statistics below 10 are considered to be weak[20]. Next, the
297	estimated (or less confounded) beta and p values for the
298	effect of the metabolite on the NTK biomarker were
299	calculated using the two-stage least squares method if the
300	IVs were strong, but using the limited information maximum
301	likelihood (LIML) for IVs that were relatively weak. The
302	confidence intervals (CI) of the point estimates from both
303	LIML and another conditional likelihood ratio (CLR)
304	method, which is robust to weak IVs[21], were compared and
305	only significant results with CIs in the same direction and
306	with a similar range of effect size between these two methods
307	were considered as evidence of a causal effect. The
308	Bonferroni corrected p-value<0.05 based on the number of
309	all MR tests performed was used to determine significance.
310	The MR analysis was conducted using the R package
311	"ivmodel"[22].
312	3. Results
313	3.1 Participant characteristics
314	Characteristics of the WRAP and Wisconsin ADRC
315	participants can be found in Table 1. Among 161 WRAP
316	participants, the mean baseline age and education level were

- 62.1 and 16.2 years, respectively. The mean age and years of
- education in the Wisconsin ADRC were 58.1 and 16.2,
- respectively. Females comprised 65.2% of WRAP

15

320 participants and 68.8% of the Wisconsin ADRC. The mean

values of each biomarker are also listed in Table 1.

322 3.2 MWAS

323	The significant MWAS results in WRAP and the
324	Wisconsin ADRC are summarized in Figure 1. In WRAP, a
325	large number of CSF metabolites reached the significance
326	threshold after FDR correction [Figure 1. (a)]. 47 metabolites
327	were associated with P-tau, 56 were associated with T-tau,
328	58 were associated with A β 42, 80 were associated with
329	A β 40, 65 were associated with NfL, and 62 were associated
330	with neurogranin. However, no metabolites were associated
331	with the ratio of A β 42/40 or IL-6. Many of the metabolites
332	that were significant in WRAP were also significant in the
333	Wisconsin ADRC [Figure 1. (b)]. For example, among 47
334	significant metabolites for P-tau in WRAP, 40 metabolites
335	were also significant in the Wisconsin ADRC. Table 2 shows
336	the replication results for the top 10 significant CSF
337	metabolite-biomarker associations (if there were 10 or more
338	significant metabolites) in the Wisconsin ADRC. For
339	example, the top three metabolites associated with P-tau and
340	T-tau were 1-palmitoyl-2-stearoyl-GPC (16:0/18:0), N-
341	acetylneuraminate, and C-glycosyltryptophan. N-
342	acetylneuraminate and 1,2-dipalmitoyl-GPC (16:0/16:0)
343	were the top two metabolites associated with A β 42 and A β 40.

344	The top three metabolites associated with NfL were N-
345	acetylthreonine, N-acetylalanine, and beta-citrylglutamate.
346	N-acetylneuraminate, C-glycosyltryptophan, and N6-
347	succinyladenosine were the top three metabolites for
348	neurogranin. N-acetylneuraminate, 1,2-dipalmitoyl-GPC
349	(16:0/16:0), and stearoyl sphingomyelin (d18:1/18:0) were
350	the top three metabolites for YKL40. Stearoyl sphingomyelin
351	(d18:1/18:0), 1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6),
352	and 1-palmitoyl-2-oleoyl-GPC (16:0/18:1) were the top three
353	metabolites associated with S100b. Only six metabolites
354	were associated with GFAP, and the top three were 1,2-
355	dipalmitoyl-GPC (16:0/16:0), 1-palmitoyl-2-stearoyl-GPC
356	(16:0/18:0), and beta-citrylglutamate. For sTREM2, the top
357	metabolites were stearoyl sphingomyelin (d18:1/18:0), 1,2-
358	dipalmitoyl-GPC (16:0/16:0), and palmitoyl sphingomyelin
359	(d18:1/16:0). Finally, for α -synuclein, the top three
360	metabolites were 1-palmitoyl-2-stearoyl-GPC (16:0/18:0),
361	1,2-dipalmitoyl-GPC (16:0/16:0), and N-acetylneuraminate.
362	The full results of WRAP and the Wisconsin ADRC can be
363	found in Supplemental Tables 2-25. The association patterns
364	between significant CSF metabolites and NTK biomarkers
365	are provided in the Figure 2. The summary of the number of
366	significant associations and the name of NTK biomarkers
367	that were replicated in the Wisconsin ADRC are presented in

368	Supplemental Table 26. Most of the significant metabolites
369	were lipids, amino acids, and carbohydrates. For example,
370	the lipid, 1,2-dipalmitoyl-GPC (16:0/16:0), the amino acid,
371	beta-citrylglutamate, and the carbohydrate N-
372	acetylneuraminate were strongly associated with almost
373	every CSF NTK biomarker of AD. On the contrary, amino
374	acids like kynurenate and proline were only significantly
375	associated with α-synuclein.
376	The functional pathways for replicated significant
377	metabolites with known human metabolome database
378	(HMDB) IDs for each CSF NTK biomarker are shown in
379	Supplemental Table 27. Two significant metabolites, 1,2-
380	dipalmitoyl-GPC (16:0/16:0) and 1-oleoyl-GPC (18:1), were
381	enriched in the glycerophospholipid metabolism pathway for
382	most biomarkers. Other pathways such as pyrimidine
383	metabolism (including orotate and orotidine), ascorbate and
384	aldarate metabolism (including gulonate and glucuronate),
385	arginine biosynthesis (including N-acetylglutamate and
386	argininosuccinate), and pentose and glucuronate
387	interconversions (also including gulonate and glucuronate)
388	may also be of interest.
389	3.3 Prediction performance and elastic net
390	regression results

18

391	The prediction performance of replicated significant
392	metabolites was measured by r ² and presented in Table 3.
393	The r ² of the base models, which only included the
394	demographic variables, ranged from 0.01 to 0.25. Adding the
395	replicated significant metabolites increased the r ²
396	substantially for each biomarker, ranging from 0.13 to 0.94.
397	The elastic net regression further prioritized candidate
398	metabolites associated with each biomarker. For example, 22
399	of the original 40 significant metabolites were selected by the
400	elastic net as important independent metabolites for P-tau.
401	Initially, 40 significant metabolites explained about 72% of
402	the variance in P-tau; the 22 elastic net-selected metabolites
403	still explained 70% of the variance.
404	3.4 Mendelian randomization
405	According to the F statistics, we employed the LIML

method for MR. The full results of the test statistics are 406 provided in Supplemental Table 28. After checking for 407 consistency of the CIs for the LIML and CLR methods, the 408 significant and consistent MR results are displayed in Table 409 410 4, showing metabolites with a potential causal effect on the NTK biomarker based on instrumental variables formed by 411 genome-wide significant SNPs. For example, we observed a 412 positive causal association between palmitoyl sphingomyelin 413 414 (d18:1/16:0) and sTREM2.

415 **4. Discussion**

416	In this analysis, we tested the associations between
417	CSF metabolites and CSF NTK biomarkers representing
418	different pathologies of AD in initially cognitively-
419	unimpaired individuals. Significant metabolites were
420	identified in the WRAP cohort using linear mixed effects
421	regression and most of the metabolites were replicated in the
422	Wisconsin ADRC cohort. The elastic net regression method
423	reduced the number of CSF metabolites by selecting the
424	important and independent metabolites for each CSF
425	biomarker. This provides a smaller, more practical set of
426	metabolites to focus on in future research. The results of the
427	MR analyses suggested several metabolites that may play a
428	causal role in AD pathology. A detailed look into these
429	associations, such as the contributing genes and their
430	corresponding functions, is worth exploring.
431	We have identified and replicated multiple CSF
432	metabolites that were associated with CSF NTK biomarkers
433	for AD pathology; most of these CSF metabolites were lipids,
434	particularly sphingolipids, phosphatidylcholines, and
435	lysophospholipids, which are all types of phospholipids.
436	Phospholipids are a class of lipids that construct the cellular
437	membranes and are involved in many complex activities of
438	membrane proteins, receptors, enzymes, and ion channels in

439	the cell or at the cell surface[23]. In the neurodegenerative
440	brain, <i>e.g.</i> , in the AD brain, which has suffered extensive
441	damage, the compromise of the membrane functions is
442	expected, explaining how phospholipids may be involved in
443	AD pathology[24]. Previous studies have demonstrated that
444	various phospholipids such as phosphatidylcholines,
445	sphingolipids, glycerophospholipids, and lysophospholipids
446	have changed in the AD patient's brain, CSF and blood when
447	compared to healthy controls[23,25,26]. For example, a
448	serum metabolomics study conducted by González-
449	Domínguez <i>et al.</i> [25] showed that the concentration of
450	numerous phosphatydyl lipids, like 1,2-dipalmitoyl-GPC
451	(16:0/16:0), 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2), and 1-
452	palmitoyl-2-oleoyl-GPC (16:0/18:1), and
453	lysophosphatidylcholines, like 1-palmitoyl-GPC (16:0) and 1-
454	stearoyl-GPC (18:0), were different in AD versus healthy
455	controls. The 1,2-dipalmitoyl-GPC (16:0/16:0)
456	phosphatidylcholine has also been suggested as one of three
457	serum metabolites to predict AD development in MCI
458	individuals[27]. Another brain metabolomics study found
459	that higher levels of palmitoyl sphingomyelin (d18:1/16:0)
460	and sphingomyelin (d18:1/18:1, d18:2/18:0) were associated
461	with the severity of AD pathology at autopsy and AD
462	progression across prodromal and preclinical stages[28].

463	The stearoyl sphingomyelin (d18:1/18:0) was also
464	significantly changed in the CSF with "AD-like pathology"
465	that was dichotomized by A β 42, T-tau, and P-tau levels[6].
466	In summary, our results confirmed the importance of the
467	previously identified lipids but also provided novel lipid
468	findings for AD pathologies beyond the major established
469	ones.
470	Another class of metabolites that are of potential
471	interest are several carbohydrates like N-acetylneuraminate,
472	arabitol/xylitol, arabinose, and erythronate. Among them, N-
473	acetyleneuraminate, also known as sialic acid, had a
474	significant effect on most NTK biomarkers. In addition to
475	our study, a previous study conducted by Nagata <i>et al</i> .[29] in
476	2018 also showed that CSF N-acetylneuraminate was
477	significantly increased in AD when compared to patients
478	with idiopathic normal pressure hydrocephalus and was
479	positively correlated with CSF P-tau (r=0.55), as it was in our
480	study. N-acetyleneuraminate is an acetyl derivative of the
481	amino sugar neuraminic acid, which occurs in many
482	glycoproteins, glycolipids, and polysaccharides. Specifically,
483	it is a functional and structural component of gangliosides,
484	which are found predominantly in the nervous system and
485	are abundant in the brain, especially in the grey matter[30].
486	Studies have shown that gangliosides play important roles in

487	AD. For example, it has been suggested that GM1-
488	ganglioside binds to Aß, and the resulted GAß has the
489	capability to accelerate Aß assembly[31] and is the
490	endogenous seed for amyloid fibral in the AD brain[32]. The
491	gangliosides also have important roles in organizing the lipid
492	rafts, which integrate numerous types of lipid proteins
493	involved in cell signaling, cell-cell adhesion, and intracellular
494	vesicular trafficking[29] and contain many AD-associated
495	proteins such as amyloid precursor protein (APP)[33].
496	Furthermore, the gene <i>CD33</i> , which belongs to the sialic-
497	acid-binding immunoglobulin-like lectin family, has been
498	reported as a strong genetic locus associated with AD by
499	GWASs[34–36] and has been suggested to impair the
500	microglia-mediated Aβ clearance[37–39]. Erythronate
501	(erythronic acid) was previously identified as the main
502	hallmark of pentose–phosphate pathway defects[40], and
503	consistent with abnormal function of pentose–phosphate
504	pathway in certain regions of the AD-brain[41], and the
505	upregulation of the pentose–phosphate pathway was
506	reported in a previous study of mild cognitive impairment
507	(MCI) participants that later progressed to AD[42].
508	As mentioned above, a couple of metabolites were
509	common to most of the AD pathologies defined by the CSF
510	NTK biomarkers. On the contrary, some metabolites were

23

511	unique to specific NTK biomarkers. For example, lipids like
512	1-palmitoyl-2-linoleoyl-GPC (16:0/18:2), 1-stearoyl-2-
513	arachidonoyl-GPC (18:0/20:4), sphingomyelin (d18:1/20:0,
514	d16:1/22:0) and sphingomyelin (d18:1/22:1, d18:2/22:0,
515	d16:1/24:1) were only associated with α -synuclein. These
516	metabolites may be helpful to study synaptic dysfunction and
517	could potentially be used as biomarkers to differentiate AD
518	pathologies.
519	By utilizing Mendelian randomization, we found
520	causal evidence for several of the associations between CSF
521	metabolites and CSF NTK biomarkers. Among these
522	metabolites, most of them were lipids, with some amino
523	acids and cofactors/vitamins, and a xenobiotic metabolite,
524	erythritol. Another metabolite of interest, homocarnosine, is
525	an inhibitory neuromodulator synthesized in the neuron
526	from gamma-aminobutyric acid (GABA) and histidine[43].
527	The level of human CSF homocarnosine declines drastically
528	with age [44] and was suggested to be related to AD through
529	CSF protein glycation[45]. At the same time, GABA also
530	plays an important role in the brain and may be related to
531	AD[46].
532	This study has some limitations. First, the analysis
533	only included non-Hispanic white individuals, so the results

may not extrapolate to other racial/ethnic groups. Second,

535	the sample sizes of both the WRAP and Wisconsin ADRC
536	cohorts were relatively small and will need to be replicated in
537	a larger independent sample. The significant associations
538	between a number of metabolites and both A β 42 and A β 40,
539	but not with A β 42/40 may indicate that the metabolites
540	associated with A β 42 and A β 40 only influence the
541	production of amyloid in general versus clearance of the
542	pathological form, A β 42. In general, the research confirmed
543	that several novel metabolites changed along with AD CSF
544	biomarkers and extended several developing and
545	understudied AD pathologies, e.g., synaptic dysfunction,
546	based on untargeted CSF metabolomics and will expand our
547	knowledge of the biological mechanisms behind AD.
548	Acknowledgments
549	The authors especially thank the WRAP and
550	Wisconsin ADRC participants and staff for their
551	contributions to the studies. Without their efforts, this
552	research would not be possible. This study was supported by
553	the National Institutes of Health (NIH) grants [Ro1AG27161
554	(Wisconsin Registry for Alzheimer Prevention: Biomarkers
555	of Preclinical AD), R01AG054047 (Genomic and
556	Metabolomic Data Integration in a Longitudinal Cohort at
557	Risk for Alzheimer's Disease), R01AG037639 (White Matter
558	Degeneration: Biomarkers in Preclinical Alzheimer's

559	Disease), R21AG067092 (Identifying Metabolomic Risk
560	Factors in Plasma and Cerebrospinal Fluid for Alzheimer's
561	Disease), and P30AG062715 (Wisconsin Alzheimer's Disease
562	Research Center Grant)], the Helen Bader Foundation,
563	Northwestern Mutual Foundation, Extendicare Foundation,
564	State of Wisconsin, the Clinical and Translational Science
565	Award (CTSA) program through the NIH National Center for
566	Advancing Translational Sciences (NCATS) grant
567	[UL1TR000427], and the University of Wisconsin-Madison
568	Office of the Vice Chancellor for Research and Graduate
569	Education with funding from the Wisconsin Alumni
570	Research Foundation. Computational resources were
571	supported by core grants to the Center for Demography and
572	Ecology [P2CHD047873] and the Center for Demography of
573	Health and Aging [P30AG017266].
574	HZ is a Wallenberg Scholar supported by grants from
575	the Swedish Research Council (#2018-02532), the European
576	Research Council (#681712), Swedish State Support for
577	Clinical Research (#ALFGBG-720931), the Alzheimer Drug
578	Discovery Foundation (ADDF), USA (#201809-2016862),
579	the AD Strategic Fund and the Alzheimer's Association
580	(#ADSF-21-831376-C, #ADSF-21-831381-C and #ADSF-21-
581	831377-C), the Olav Thon Foundation, the Erling-Persson
582	Family Foundation, Stiftelsen för Gamla Tjänarinnor,

26

583	Hjärnfonden, Sweden (#FO2019-0228), the European
584	Union's Horizon 2020 research and innovation programme
585	under the Marie Skłodowska-Curie grant agreement No
586	860197 (MIRIADE), European Union Joint Program for
587	Neurodegenerative Disorders (JPND2021-00694), and the
588	UK Dementia Research Institute at UCL.
589	KB is supported by the Swedish Research Council
590	(#2017-00915), ADDF, USA [#RDAPB-201809-2016615],
591	the Swedish Alzheimer Foundation [#AF-742881],
592	Hjärnfonden, Sweden [#FO2017-0243], the Swedish state
593	under the agreement between the Swedish government and
594	the County Councils, the ALF-agreement [#ALFGBG-
595	715986], and European Union Joint Program for
596	Neurodegenerative Disorders [JPND2019-466-236], and the
597	Alzheimer's Association 2021 Zenith Award (ZEN-21-
598	848495).
599	We thank the University of Wisconsin Madison
600	Biotechnology Center Gene Expression Center for providing
601	Illumina Infinium genotyping services and Roche for
602	providing the NTK kits for this study. COBAS, COBAS E and
603	ELECSYS are trademarks of Roche.
604	Conflicts of Interest
605	HZ has served at scientific advisory boards and/or as

a consultant for Abbvie, Alector, Annexon, Artery

607	Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen,
608	Pinteon Therapeutics, Red Abbey Labs, Passage Bio, Roche,
609	Samumed, Siemens Healthineers, Triplet Therapeutics, and
610	Wave, has given lectures in symposia sponsored by
611	Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, and is a
612	co-founder of Brain Biomarker Solutions in Gothenburg AB
613	(BBS), which is a part of the GU Ventures Incubator Program
614	(outside submitted work).
615	KB has served as a consultant, at advisory boards, or
616	at data monitoring committees for Abcam, Axon, Biogen,
617	JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis,
618	Pharmatrophix, Prothena, Roche Diagnostics, and Siemens
619	Healthineers, and is a co-founder of Brain Biomarker
620	Solutions in Gothenburg AB (BBS), which is a part of the GU
621	Ventures Incubator Program, all unrelated to the work
622	presented in this paper.
623	Gwendlyn Kollmorgen and Norbert Wild are full-time
624	employees of Roche Diagnostics GmbH. Ivonne Suridjan is a
625	full-time employee of Roche Diagnostics International Ltd
626	and holds non-voting equities in F. Hoffmann-La Roche.

627 **Reference**

628	[1]	Anoop A, Singh PK, Jacob RS, Maji SK. CSF Biomarkers
629		for Alzheimer's Disease Diagnosis. Int J Alzheimers Dis
630		2010;2010. https://doi.org/10.4061/2010/606802.
631	[2]	Blennow K, Zetterberg H, Fagan AM. Fluid Biomarkers
632		in Alzheimer Disease. Cold Spring Harb Perspect Med
633		2012;2:a006221–a006221.
634		https://doi.org/10.1101/cshperspect.a006221.
635	[3]	Hulle CV, Jonaitis EM, Betthauser TJ, Batrla R, Wild N,
636		Kollmorgen G, et al. An examination of a novel
637		multipanel of CSF biomarkers in the Alzheimer's
638		disease clinical and pathological continuum. Alzheimers
639		Dement 2021;17:431–45.
640		https://doi.org/10.1002/alz.12204.
641	[4]	Fluid AD Biomarkers Link P-Tau to Synapses,
642		Inflammation ALZFORUM n.d.
643		https://www.alzforum.org/news/conference-
644		coverage/fluid-ad-biomarkers-link-p-tau-synapses-
645		inflammation (accessed June 5, 2021).
646	[5]	Hasin Y, Seldin M, Lusis A. Multi-omics approaches to
647		disease. Genome Biol 2017;18:83.
648		https://doi.org/10.1186/s13059-017-1215-1.
649	[6]	Koal T, Klavins K, Seppi D, Kemmler G, Humpel C.
650		Sphingomyelin SM(d18:1/18:0) is Significantly

651		Enhanced in Cerebrospinal Fluid Samples
652		Dichotomized by Pathological Amyloid- β 42, Tau, and
653		Phospho-Tau-181 Levels. J Alzheimers Dis
654		2015;44:1193–201. https://doi.org/10.3233/JAD-
655		142319.
656	[7]	Johnson SC, Koscik RL, Jonaitis EM, Clark LR, Mueller
657		KD, Berman SE, et al. The Wisconsin Registry for
658		Alzheimer's Prevention: A review of findings and
659		current directions. Alzheimers Dement Diagn Assess
660		Dis Monit 2018;10:130–42.
661		https://doi.org/10.1016/j.dadm.2017.11.007.
662	[8]	Bettcher BM, Johnson SC, Fitch R, Casaletto KB,
663		Heffernan KS, Asthana S, et al. Cerebrospinal Fluid and
664		Plasma Levels of Inflammation Differentially Relate to
665		CNS Markers of Alzheimer's Disease Pathology and
666		Neuronal Damage. J Alzheimers Dis 2018;62:385–97.
667		https://doi.org/10.3233/JAD-170602.
668	[9]	Darst BF, Koscik RL, Racine AM, Oh JM, Krause RA,
669		Carlsson CM, et al. Pathway-specific polygenic risk
670		scores as predictors of β -amyloid deposition and
671		cognitive function in a sample at increased risk for
672		Alzheimer's disease. J Alzheimers Dis JAD
673		2017;55:473–84. https://doi.org/10.3233/JAD-160195.

674	[10] Racine AM, Koscik RL, Berman SE, Nicholas CR, Clark
675	LR, Okonkwo OC, et al. Biomarker clusters are
676	differentially associated with longitudinal cognitive
677	decline in late midlife. Brain 2016;139:2261–74.
678	https://doi.org/10.1093/brain/aww142.
679	[11] Vogt NM, Romano KA, Darst BF, Engelman CD,
680	Johnson SC, Carlsson CM, et al. The gut microbiota-
681	derived metabolite trimethylamine N-oxide is elevated
682	in Alzheimer's disease. Alzheimers Res Ther
683	2018;10:124. https://doi.org/10.1186/s13195-018-0451-
684	2.
685	[12] Bridgewater BR EA. High Resolution Mass
686	Spectrometry Improves Data Quantity and Quality as
687	Compared to Unit Mass Resolution Mass Spectrometry
688	in High-Throughput Profiling Metabolomics. J
689	Postgenomics Drug Biomark Dev 2014;04.
690	https://doi.org/10.4172/2153-0769.1000132.
691	[13] Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated
692	analysis of genomics, longitudinal metabolomics, and
693	Alzheimer's risk factors among 1,111 cohort participants.
694	Genet Epidemiol 2019;43:657–74.
695	https://doi.org/10.1002/gepi.22211.
696	[14] Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong
697	A, et al. Next-generation genotype imputation service

698	and methods. Nat Genet 2016;48:1284–7.
699	https://doi.org/10.1038/ng.3656.
700	[15] Loh P-R, Danecek P, Palamara PF, Fuchsberger C, A
701	Reshef Y, K Finucane H, et al. Reference-based phasing
702	using the Haplotype Reference Consortium panel. Nat
703	Genet 2016;48:1443–8.
704	https://doi.org/10.1038/ng.3679.
705	[16] McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood
706	AR, Teumer A, et al. A reference panel of 64,976
707	haplotypes for genotype imputation. Nat Genet
708	2016;48:1279–83. https://doi.org/10.1038/ng.3643.
709	[17] Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L,
710	Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap
711	between raw spectra and functional insights. Nucleic
712	Acids Res 2021;49:W388–96.
713	https://doi.org/10.1093/nar/gkab382.
714	[18] Zou H, Hastie T. Regularization and variable selection
715	via the elastic net. J R Stat Soc Ser B Stat Methodol
716	2005;67:301–20. https://doi.org/10.1111/j.1467-
717	9868.2005.00503.x.
718	[19] Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X,
719	Wu Y, et al. Cerebrospinal fluid metabolomics identifies
720	19 brain-related phenotype associations. Commun Biol

721	2021;4:1-11.	https://	/doi.org/	/10.1038	/s42003-020-
-----	--------------	----------	-----------	----------	--------------

- 722 01583-z.
- 723 [20] Stock JH, Wright JH, Yogo M. A Survey of Weak
- 724 Instruments and Weak Identification in Generalized
- 725 Method of Moments. J Bus Econ Stat 2002;20:518–29.
- 726 https://doi.org/10.1198/073500102288618658.
- 727 [21] Moreira MJ. A Conditional Likelihood Ratio Test for
- 728 Structural Models. Econometrica 2003;71:1027–48.
- 729 https://doi.org/10.1111/1468-0262.00438.
- 730 [22] Kang H, Jiang Y, Zhao Q, Small DS. ivmodel: An R
- 731 Package for Inference and Sensitivity Analysis of
- 732 Instrumental Variables Models with One Endogenous
- 733 Variable. ArXiv200208457 Stat 2020.
- 734 [23] Kosicek M, Hecimovic S. Phospholipids and Alzheimer's
- 735 Disease: Alterations, Mechanisms and Potential
- 736 Biomarkers. Int J Mol Sci 2013;14:1310–22.
- 737 https://doi.org/10.3390/ijms14011310.
- 738 [24] Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty
- 739 M, Sachdev PS. Dysregulation of lipids in Alzheimer's
- 740 disease and their role as potential biomarkers.
- 741 Alzheimers Dement 2017;13:810–27.
- 742 https://doi.org/10.1016/j.jalz.2017.01.008.
- 743 [25] González-Domínguez R, García-Barrera T, Gómez-Ariza
- 744 JL. Combination of metabolomic and phospholipid-

745	profiling appro	oaches for the	study of Alzheimer's
-----	-----------------	----------------	----------------------

- 746 disease. J Proteomics 2014;104:37–47.
- 747 https://doi.org/10.1016/j.jprot.2014.01.014.
- 748 [26] Kao Y-C, Ho P-C, Tu Y-K, Jou I-M, Tsai K-J. Lipids and
- 749 Alzheimer's Disease. Int J Mol Sci 2020;21:1505.
- 750 https://doi.org/10.3390/ijms21041505.
- 751 [27] Orešič M, Hyötyläinen T, Herukka S-K, Sysi-Aho M,
- 752 Mattila I, Seppänan-Laakso T, et al. Metabolome in
- 753 progression to Alzheimer's disease. Transl Psychiatry
- 754 2011;1:e57–e57. https://doi.org/10.1038/tp.2011.55.
- 755 [28] Varma VR, Oommen AM, Varma S, Casanova R, An Y,
- Andrews RM, et al. Brain and blood metabolite
- 757 signatures of pathology and progression in Alzheimer
- 758 disease: A targeted metabolomics study. PLOS Med
- 759 2018;15:e1002482.

760 https://doi.org/10.1371/journal.pmed.1002482.

- 761 [29] Nagata Y, Hirayama A, Ikeda S, Shirahata A, Shoji F,
- 762 Maruyama M, et al. Comparative analysis of
- 763 cerebrospinal fluid metabolites in Alzheimer's disease
- and idiopathic normal pressure hydrocephalus in a
- 765 Japanese cohort. Biomark Res 2018;6:5.
- 766 https://doi.org/10.1186/s40364-018-0119-x.
- 767 [30] Palmano K, Rowan A, Guillermo R, Guan J, Mc Jarrow
- 768 P. The Role of Gangliosides in Neurodevelopment.

769	Nutrients 2015;7:3891–913.
770	https://doi.org/10.3390/nu7053891.
771	[31] Yanagisawa K, Odaka A, Suzuki N, Ihara Y. GM1
772	ganglioside–bound amyloid β –protein (A β): A possible
773	form of preamyloid in Alzheimer's disease. Nat Med
774	1995;1:1062–6. https://doi.org/10.1038/nm1095-1062.
775	[32] Hayashi H, Kimura N, Yamaguchi H, Hasegawa K,
776	Yokoseki T, Shibata M, et al. A Seed for Alzheimer
777	Amyloid in the Brain. J Neurosci 2004;24:4894–902.
778	https://doi.org/10.1523/JNEUROSCI.0861-04.2004.
779	[33] Ehehalt R, Keller P, Haass C, Thiele C, Simons K.
780	Amyloidogenic processing of the Alzheimer β -amyloid
781	precursor protein depends on lipid rafts. J Cell Biol
782	2003;160:113–23.
783	https://doi.org/10.1083/jcb.200207113.
784	[34] Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M,
785	Hogan MF, et al. Genome-wide Association Analysis
786	Reveals Putative Alzheimer's Disease Susceptibility Loci
787	in Addition to APOE. Am J Hum Genet 2008;83:623–
788	32. https://doi.org/10.1016/j.ajhg.2008.10.008.
789	[35] Hollingworth P, Harold D, Sims R, Gerrish A, Lambert
790	J-C, Carrasquillo MM, et al. Common variants at
791	ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP

792	are associated with Alzheimer's disease. Nat Genet
793	2011;43:429–35. https://doi.org/10.1038/ng.803.
794	[36] Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan
795	BN, Buros J, et al. Common variants at
796	MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are
797	associated with late-onset Alzheimer's disease. Nat
798	Genet 2011;43:436–41. https://doi.org/10.1038/ng.801.
799	[37] Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj
800	T, Tang A, et al. CD33 Alzheimer's disease locus: altered
801	monocyte function and amyloid biology. Nat Neurosci
802	2013;16:848–50. https://doi.org/10.1038/nn.3435.
803	[38] Jiang T, Yu J-T, Hu N, Tan M-S, Zhu X-C, Tan L. CD33
804	in Alzheimer's Disease. Mol Neurobiol 2014;49:529–35.
805	https://doi.org/10.1007/s12035-013-8536-1.
806	[39] Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN,
807	Asselin CN, Mullin K, et al. Alzheimer's Disease Risk
808	Gene CD33 Inhibits Microglial Uptake of Amyloid Beta.
809	Neuron 2013;78:631–43.
810	https://doi.org/10.1016/j.neuron.2013.04.014.
811	[40] Engelke UFH, Zijlstra FSM, Mochel F, Valayannopoulos
812	V, Rabier D, Kluijtmans LAJ, et al. Mitochondrial
813	involvement and erythronic acid as a novel biomarker in
814	transaldolase deficiency. Biochim Biophys Acta BBA -

815	Mol Basis Dis 2010;1802:1028–35.
816	https://doi.org/10.1016/j.bbadis.2010.06.007.
817	[41] Xu J, Begley P, Church SJ, Patassini S, Hollywood KA,
818	Jüllig M, et al. Graded perturbations of metabolism in
819	multiple regions of human brain in Alzheimer's disease:
820	Snapshot of a pervasive metabolic disorder. Biochim
821	Biophys Acta BBA - Mol Basis Dis 2016;1862:1084–92.
822	https://doi.org/10.1016/j.bbadis.2016.03.001.
823	[42] Orešič M, Hyötyläinen T, Herukka S-K, Sysi-Aho M,
824	Mattila I, Seppänan-Laakso T, et al. Metabolome in
825	progression to Alzheimer's disease. Transl Psychiatry
826	2011;1:e57–e57. https://doi.org/10.1038/tp.2011.55.
827	[43] Gujar SK, Maheshwari S, Björkman-Burtscher I,
828	Sundgren PC. Magnetic Resonance Spectroscopy. J
829	Neuroophthalmol 2005;25:217–26.
830	https://doi.org/10.1097/01.wno.0000177307.21081.81.
831	[44] Jansen EEW, Gibson KM, Shigematsu Y, Jakobs C,
832	Verhoeven NM. A novel, quantitative assay for
833	homocarnosine in cerebrospinal fluid using stable-
834	isotope dilution liquid chromatography–tandem mass
835	spectrometry. J Chromatogr B 2006;830:196–200.
836	https://doi.org/10.1016/j.jchromb.2005.10.053.
837	[45] Hipkiss AR. Could Carnosine or Related Structures
838	Suppress Alzheimer's Disease? J Alzheimers Dis

839	2007;11:229–40. https://doi.org/10.3233/JAD-2007-
840	11210.
841	[46] Govindpani K, Calvo-Flores Guzmán B, Vinnakota C,
842	Waldvogel HJ, Faull RL, Kwakowsky A. Towards a
843	Better Understanding of GABAergic Remodeling in

Alzheimer's Disease. Int J Mol Sci 2017;18:1813.

845 https://doi.org/10.3390/ijms18081813.

847 Table 1. Sample characteristics of WRAP and Wisconsin

848 ADRC participants.

	WR	AP*	Wisconsin		
			ADRC		
	N =:	161	N=154		
	Mean	SD	Mean	SD	
Age	62.1	6.5	58.1	5.5	
Years of education	16.2	2.2	16.2	2.3	
P-tau	17.5	6.4	15.9	5.8	
T-tau	200.6	67.3	184.5	69.3	
Αβ42	895.4	369.4	942.6	363.1	
Αβ40	14336.1	4497.9	13897.4	4742.3	
NfL	87.2	38.0	83.3	80.7	
Neurogranin	798.6	307.5	728.2	286.7	
YKL-40	144.6	48.3	128.7	39.1	
S100b	1.1	0.3	1.2	0.3	
GFAP	8.6	2.9	8.6	3.3	
sTREM2	7.9	2.4	7.6	2.1	
IL-6	4.3	2.6	5.2	3.7	
α-synuclein	157.4	65.1	146.2	64.1	
	Ν	%	Ν	%	
Female	105	65.2	106	68.8	
Male	56	34.8	48	31.2	

0	Λ	<u> </u>
~	д	ч
0	-	_

* The summary statistics of WRAP were based on the baseline

850 measures.

851 **Table 2. Top 10 significant CSF metabolites associated with each NTK biomarker in WRAP and replicated in the**

852 Wisconsin ADRC.

NTK		Compound					Super	
Biomarker	Biochemical names	ID	Beta	Р	Adjusted P	FDR q	pathway	Sub-pathway
	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	24.10	9.89E-23	4.65E-21	4.65E-21	Lipid	Phosphatidylcholine (PC)
	N-acetylneuraminate	32377	29.31	2.66E-21	1.25E-19	6.25E-20	Carbohydrate	Aminosugar Metabolism
	C-glycosyltryptophan	48782	29.26	1.41E-20	6.62E-19	2.21E-19	Amino Acid	Tryptophan Metabolism
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	27.21	6.95E-16	3.27E-14	8.17E-15	Lipid	Phosphatidylcholine (PC)
P-tau	stearoyl sphingomyelin (d18:1/18:0)	19503	26.20	9.38E-16	4.41E-14	8.81E-15	Lipid	Sphingolipid Metabolism
	arabitol/xylitol	48885	28.10	1.50E-15	7.04E-14	1.17E-14	Carbohydrate	Pentose Metabolism
	beta-citrylglutamate	54923	23.47	9.84E-15	4.62E-13	5.82E-14	Amino Acid	Glutamate Metabolism
	N-acetylseri ne	37076	35.24	9.90E-15	4.65E-13	5.82E-14	Amino Acid	Glycine, Serine and Threonine Metabolism
	sphingomyelin (d18:1/18:1, d18:2/18:0)	37529	24.14	4.10E-14	1.93E-12	2.09E-13	Lipid	Sphingolipid Metabolism
	N6-succinyladenosine	48130	22.14	4.44E-14	2.09E-12	2.09E-13	Nucleotide	Purine Metabolism, Adenine containing
	N-acetylneuraminate	32377	349.51	2.25E-21	1.26E-19	1.26E-19	Carbohydrate	Aminosugar Metabolism
T tou	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	296.17	1.53E-19	8.54E-18	4.27E-18	Lipid	Phosphatidylcholine (PC)
	C-glycosyltryptophan	48782	336.75	7.77E-19	4.35E-17	1.45E-17	Amino Acid	Tryptophan Metabolism
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	343.88	3.72E-18	2.09E-16	5.21E-17	Lipid	Phosphatidylcholine (PC)
	N-acetylthreonine	33939	372.61	1.37E-17	7.68E-16	1.54E-16	Amino Acid	Glycine, Serine and Threonine

								Metabolism
	arabitol/xylitol	48885	340.87	1.61E-16	9.00E-15	1.50E-15	Carbohydrate	Pentose Metabolism
	stearoyl sphingomyelin (d18:1/18:0)	19503	314.01	6.07E-16	3.40E-14	4.85E-15	Lipid	Sphingolipid Metabolism
	N6-succinyladenosine	48130	275.91	1.19E-15	6.64E-14	8.30E-15	Nucleotide	Purine Metabolism, Adenine containing
	erythronate*	42420	608.03	1.48E-15	8.30E-14	9.23E-15	Carbohydrate	Aminosugar Metabolism
	beta-citrylglutamate	54923	281.29	6.24E-15	3.49E-13	3.49E-14	Amino Acid	Glutamate Metabolism
	N-acetylneuraminate	32377	1831.96	7.62E-20	4.42E-18	2.65E-18	Carbohydrate	Aminosugar Metabolism
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	1922.65	9.15E-20	5.31E-18	2.65E-18	Lipid	Phosphatidylcholine (PC)
	1-palmitoyl-2-oleoyl-GPC (16:0/18:1)	52461	2019.63	4.04E-19	2.34E-17	7.50E-18	Lipid	Phosphatidylcholine (PC)
	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	1608.22	5.17E-19	3.00E-17	7.50E-18	Lipid	Phosphatidylcholine (PC)
	1-myristoyl-2-palmitoyl-GPC (14:0/16:0)	19258	1779.94	5.29E-18	3.07E-16	6.13E-17	Lipid	Phosphatidylcholine (PC)
Αβ42	stearoyl sphingomyelin (d18:1/18:0)	19503	1735.41	7.98E-17	4.63E-15	7.72E-16	Lipid	Sphingolipid Metabolism
	N-acetylserine	37076	2220.93	1.96E-15	1.14E-13	1.63E-14	Amino Acid	Glycine, Serine and Threonine Metabolism
	arabitol/xylitol	48885	1732.68	2.00E-14	1.16E-12	1.45E-13	Carbohydrate	Pentose Metabolism
	N-acetylthreonine	33939	1832.87	3.07E-14	1.78E-12	1.98E-13	Amino Acid	Glycine, Serine and Threonine Metabolism
	1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)*	52470	1793.19	3.46E-14	2.01E-12	2.01E-13	Lipid	Phosphatidylcholine (PC)
Αβ40	N-acetylneuraminate	32377	27190.93	2.92E-30	2.34E-28	2.34E-28	Carbohydrate	Aminosugar Metabolism

Lipid	Phosphatidylcholine (PC)
Lipid	Phosphatidylcholine (PC)
Lipid	Phosphatidylcholine (PC)
Lipid	Phosphatidylcholine (PC)
	Glycine, Serine and Threoni
nino Acid	Metabolism
Lipid	Sphingolipid Metabolism

	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	23086.44	3.57E-26	2.85E-24	9.51E-25	Lipid	Phosphatidylcholine (PC)
	1-stearoyl-2-oleoyl-GPC (18:0/18:1)	52438	27203.88	1.22E-23	9.72E-22	2.43E-22	Lipid	Phosphatidylcholine (PC)
	1-palmitoyl-2-oleoyl-GPC (16:0/18:1)	52461	27594.67	4.59E-23	3.67E-21	7.35E-22	Lipid	Phosphatidylcholine (PC)
	N-acetylserine	37076	34639.61	5.99E-23	4.79E-21	7.99E-22	Amino Acid	Glycine, Serine and Threonine Metabolism
	stearoyl sphingomyelin (d18:1/18:0)	19503	24933.03	8.41E-23	6.73E-21	9.61E-22	Lipid	Sphingolipid Metabolism
	arabitol/xylitol	48885	26504.66	6.06E-22	4.85E-20	5.64E-21	Carbohydrate	Pentose Metabolism
	1-myristoyl-2-palmitoyl-GPC (14:0/16:0)	19258	24513.57	6.34E-22	5.07E-20	5.64E-21	Lipid	Phosphatidylcholine (PC)
	erythronate*	42420	47037.89	2.43E-20	1.94E-18	1.94E-19	Carbohydrate	Aminosugar Metabolism
	N-acetylthreonine	33939	194.81	4.51E-04	2.93E-02	2.09E-02	Amino Acid	Glycine, Serine and Threonine Metabolism
	N-acetylalanine	1585	262.23	9.53E-04	6.19E-02	2.09E-02	Amino Acid	Alanine and Aspartate Metabolism
	beta-citrylglutamate	54923	150.23	9.66E-04	6.28E-02	2.09E-02	Amino Acid	Glutamate Metabolism
NfL	arabitol/xylitol	48885	165.78	1.70E-03	1.10E-01	2.26E-02	Carbohydrate	Pentose Metabolism
	1-palmitoyl-GPC (16:0)	33955	142.17	1.74E-03	1.13E-01	2.26E-02	Lipid	Lysophospholipid
-	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	154.06	2.68E-03	1.74E-01	2.53E-02	Lipid	Phosphatidylcholine (PC)
	1-oleoyl-GPC (18:1)	48258	136.99	2.72E-03	1.77E-01	2.53E-02	Lipid	Lysophospholipid
	stearoyl sphingomyelin (d18:1/18:0)	19503	145.43	3.35E-03	2.18E-01	2.72E-02	Lipid	Sphingolipid Metabolism

1.96E-24

9.51E-25

2.46E-26

1,2-dipalmitoyl-GPC (16:0/16:0)

19130

27204.24

All rights reserved. No reuse allowed without permission.	medRxiv preprint doi: https://doi.org/10.1101/2022.07.20.22277523; this version posted July 22, 2022. The copyrigh (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the pi
---	---

			1		<i>(</i> -	_		Pyrimidine Metabolism, Orotate
	orotidine	35172	129.73	4.50E-03	2.96E-01	3.00E-02	Nucleotide	containing
	cysteine	1868	187.12	4.98E-03	3.24E-01	3.00E-02	Amino Acid	Methionine, Cysteine, SAM and Taurine Metabolism
	N-acetylneuraminate	32377	1574.23	6.97E-26	4.32E-24	4.32E-24	Carbohydrate	Aminosugar Metabolism
	C-glycosyltryptophan	48782	1442.13	9.29E-20	5.76E-18	2.88E-18	Amino Acid	Tryptophan Metabolism
	N6-succinyladenosine	48130	1234.78	3.19E-18	1.98E-16	6.60E-17	Nucleotide	Purine Metabolism, Adenine containing
	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	1212.87	1.38E-17	8.53E-16	1.89E-16	Lipid	Phosphatidylcholine (PC)
	arabitol/xylitol	48885	1470.51	1.53E-17	9.48E-16	1.89E-16	Carbohydrate	Pentose Metabolism
Neurogranin	N-acetylthreonine	33939	1549.35	1.83E-17	1.13E-15	1.89E-16	Amino Acid	Glycine, Serine and Threonine Metabolism
	erythronate*	42420	2626.14	1.19E-16	7.40E-15	1.06E-15	Carbohydrate	Aminosugar Metabolism
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	1370.31	5.60E-16	3.47E-14	4.34E-15	Lipid	Phosphatidylcholine (PC)
	1-palmitoyl-GPC (16:0)	33955	1202.61	1.09E-15	6.78E-14	7.54E-15	Lipid	Lysophospholipid
	N-acetylserine	37076	1719.96	2.67E-15	1.65E-13	1.65E-14	Amino Acid	Glycine, Serine and Threonine Metabolism
	N-acetylneuraminate	32377	162.38	7.62E-17	1.37E-15	1.37E-15	Carbohydrate	Aminosugar Metabolism
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	169.92	1.71E-16	3.08E-15	1.54E-15	Lipid	Phosphatidylcholine (PC)
YKL-40	stearoyl sphingomyelin (d18:1/18:0)	19503	160.90	8.86E-16	1.60E-14	5.32E-15	Lipid	Sphingolipid Metabolism
	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	140.55	1.05E-14	1.89E-13	4.65E-14	Lipid	Phosphatidylcholine (PC)
	1-palmitoyl-2-oleoyl-GPC (16:0/18:1)	52461	171.39	1.29E-14	2.32E-13	4.65E-14	Lipid	Phosphatidylcholine (PC)

	arabitol/xylitol	48885	162.00	7.35E-14	1.32E-12	2.21E-13	Carbohydrate	Pentose Metabolism
	1-myristoyl-2-palmitoyl-GPC (14:0/16:0)	19258	147.07	4.57E-13	8.22E-12	1.17E-12	Lipid	Phosphatidylcholine (PC)
	N6-succinyladenosine	48130	121.32	2.81E-11	5.06E-10	6.32E-11	Nucleotide	Purine Metabolism, Adenine containing
	cysteine	1868	181.51	6.78E-11	1.22E-09	1.36E-10	Amino Acid	Methionine, Cysteine, SAM and Taurine Metabolism
	1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)*	52470	148.93	1.16E-10	2.09E-09	2.09E-10	Lipid	Phosphatidylcholine (PC)
	stearoyl sphingomyelin (d18:1/18:0)	19503	0.81	8.99E-07	2.34E-05	2.34E-05	Lipid	Sphingolipid Metabolism
	1-stearoyl-2-docosahexaenoyl- GPC (18:0/22:6)	52611	0.54	3.45E-05	8.97E-04	4.49E-04	Lipid	Phosphatidylcholine (PC)
	1-palmitoyl-2-oleoyl-GPC (16:0/18:1)	52461	0.73	6.95E-05	1.81E-03	6.03E-04	Lipid	Phosphatidylcholine (PC)
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	0.67	1.07E-04	2.79E-03	6.96E-04	Lipid	Phosphatidylcholine (PC)
S100b	1-palmitoyl-2-docosahexaenoyl- GPC (16:0/22:6)	52610	0.50	1.59E-04	4.14E-03	8.27E-04	Lipid	Phosphatidylcholine (PC)
	sphingomyelin (d18:1/18:1, d18:2/18:0)	37529	0.60	2.07E-04	5.39E-03	8.99E-04	Lipid	Sphingolipid Metabolism
	erythronate*	42420	1.18	3.28E-04	8.52E-03	1.22E-03	Carbohydrate	Aminosugar Metabolism
	palmitoyl sphingomyelin (d18:1/16:0)	37506	0.55	7.47E-04	1.94E-02	2.43E-03	Lipid	Sphingolipid Metabolism
	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	0.50	9.45E-04	2.46E-02	2.73E-03	Lipid	Phosphatidylcholine (PC)
	sphingomyelin (d18:2/16:0,	42459	0.44	1.53E-03	3.97E-02	3.96E-03	Lipid	Sphingolipid Metabolism

	mec
	Which
Phosphatidylcholine (PC)	n was
Phosphatidylcholine (PC)	rint doi: h not certif
Glutamate Metabolism	ied by
Aminosugar Metabolism	y peer
orbate and Aldarate Metabolism	g/10.1101 review) is All
Pentose Metabolism	/2022 s the a rights
Sphingolipid Metabolism	.07.20.22 uthor/fun reserved.
Phosphatidylcholine (PC)	27752 No re
Sphingolipid Metabolism	i3; this ver ho has gra use allow
Phosphatidylcholine (PC)	rsion poster ed without
Sterol	d July permi
Phosphatidylcholine (PC)	1 22, 2022. I license to Ission.
Sphingolipid Metabolism	The copy display th
Tryptophan Metabolism	e pre
Aminosugar Metabolism	holder print ii
Phosphatidylcholine (PC)	n perpetuit
	eprint y

1.76E-07

1.06E-06

10.08

Lipid

1.06E-06

d18:1/16:1)* 1,2-dipalmitoyl-GPC (16:0/16:0)

	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	8.07	9.91E-07	5.95E-06	2.97E-06	Lipid	Phosphatidylcholine (PC)
CEAD	beta-citrylglutamate	54923	7.74	6.92E-06	4.15E-05	1.38E-05	Amino Acid	Glutamate Metabolism
GFAF	N-acetylneuraminate	32377	8.00	1.59E-05	9.56E-05	2.39E-05	Carbohydrate	Aminosugar Metabolism
	gulonate*	46957	6.71	2.75E-05	1.65E-04	3.30E-05	Cofactors and Vitamins	Ascorbate and Aldarate Metabo
	arabinose	575	9.80	3.71E-04	2.22E-03	3.71E-04	Carbohydrate	Pentose Metabolism
	stearoyl sphingomyelin (d18:1/18:0)	19503	9.59	5.72E-16	1.60E-14	1.60E-14	Lipid	Sphingolipid Metabolism
	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	9.81	1.59E-15	4.45E-14	2.23E-14	Lipid	Phosphatidylcholine (PC)
	palmitoyl sphingomyelin (d18:1/16:0)	37506	9.18	2.52E-15	7.05E-14	2.35E-14	Lipid	Sphingolipid Metabolism
	1-palmitoyl-2-oleoyl-GPC (16:0/18:1)	52461	10.20	9.68E-15	2.71E-13	6.78E-14	Lipid	Phosphatidylcholine (PC)
TREMO	cholesterol	63	9.08	2.08E-14	5.83E-13	1.17E-13	Lipid	Sterol
SI KEM2	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	52616	7.89	2.11E-13	5.90E-12	9.83E-13	Lipid	Phosphatidylcholine (PC)
	sphingomyelin (d18:2/16:0, d18:1/16:1)*	42459	7.19	3.53E-13	9.88E-12	1.41E-12	Lipid	Sphingolipid Metabolism
	C-glycosyltryptophan	48782	8.51	2.09E-12	5.86E-11	7.33E-12	Amino Acid	Tryptophan Metabolism
	N-acetylneuraminate	32377	8.35	2.55E-12	7.13E-11	7.92E-12	Carbohydrate	Aminosugar Metabolism
	1-myristoyl-2-palmitoyl-GPC (14:0/16:0)	19258	8.45	3.18E-12	8.90E-11	8.90E-12	Lipid	Phosphatidylcholine (PC)

.ipid	Phosphatidylcholine (PC)	
ipid	Phosphatidylcholine (PC)	
ohydrate	Aminosugar Metabolism	
ipid	Sphingolipid Metabolism	ed by pee
.ipid	Phosphatidylcholine (PC)	All
no Acid	Tryptophan Metabolism	rights
.ipid	Sphingolipid Metabolism	reserved.
no Acid	Glycine, Serine and Threonine Metabolism	No reuse
eleotide	Purine Metabolism, Adenine containing	allowe
ipid	Phosphatidylcholine (PC)	ad without
onfident	t in its identity.	, perm
		incense to dis nission.

1.42E-20 306.42 1.42E-22 1.42E-20 L 52616 (16:0/18:0) 1,2-dipalmitoyl-GPC (16:0/16:0) 5.02E-20 2.51E-18 5.02E-18 L 19130 337.75 N-acetylneuraminate Carbo 7.64E-18 2.29E-19 2.29E-17 32377 315.50 stearoyl sphingomyelin 1.31E-18 1.31E-16 3.28E-17 L 19503 316.41 (d18:1/18:0) 1-stearoyl-2-oleoyl-GPC 1.74E-16 L 8.69E-18 8.69E-16 52438 334.85 (18:0/18:1) α-synuclein C-glycosyltryptophan 3.58E-17 3.58E-15 5.82E-16 48782 304.78 Amii palmitoyl sphingomyelin 5.82E-16 4.24E-17 4.24E-15 L 37506 297.65 (d18:1/16:0) N-acetylthreonine 4.65E-17 4.65E-15 5.82E-16 Amii 33939 343.71 N6-succinyladenosine 48130 266.82 9.85E-17 9.85E-15 1.09E-15 Nuc 1-myristoyl-2-palmitoyl-GPC 1.17E-16 1.17E-14 1.17E-15 19258 300.75 L (14:0/16:0)

853 * Indicates a compound that has not been confirmed based on a standard, but Metabolon was confident in its identity.

1-palmitoyl-2-stearoyl-GPC

NTK biomarkers	Base model r²(sample size*)	Number of input metabolites	Metabolite model r² (sample size*)	Number of elastic net- selected metabolites	Elastic net- selected metabolites model r² (sample size*)
P-tau	0.11 (n=295)	40	0.72 (n=226)	22	0.70 (n=232)
T-tau	0.10 (n=296)	44	0.71 (n=236)	17	0.69 (n=281)
Αβ42	0.01 (n=296)	54	0.55 (n=220)	43	0.54 (n=222)
Αβ40	0.04 (n=293)	73	0.85 (n=162)	70	0.83 (n=166)
NfL	0.10 (n=297)	23	0.23(n=280)	13	0.22 (n=290)
Neurogranin	0.07 (n=297)	51	0.78 (n=245)	32	0.76 (n=267)
YKL-40	0.25 (n=297)	15	0.57 (n=281)	10	0.56 (n=288)
S100	0.05 (n=296)	20	0.22 (n=281)	4	0.19 (n=293)
GFAP	0.17 (n=297)	6	0.35 (n=282)	5	0.35(n=288)
sTREM2	0.05 (n=297)	27	0.52 (n=276)	14	0.50 (n=283)
α-synuclein	0.03 (n=297)	90	0.97 (n=105)	27	0.68 (n=218)

854 **Table 3. Prediction performance (r²) of metabolites in the combined cohort of WRAP and Wisconsin ADRC.**

855 Variables included in the base model were age, sex, years of education and cohort.

- 856 Variables included in the metabolite model were age, sex, years of education, cohort and all replicated significant metabolites for
- 857 each biomarker.
- 858 Variables included in the metabolite model were age, sex, years of education, cohort and elastic net-selected metabolites.
- 859 * The sample sizes were different because of the missingness of metabolites.

NTK biomarkers	Metabolite	Compound		nRegions	F statistics	LIML estimate			T	Adjusted	
		ID	nSNPs	(1Mbps)			LIML	95% CI	LIML p	р	
sTREM2	palmitoyl sphingomyelin (d18:1/16:0)	37506	67	21	1.97	12.97	9.14	16.80	2.09E-10	2.50E-08	
Αβ40	erythritol	20699	100	34	6.09	12499.02	7539.22	17458.82	1.40E-06	1.61E-04	
α-synuclein	homocarnosine	1633	43	14	2.61	-123.04	-172.61	-73.47	1.96E-06	2.23E-04	
T-tau	1-palmitoyl-2-stearoyl- GPC (16:0/18:0)	52616	19	8	2.81	319.63	187.99	451.28	3.21E-06	3.59E-04	
α-synuclein	erythritol	20699	100	34	5.95	172.93	99.70	246.16	5.69E-06	6.31E-04	
Neurogranin	1-palmitoyl-2-stearoyl- GPC (16:0/18:0)	52616	19	8	2.82	1433.89	799.21	2068.57	1.37E-05	1.49E-03	
Αβ40	1-myristoyl-2-palmitoyl- GPC (14:0/16:0)	19258	38	20	2.48	18666.39	10385.64	26947.14	1.43E-05	1.54E-03	
T-tau	1-palmitoyl-2-stearoyl- GPC (16:0/18:0)	52616	19	8	2.79	28.06	15.50	40.62	1.70E-05	1.82E-03	
α-synuclein	1-palmitoyl-2-stearoyl- GPC (16:0/18:0)	52616	19	8	2.82	268.34	137.78	398.90	7.16E-05	7.59E-03	
Αβ40	1,2-dipalmitoyl-GPC (16:0/16:0)	19130	5	2	6.78	25973.09	12768.09	39178.09	1.41E-04	1.48E-02	

Table 4. Significant Mendelian randomization results after Bonferroni correction.

Αβ40	homocarnosine	1633	43	14	2.55	-6548.41	-9903.63	-3193.19	1.58E-04	1.65E-02
Neurogranin	homocarnosine	1633	43	14	2.61	-444.47	-675.36	-213.58	1.93E-04	1.99E-02
Αβ40	gulonate*	46957	25	13	6.34	12658.31	6029.03	19287.58	2.17E-04	2.21E-02

861 The nSNPs refers to the number of SNPs in each IV, and the nRegions is the approximate number of regions defined by up to a 1Mbps

of the SNPs. The F statistic represent the strength of the IV (strong IV F statistic >10). The estimate of beta, confidence interval and p

values were all based on the limited information maximum likelihood (LIML) method.

(a)

864

30 N-acetylneuraminate N-acetylneuraminate 25 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) N-acetylneuraminate 20 N-acetylneuraminate $-\log_{10}(p)$ N-acetvlneuraminate stearoyl sphingomyelin (d18:1/18:0) 15 10 P-tau: 40 T-tau: 44 Aß42: 54 Aß40: 73 1,2-dipalmitoyl-GPC (16:0/16:0) stearovi sphingomyelin (d18:1/18:0) NfL: 23 5 Neurogranin: 51 YKL-40: 15 N-acetylthreonine S100b: 20 GFAP: 6 sTREM2: 27 a-Synuclein: 90 0 Aß42 Aß40 a-Synuclein P-tau T-tau NfL Neurogranin S100b CSF NTK Biomarkers

866

867

(b)

- significant metabolites after FDR correction in WRAP were included). The $-\log_{10}(p-value)$ is shown on the y-axis. The legend box
- 871 indicates the number of metabolites that were significant after FDR correction for each NTK biomarker.

74 **biomarkers in Wisconsin-ADRC.** Each cell represents the association of a CSF metabolites with a

biomarker. The color scale indicates the magnitude of the FDR q values. The metabolites are also grouped and

76 colored based on their super pathway.