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Abstract 40 

INTRODUCTION:  41 

 Metabolomics technology facilitates studying 42 

associations between small molecules and disease processes. 43 

Correlating metabolites in cerebrospinal fluid (CSF) with 44 

Alzheimer’s disease (AD) CSF biomarkers may elucidate 45 

additional changes that are associated with early AD 46 

pathology and enhance our knowledge of the disease. 47 

METHODS:  48 

 The relative abundance of untargeted metabolites was 49 

assessed in 161 individuals. A metabolome-wide association 50 

study (MWAS) was conducted between 269 CSF metabolites 51 
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and protein biomarkers reflecting brain amyloidosis, tau 52 

pathology, neuronal and synaptic degeneration, and 53 

astrocyte or microglial activation and neuroinflammation. 54 

Linear mixed-effects regression analyses were performed 55 

with random intercepts for sample relatedness and repeated 56 

measurements and fixed effects for age, sex, and years of 57 

education. The metabolome-wide significance was 58 

determined by a false discovery rate threshold of 0.05. The 59 

significant metabolites were replicated in 154 independent 60 

individuals. Mendelian randomization was performed using 61 

genome-wide significant single nucleotide polymorphisms 62 

from a CSF metabolites genome-wide association study. 63 

RESULTS:  64 

 MWAS results showed several significantly associated 65 

metabolites for all the biomarkers except Aβ42/40 and IL-6. 66 

Genetic variants associated with metabolites and Mendelian 67 

randomization analysis provided evidence for a causal 68 

association of metabolites for soluble triggering receptor 69 

expressed on myeloid cells 2 (sTREM2), amyloid β (Aβ40), 70 

α-synuclein, total tau, phosphorylated tau, and neurogranin, 71 

for example, palmitoyl sphingomyelin (d18:1/16:0) for 72 

sTREM2, and erythritol for Aβ40 and α-synuclein.  73 

DISCUSSION:  74 
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 This study provides evidence that CSF metabolites are 75 

associated with AD-related pathology, and many of these 76 

associations may be causal.  77 

 78 

Keywords: Alzheimer’s disease, metabolomics, CSF 79 

NeuroToolKit biomarkers, Mendelian randomization 80 
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1. Introduction 83 

The neuropathological changes of Alzheimer’s disease 84 

(AD) consist of extracellular amyloid-β (Aβ) plaques and 85 

intracellular neurofibrillary tangles of hyperphosphorylated 86 

tau proteins in the brain[1]. Well-established core 87 

biomarkers that reflect AD pathology and show promising 88 

performance in evaluating AD risk and diagnosing AD are 89 

the 42 amino acid form Aβ (Aβ42), the ratio of Aβ42/40, 90 

phosphorylated tau (P-tau), and total tau (T-tau) in the 91 

cerebrospinal fluid (CSF)[2]. However, it has been suggested 92 

that other pathophysiology such as neuroinflammation 93 

through glial activation and neuronal and synaptic 94 

degeneration also contribute to symptomatic AD, and CSF 95 

biomarkers of these may provide valuable information about 96 

disease progression[2]. Thus, the NeuroToolKit (NTK), a 97 

panel of automated CSF immunoassays, was introduced to 98 

complement the established core AD biomarkers[3]. The 99 

NTK panel includes S100 calcium-binding protein B 100 

(S100b), chitinase-3-like protein 1 (YKL-40), and glial 101 

fibrillary acidic protein (GFAP) as markers of astrocyte 102 

activation; soluble triggering receptor expressed on myeloid 103 

cells 2 (sTREM2) and interleukin-6 (IL-6) as markers of 104 

microglial activation and inflammation; and neurofilament 105 
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light (NfL), neurogranin, and α-synuclein as markers of 106 

axonal injury and synaptic dysfunction[4]. 107 

Untargeted metabolomics technology is a promising 108 

approach that can simultaneously identify and quantify a 109 

large number of small molecules (<1500 Da, e.g., lipids) in a 110 

biological sample[5]. Previous research has shown that 111 

metabolomic changes in the human brain and CSF were 112 

associated with AD status and AD pathological 113 

alterations[6]. For example,  Koal et al.[6] identified eight 114 

metabolites that were significantly increased in the CSF 115 

samples with AD-like pathology including an acylcarnitine 116 

(C3), two sphingomyelins [SM (d18:1/18:0) and SM 117 

(d18:1/18:1)], and five glycerophospholipids (PC aa C32:0, 118 

PC aa C34:1, PC aa C36:1, PC aa C38:4, and PC aa C38:6). 119 

However, no studies have examined associations between 120 

the untargeted CSF metabolome and a broad panel of 121 

biomarkers such as the NTK panel. Thus, our study aims to 122 

link CSF metabolites with established and developing AD 123 

biomarkers with the goals of (1) identifying individual CSF 124 

metabolites that are associated with the CSF NTK 125 

biomarkers and (2) conducting Mendelian randomization 126 

(MR) to determine if the CSF metabolites significantly 127 

associated with NTK biomarkers are likely to be in the causal 128 
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pathway instead of simply changing with, or as a result of, 129 

AD biomarker changes. 130 

2. Methods 131 

2.1 Participants  132 

 The Wisconsin Registry for Alzheimer’s Prevention 133 

(WRAP) began recruitment in 2001 as a prospective cohort 134 

study, with initial follow-up four years after baseline and 135 

subsequent ongoing follow-up every two years. WRAP is 136 

comprised of initially cognitively-unimpaired, asymptomatic, 137 

middle-aged (between 40 and 65) adults enriched for 138 

parental history of clinical AD[7]. At each visit, the 139 

participants undergo comprehensive medical and cognitive 140 

evaluations. Additional details of the study design and 141 

methods of WRAP have been described previously[7]. From 142 

the WRAP cohort, we identified 161 self-reported non-143 

Hispanic white individuals with longitudinal CSF biomarker 144 

and metabolomic data. The sample size for other 145 

racial/ethnic groups was too small (n<10) to include in the 146 

analyses. 147 

 The Wisconsin Alzheimer’s Disease Research Center’s 148 

(ADRC) clinical core cohorts started in 2009 and are 149 

comprised of well-characterized participants who undergo 150 

cognitive testing and physical exams every two years[8]. The 151 

Wisconsin ADRC has a cohort of initially cognitively-152 
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unimpaired, asymptomatic middle-aged (between 45 and 65) 153 

adults with a similar study design to WRAP (the 154 

Investigating Memory in Preclinical AD-Causes and 155 

Treatments [IMPACT] cohort)[9–11]. From the IMPACT 156 

cohort, we identified 154 self-reported non-Hispanic white 157 

participants with cross-sectional CSF biomarker and 158 

metabolomic data. As with WRAP, the sample size for other 159 

racial/ethnic groups was too small (n<10) to include in the 160 

analyses. 161 

 This study was conducted with the approval of the 162 

University of Wisconsin Institutional Review Board, and all 163 

participants provided signed informed consent before 164 

participation. 165 

2.2 CSF sample collection and biomarkers 166 

quantification 167 

 Fasting CSF samples were collected via lumbar 168 

puncture using a Sprotte 25- or 24-gauge spinal needle at the 169 

L3/4 or L4/5 interspace with gentle extraction into 170 

polypropylene syringes. More details can be found in the 171 

previous study[9]. The CSF collection for WRAP and the 172 

Wisconsin ADRC followed the same protocol, and the 173 

lumbar puncture for both studies was performed by the same 174 

group of well-trained individuals. 175 
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 All CSF samples were batched together and assayed 176 

for the NTK biomarkers at the Clinical Neurochemistry 177 

Laboratory, University of Gothenburg, using the same lot of 178 

reagents, under strict quality control procedures. The 179 

immunoassays of Elecsys® Aβ(1-42), P-tau(181P) and T-tau, 180 

as well as S100b and IL-6, were performed on a cobas e 601 181 

analyzer[3]. The remaining NTK panel was assayed on a 182 

cobas e 411 analyzer including Aβ(1-40), α-synuclein, GFAP, 183 

YKL-40, sTREM2, NfL, and neurogranin[3].  184 

2.3 CSF metabolomic profiling and quality control 185 

 CSF metabolomic analyses and quantification were 186 

performed in one batch by Metabolon (Durham, NC) using 187 

an untargeted approach, based on Ultrahigh Performance 188 

Liquid Chromatography�Tandem Mass Spectrometry 189 

platform (UPLC�MS/MS)[12]. Details of the metabolomic 190 

profiling were described in an earlier study[13].  191 

A total of 412 CSF metabolites were identified and quality 192 

control procedures were performed. First, 46 metabolites 193 

missing for at least 80% of the individuals were excluded. 194 

Then the values for each of the remaining metabolites were 195 

scaled so that the median equaled 1. Two metabolites with an 196 

interquartile range (IQR) of zero were excluded and no 197 

metabolites had zero variability between individuals. Log10 198 

transformation was applied to normalize the data. After 199 
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quality control, 269 metabolites with known biochemical 200 

names remained for this investigation. The missing 201 

percentage of each metabolite in WRAP and Wisconsin 202 

ADRC is available in Supplemental Table 1. 203 

2.4 Genotyping and quality control 204 

In the WRAP participants, DNA was extracted from 205 

whole blood using the PUREGENE® DNA Isolation Kit, and 206 

the concentrations were quantified using the Invitrogen™ 207 

Quant-iT™ PicoGreen™ dsDNA Assay Kit. More details can 208 

be found in the previous study[13]. Genotyping data were 209 

generated by the University of Wisconsin Biotechnology 210 

Center using the Illumina Multi-Ethnic Genotyping Array. In 211 

the WRAP genetic data, (1) duplicate samples were used to 212 

calculate a concordance rate of 99.99%, and discordant 213 

genotypes were set to missing; (2) samples missing 214 

genotypes for >5% of the single nucleotide polymorphisms 215 

(SNPs) were excluded, while SNPs missing in >5% of 216 

individuals were also excluded; (3) samples were excluded if 217 

the self-reported and genetic sex were inconsistent; (4) SNPs 218 

that were not in Hardy-Weinberg equilibrium (HWE; 219 

p<3.08E-8) or were monomorphic were removed; (5) 220 

individuals that were not of European ancestry were 221 

removed due to small sample sizes of other ancestries; (6) 222 

the imputation was performed through the Michigan 223 
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Imputation Server v1.0.328, using the Haplotype Reference 224 

Consortium (HRC)[14–16] and the SNPs with a quality score 225 

R2<0.80, minor allele frequency (MAF)<0.001, or that were 226 

out of HWE were excluded; (7) genetic ancestry was assessed 227 

by using Principal Components Analysis in Related Samples 228 

(PC-AiR) because of the sibling relationships present in the 229 

WRAP cohort[13]. 230 

 Genetic data in the Wisconsin ADRC were generated 231 

from DNA extracted from blood samples at baseline and 232 

genotyped with either the Infinium OmniExpressExome-8 233 

Kit or the Infinium Global Screening Array-24 Kit. Genetic 234 

data for the Wisconsin ADRC underwent the same quality 235 

control (QC) and imputation as the WRAP data except 236 

samples and SNPs missing in >2% were excluded and HWE 237 

threshold was p<1e-6 due to differences in sample sizes and 238 

the number of SNPs between the two cohorts. 239 

2.5 Statistical analysis 240 

2.5.1 Metabolome-wide association study 241 

 A metabolome-wide association study (MWAS) was 242 

conducted in the WRAP cohort between 269 individual CSF 243 

metabolites and 13 CSF NTK biomarkers using linear mixed-244 

effects regression models with random intercepts to account 245 

for repeated measures and family relationships (10 families 246 

with two or more siblings) and fixed effects for age at CSF 247 
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collection, sex, and years of education. Replication of each 248 

CSF metabolite significantly associated with one or more 249 

biomarkers in WRAP was then conducted in the Wisconsin 250 

ADRC cohort using linear regression adjusting for the same 251 

covariates. Both Bonferroni and false discovery rate (FDR) 252 

methods were used to correct the p-values for multiple 253 

testing; the FDR corrected q value was used to determine 254 

statistical significance in each analysis. Potential functional 255 

pathways of the replicated significant metabolites were 256 

identified by pathway analyses using the web-based software 257 

Metabo-analyst 5.0[17] based on the Kyoto Encyclopedia of 258 

Genes and Genomes (KEGG) Homo sapiens pathway. The 259 

hypergeometric test and relative-betweenness centrality 260 

were employed to evaluate the pathway importance, and the 261 

pathways were considered as important if the impact was 262 

≥0.1.  263 

2.5.2 Prediction performance and elastic net 264 

regression 265 

 The variance for each biomarker explained by its 266 

corresponding significant metabolites was evaluated using r2 267 

in the combined cohorts of WRAP and the Wisconsin ADRC. 268 

For this analysis, we only included the first available 269 

measures of independent participants from WRAP. Since the 270 

number of significant metabolites for each biomarker was 271 
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large and some of the metabolites were highly correlated, 272 

elastic net regression[18] was employed to select the 273 

important independent metabolites. Then the r2 of elastic 274 

net-selected metabolites was re-calculated. For each 275 

biomarker, we fit three types of models, the (1) base model, 276 

which only included the demographics of age, sex, years of 277 

education, and cohort, (2) metabolite model, which included 278 

the demographics in the base model plus all the replicated 279 

significant metabolites, and (3) elastic net-selected 280 

metabolite model, which contained the demographics and 281 

elastic-net-selected metabolites. 282 

2.5.3 Mendelian randomization 283 

 The genome-wide significant SNPs  (p < 5 × 10−8) 284 

from a previous genome-wide meta-analysis of  CSF 285 

metabolites[19] were extracted for each elastic net-selected 286 

metabolite (5863 SNPs for 52 metabolites). These SNPs (or 287 

the top 100 SNPs if there were more than 100 genome-wide 288 

significant SNPs for a metabolite) were used as instrumental 289 

variables (IV) for the metabolite in an MR analysis for each 290 

elastic net-selected metabolite-NTK biomarker association 291 

pair in the combined WRAP and Wisconsin ADRC cohort. 292 

For each MR test, we first checked the strength of the IVs 293 

using F statistics. Typically, an IV with an F statistic greater 294 

than 10 is considered to be strong, while instruments with F 295 
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statistics below 10 are considered to be weak[20]. Next, the 296 

estimated (or less confounded) beta and p values for the 297 

effect of the metabolite on the NTK biomarker were 298 

calculated using the two-stage least squares method if the 299 

IVs were strong, but using the limited information maximum 300 

likelihood (LIML) for IVs that were relatively weak. The 301 

confidence intervals (CI) of the point estimates from both 302 

LIML and another conditional likelihood ratio (CLR) 303 

method, which is robust to weak IVs[21], were compared and 304 

only significant results with CIs in the same direction and 305 

with a similar range of effect size between these two methods 306 

were considered as evidence of a causal effect. The 307 

Bonferroni corrected p-value<0.05 based on the number of 308 

all MR tests performed was used to determine significance. 309 

The MR analysis was conducted using the R package 310 

"ivmodel"[22]. 311 

3. Results 312 

3.1 Participant characteristics 313 

 Characteristics of the WRAP and Wisconsin ADRC 314 

participants can be found in Table 1. Among 161 WRAP 315 

participants, the mean baseline age and education level were 316 

62.1 and 16.2 years, respectively. The mean age and years of 317 

education in the Wisconsin ADRC were 58.1 and 16.2, 318 

respectively. Females comprised 65.2% of WRAP 319 
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participants and 68.8% of the Wisconsin ADRC. The mean 320 

values of each biomarker are also listed in Table 1.  321 

3.2 MWAS 322 

 The significant MWAS results in WRAP and the 323 

Wisconsin ADRC are summarized in Figure 1. In WRAP, a 324 

large number of CSF metabolites reached the significance 325 

threshold after FDR correction [Figure 1. (a)]. 47 metabolites 326 

were associated with P-tau, 56 were associated with T-tau, 327 

58 were associated with Aβ42, 80 were associated with 328 

Aβ40, 65 were associated with NfL, and 62 were associated 329 

with neurogranin. However, no metabolites were associated 330 

with the ratio of Aβ42/40 or IL-6. Many of the metabolites 331 

that were significant in WRAP were also significant in the 332 

Wisconsin ADRC [Figure 1. (b)]. For example, among 47 333 

significant metabolites for P-tau in WRAP, 40 metabolites 334 

were also significant in the Wisconsin ADRC. Table 2 shows 335 

the replication results for the top 10 significant CSF 336 

metabolite-biomarker associations (if there were 10 or more 337 

significant metabolites) in the Wisconsin ADRC. For 338 

example, the top three metabolites associated with P-tau and 339 

T-tau were 1-palmitoyl-2-stearoyl-GPC (16:0/18:0), N-340 

acetylneuraminate, and C-glycosyltryptophan. N-341 

acetylneuraminate and 1,2-dipalmitoyl-GPC (16:0/16:0) 342 

were the top two metabolites associated with Aβ42 and Aβ40. 343 
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The top three metabolites associated with NfL were N-344 

acetylthreonine, N-acetylalanine, and beta-citrylglutamate. 345 

N-acetylneuraminate, C-glycosyltryptophan, and N6-346 

succinyladenosine were the top three metabolites for 347 

neurogranin. N-acetylneuraminate, 1,2-dipalmitoyl-GPC 348 

(16:0/16:0), and stearoyl sphingomyelin (d18:1/18:0) were 349 

the top three metabolites for YKL40. Stearoyl sphingomyelin 350 

(d18:1/18:0), 1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6), 351 

and 1-palmitoyl-2-oleoyl-GPC (16:0/18:1) were the top three 352 

metabolites associated with S100b. Only six metabolites 353 

were associated with GFAP, and the top three were 1,2-354 

dipalmitoyl-GPC (16:0/16:0), 1-palmitoyl-2-stearoyl-GPC 355 

(16:0/18:0), and beta-citrylglutamate. For sTREM2, the top 356 

metabolites were stearoyl sphingomyelin (d18:1/18:0), 1,2-357 

dipalmitoyl-GPC (16:0/16:0), and palmitoyl sphingomyelin 358 

(d18:1/16:0). Finally, for α-synuclein, the top three 359 

metabolites were 1-palmitoyl-2-stearoyl-GPC (16:0/18:0), 360 

1,2-dipalmitoyl-GPC (16:0/16:0), and N-acetylneuraminate. 361 

The full results of WRAP and the Wisconsin ADRC can be 362 

found in Supplemental Tables 2-25. The association patterns 363 

between significant CSF metabolites and NTK biomarkers 364 

are provided in the Figure 2. The summary of the number of 365 

significant associations and the name of NTK biomarkers 366 

that were replicated in the Wisconsin ADRC are presented in 367 
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Supplemental Table 26. Most of the significant metabolites 368 

were lipids, amino acids, and carbohydrates. For example, 369 

the lipid, 1,2-dipalmitoyl-GPC (16:0/16:0), the amino acid, 370 

beta-citrylglutamate, and the carbohydrate N-371 

acetylneuraminate were strongly associated with almost 372 

every CSF NTK biomarker of AD. On the contrary, amino 373 

acids like kynurenate and proline were only significantly 374 

associated with α-synuclein. 375 

 The functional pathways for replicated significant 376 

metabolites with known human metabolome database 377 

(HMDB) IDs for each CSF NTK biomarker are shown in 378 

Supplemental Table 27. Two significant metabolites, 1,2-379 

dipalmitoyl-GPC (16:0/16:0) and 1-oleoyl-GPC (18:1), were 380 

enriched in the glycerophospholipid metabolism pathway for 381 

most biomarkers. Other pathways such as pyrimidine 382 

metabolism (including orotate and orotidine), ascorbate and 383 

aldarate metabolism (including gulonate and glucuronate), 384 

arginine biosynthesis (including N-acetylglutamate and 385 

argininosuccinate), and pentose and glucuronate 386 

interconversions (also including gulonate and glucuronate) 387 

may also be of interest. 388 

3.3 Prediction performance and elastic net 389 

regression results 390 
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 The prediction performance of replicated significant 391 

metabolites was measured by r2 and presented in Table 3. 392 

The r2 of the base models, which only included the 393 

demographic variables, ranged from 0.01 to 0.25. Adding the 394 

replicated significant metabolites increased the r2 395 

substantially for each biomarker, ranging from 0.13 to 0.94. 396 

The elastic net regression further prioritized candidate 397 

metabolites associated with each biomarker. For example, 22 398 

of the original 40 significant metabolites were selected by the 399 

elastic net as important independent metabolites for P-tau. 400 

Initially, 40 significant metabolites explained about 72% of 401 

the variance in P-tau; the 22 elastic net-selected metabolites 402 

still explained 70% of the variance. 403 

3.4 Mendelian randomization 404 

 According to the F statistics, we employed the LIML 405 

method for MR. The full results of the test statistics are 406 

provided in Supplemental Table 28.  After checking for 407 

consistency of the CIs for the LIML and CLR methods, the 408 

significant and consistent MR results are displayed in Table 409 

4, showing metabolites with a potential causal effect on the 410 

NTK biomarker based on instrumental variables formed by 411 

genome-wide significant SNPs. For example, we observed a 412 

positive causal association between palmitoyl sphingomyelin 413 

(d18:1/16:0) and sTREM2.   414 
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4. Discussion  415 

  In this analysis, we tested the associations between 416 

CSF metabolites and CSF NTK biomarkers representing 417 

different pathologies of AD in initially cognitively-418 

unimpaired individuals. Significant metabolites were 419 

identified in the WRAP cohort using linear mixed effects 420 

regression and most of the metabolites were replicated in the 421 

Wisconsin ADRC cohort. The elastic net regression method 422 

reduced the number of CSF metabolites by selecting the 423 

important and independent metabolites for each CSF 424 

biomarker. This provides a smaller, more practical set of 425 

metabolites to focus on in future research. The results of the 426 

MR analyses suggested several metabolites that may play a 427 

causal role in AD pathology. A detailed look into these 428 

associations, such as the contributing genes and their 429 

corresponding functions, is worth exploring. 430 

  We have identified and replicated multiple CSF 431 

metabolites that were associated with CSF NTK biomarkers 432 

for AD pathology; most of these CSF metabolites were lipids, 433 

particularly sphingolipids, phosphatidylcholines, and 434 

lysophospholipids, which are all types of phospholipids. 435 

Phospholipids are a class of lipids that construct the cellular 436 

membranes and are involved in many complex activities of 437 

membrane proteins, receptors, enzymes, and ion channels in 438 
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the cell or at the cell surface[23]. In the neurodegenerative 439 

brain, e.g., in the AD brain, which has suffered extensive 440 

damage, the compromise of the membrane functions is 441 

expected, explaining how phospholipids may be involved in 442 

AD pathology[24]. Previous studies have demonstrated that 443 

various phospholipids such as phosphatidylcholines, 444 

sphingolipids, glycerophospholipids, and lysophospholipids 445 

have changed in the AD patient’s brain, CSF and blood when 446 

compared to healthy controls[23,25,26]. For example, a 447 

serum metabolomics study conducted by González-448 

Domínguez et al.[25] showed that the concentration of 449 

numerous phosphatydyl lipids, like 1,2-dipalmitoyl-GPC 450 

(16:0/16:0), 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2), and 1-451 

palmitoyl-2-oleoyl-GPC (16:0/18:1), and 452 

lysophosphatidylcholines, like 1-palmitoyl-GPC (16:0) and 1-453 

stearoyl-GPC (18:0), were different in AD versus healthy 454 

controls. The 1,2-dipalmitoyl-GPC (16:0/16:0) 455 

phosphatidylcholine has also been suggested as one of three 456 

serum metabolites to predict AD development in MCI 457 

individuals[27]. Another brain metabolomics study found 458 

that higher levels of palmitoyl sphingomyelin (d18:1/16:0) 459 

and sphingomyelin (d18:1/18:1, d18:2/18:0) were associated 460 

with the severity of AD pathology at autopsy and AD 461 

progression across prodromal and preclinical stages[28]. 462 
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The stearoyl sphingomyelin (d18:1/18:0) was also 463 

significantly changed in the CSF with “AD-like pathology” 464 

that was dichotomized by Aβ42, T-tau, and P-tau levels[6]. 465 

In summary, our results confirmed the importance of the 466 

previously identified lipids but also provided novel lipid 467 

findings for AD pathologies beyond the major established 468 

ones. 469 

 Another class of metabolites that are of potential 470 

interest are several carbohydrates like N-acetylneuraminate, 471 

arabitol/xylitol, arabinose, and erythronate. Among them, N-472 

acetyleneuraminate, also known as sialic acid, had a 473 

significant effect on most NTK biomarkers. In addition to 474 

our study, a previous study conducted by Nagata et al.[29] in 475 

2018 also showed that CSF N-acetylneuraminate was 476 

significantly increased in AD when compared to patients 477 

with idiopathic normal pressure hydrocephalus and was 478 

positively correlated with CSF P-tau (r=0.55), as it was in our 479 

study. N-acetyleneuraminate is an acetyl derivative of the 480 

amino sugar neuraminic acid, which occurs in many 481 

glycoproteins, glycolipids, and polysaccharides. Specifically, 482 

it is a functional and structural component of gangliosides, 483 

which are found predominantly in the nervous system and 484 

are abundant in the brain, especially in the grey matter[30]. 485 

Studies have shown that gangliosides play important roles in 486 
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AD. For example, it has been suggested that GM1-487 

ganglioside binds to Aß, and the resulted GAß has the 488 

capability to accelerate Aß assembly[31] and is the 489 

endogenous seed for amyloid fibral in the AD brain[32]. The 490 

gangliosides also have important roles in organizing the lipid 491 

rafts, which integrate numerous types of lipid proteins 492 

involved in cell signaling, cell-cell adhesion, and intracellular 493 

vesicular trafficking[29] and contain many AD-associated 494 

proteins such as amyloid precursor protein (APP)[33]. 495 

Furthermore, the gene CD33, which belongs to the sialic-496 

acid-binding immunoglobulin-like lectin family, has been 497 

reported as a strong genetic locus associated with AD by 498 

GWASs[34–36] and has been suggested to impair the 499 

microglia-mediated Aβ clearance[37–39]. Erythronate 500 

(erythronic acid) was previously identified as the main 501 

hallmark of pentose–phosphate pathway defects[40], and 502 

consistent with abnormal function of pentose–phosphate 503 

pathway in certain regions of the AD-brain[41], and the 504 

upregulation of the pentose–phosphate pathway was 505 

reported in a previous study of mild cognitive impairment 506 

(MCI) participants that later progressed to AD[42]. 507 

 As mentioned above, a couple of metabolites were 508 

common to most of the AD pathologies defined by the CSF 509 

NTK biomarkers. On the contrary, some metabolites were 510 
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unique to specific NTK biomarkers. For example, lipids like 511 

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2), 1-stearoyl-2-512 

arachidonoyl-GPC (18:0/20:4), sphingomyelin (d18:1/20:0, 513 

d16:1/22:0) and sphingomyelin (d18:1/22:1, d18:2/22:0, 514 

d16:1/24:1) were only associated with α-synuclein. These 515 

metabolites may be helpful to study synaptic dysfunction and 516 

could potentially be used as biomarkers to differentiate AD 517 

pathologies. 518 

By utilizing Mendelian randomization, we found 519 

causal evidence for several of the associations between CSF 520 

metabolites and CSF NTK biomarkers. Among these 521 

metabolites, most of them were lipids, with some amino 522 

acids and cofactors/vitamins, and a xenobiotic metabolite, 523 

erythritol. Another metabolite of interest, homocarnosine, is 524 

an inhibitory neuromodulator synthesized in the neuron 525 

from gamma-aminobutyric acid (GABA) and histidine[43]. 526 

The level of human CSF homocarnosine declines drastically 527 

with age [44] and was suggested to be related to AD through 528 

CSF protein glycation[45]. At the same time, GABA also 529 

plays an important role in the brain and may be related to 530 

AD[46]. 531 

This study has some limitations. First, the analysis 532 

only included non-Hispanic white individuals, so the results 533 

may not extrapolate to other racial/ethnic groups. Second, 534 
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the sample sizes of both the WRAP and Wisconsin ADRC 535 

cohorts were relatively small and will need to be replicated in 536 

a larger independent sample. The significant associations 537 

between a number of metabolites and both Aβ42 and Aβ40, 538 

but not with Aβ42/40 may indicate that the metabolites 539 

associated with Aβ42 and Aβ40 only influence the 540 

production of amyloid in general versus clearance of the 541 

pathological form, Aβ42. In general, the research confirmed 542 

that several novel metabolites changed along with AD CSF 543 

biomarkers and extended several developing and 544 

understudied AD pathologies, e.g., synaptic dysfunction, 545 

based on untargeted CSF metabolomics and will expand our 546 

knowledge of the biological mechanisms behind AD. 547 
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Table 1. Sample characteristics of WRAP and Wisconsin 847 

ADRC participants. 848 

  
WRAP* 

N=161 

Wisconsin 

ADRC 

N=154 

  Mean SD Mean SD 

Age 62.1 6.5 58.1 5.5 

Years of education 16.2 2.2 16.2 2.3 

P-tau 17.5 6.4 15.9 5.8 

T-tau 200.6 67.3 184.5 69.3 

Aβ42 895.4 369.4 942.6 363.1 

Aβ40 14336.1 4497.9 13897.4 4742.3 

NfL 87.2 38.0 83.3 80.7 

Neurogranin 798.6 307.5 728.2 286.7 

YKL-40 144.6 48.3 128.7 39.1 

S100b 1.1 0.3 1.2 0.3 

GFAP 8.6 2.9 8.6 3.3 

sTREM2 7.9 2.4 7.6 2.1 

IL-6 4.3 2.6 5.2 3.7 

α-synuclein 157.4 65.1 146.2 64.1 

  N % N % 

Female 105 65.2 106 68.8 

Male 56 34.8 48 31.2 

 * The summary statistics of WRAP were based on the baseline 849 

measures.850 
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Table 2. Top 10 significant CSF metabolites associated with each NTK biomarker in WRAP and replicated in the 851 

Wisconsin ADRC. 852 

NTK 

Biomarker 
Biochemical names 

Compound 

ID 
Beta P Adjusted P FDR q 

Super 

pathway 
Sub-pathway 

P-tau 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 24.10 9.89E-23 4.65E-21 4.65E-21 Lipid Phosphatidylcholine (PC) 

N-acetylneuraminate 32377 29.31 2.66E-21 1.25E-19 6.25E-20 Carbohydrate Aminosugar Metabolism 

C-glycosyltryptophan 48782 29.26 1.41E-20 6.62E-19 2.21E-19 Amino Acid Tryptophan Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 27.21 6.95E-16 3.27E-14 8.17E-15 Lipid Phosphatidylcholine (PC) 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 26.20 9.38E-16 4.41E-14 8.81E-15 Lipid Sphingolipid Metabolism 

arabitol/xylitol 48885 28.10 1.50E-15 7.04E-14 1.17E-14 Carbohydrate Pentose Metabolism 

beta-citrylglutamate 54923 23.47 9.84E-15 4.62E-13 5.82E-14 Amino Acid Glutamate Metabolism 

N-acetylserine 37076 35.24 9.90E-15 4.65E-13 5.82E-14 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

sphingomyelin (d18:1/18:1, 

d18:2/18:0) 
37529 24.14 4.10E-14 1.93E-12 2.09E-13 Lipid Sphingolipid Metabolism 

N6-succinyladenosine 48130 22.14 4.44E-14 2.09E-12 2.09E-13 Nucleotide Purine Metabolism, Adenine containing 

T-tau 

N-acetylneuraminate 32377 349.51 2.25E-21 1.26E-19 1.26E-19 Carbohydrate Aminosugar Metabolism 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 296.17 1.53E-19 8.54E-18 4.27E-18 Lipid Phosphatidylcholine (PC) 

C-glycosyltryptophan 48782 336.75 7.77E-19 4.35E-17 1.45E-17 Amino Acid Tryptophan Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 343.88 3.72E-18 2.09E-16 5.21E-17 Lipid Phosphatidylcholine (PC) 

N-acetylthreonine 33939 372.61 1.37E-17 7.68E-16 1.54E-16 Amino Acid Glycine, Serine and Threonine 
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Metabolism 

arabitol/xylitol 48885 340.87 1.61E-16 9.00E-15 1.50E-15 Carbohydrate Pentose Metabolism 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 314.01 6.07E-16 3.40E-14 4.85E-15 Lipid Sphingolipid Metabolism 

N6-succinyladenosine 48130 275.91 1.19E-15 6.64E-14 8.30E-15 Nucleotide Purine Metabolism, Adenine containing 

erythronate* 42420 608.03 1.48E-15 8.30E-14 9.23E-15 Carbohydrate Aminosugar Metabolism 

beta-citrylglutamate 54923 281.29 6.24E-15 3.49E-13 3.49E-14 Amino Acid Glutamate Metabolism 

Aβ42 

N-acetylneuraminate 32377 1831.96 7.62E-20 4.42E-18 2.65E-18 Carbohydrate Aminosugar Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 1922.65 9.15E-20 5.31E-18 2.65E-18 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-oleoyl-GPC 

(16:0/18:1) 
52461 2019.63 4.04E-19 2.34E-17 7.50E-18 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 1608.22 5.17E-19 3.00E-17 7.50E-18 Lipid Phosphatidylcholine (PC) 

1-myristoyl-2-palmitoyl-GPC 

(14:0/16:0) 
19258 1779.94 5.29E-18 3.07E-16 6.13E-17 Lipid Phosphatidylcholine (PC) 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 1735.41 7.98E-17 4.63E-15 7.72E-16 Lipid Sphingolipid Metabolism 

N-acetylserine 37076 2220.93 1.96E-15 1.14E-13 1.63E-14 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

arabitol/xylitol 48885 1732.68 2.00E-14 1.16E-12 1.45E-13 Carbohydrate Pentose Metabolism 

N-acetylthreonine 33939 1832.87 3.07E-14 1.78E-12 1.98E-13 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

1-palmitoyl-2-palmitoleoyl-GPC 

(16:0/16:1)* 
52470 1793.19 3.46E-14 2.01E-12 2.01E-13 Lipid Phosphatidylcholine (PC) 

Aβ40 N-acetylneuraminate 32377 27190.93 2.92E-30 2.34E-28 2.34E-28 Carbohydrate Aminosugar Metabolism 
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1,2-dipalmitoyl-GPC (16:0/16:0) 19130 27204.24 2.46E-26 1.96E-24 9.51E-25 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 23086.44 3.57E-26 2.85E-24 9.51E-25 Lipid Phosphatidylcholine (PC) 

1-stearoyl-2-oleoyl-GPC 

(18:0/18:1) 
52438 27203.88 1.22E-23 9.72E-22 2.43E-22 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-oleoyl-GPC 

(16:0/18:1) 
52461 27594.67 4.59E-23 3.67E-21 7.35E-22 Lipid Phosphatidylcholine (PC) 

N-acetylserine 37076 34639.61 5.99E-23 4.79E-21 7.99E-22 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 24933.03 8.41E-23 6.73E-21 9.61E-22 Lipid Sphingolipid Metabolism 

arabitol/xylitol 48885 26504.66 6.06E-22 4.85E-20 5.64E-21 Carbohydrate Pentose Metabolism 

1-myristoyl-2-palmitoyl-GPC 

(14:0/16:0) 
19258 24513.57 6.34E-22 5.07E-20 5.64E-21 Lipid Phosphatidylcholine (PC) 

erythronate* 42420 47037.89 2.43E-20 1.94E-18 1.94E-19 Carbohydrate Aminosugar Metabolism 

NfL 

N-acetylthreonine 33939 194.81 4.51E-04 2.93E-02 2.09E-02 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

N-acetylalanine 1585 262.23 9.53E-04 6.19E-02 2.09E-02 Amino Acid Alanine and Aspartate Metabolism 

beta-citrylglutamate 54923 150.23 9.66E-04 6.28E-02 2.09E-02 Amino Acid Glutamate Metabolism 

arabitol/xylitol 48885 165.78 1.70E-03 1.10E-01 2.26E-02 Carbohydrate Pentose Metabolism 

1-palmitoyl-GPC (16:0) 33955 142.17 1.74E-03 1.13E-01 2.26E-02 Lipid Lysophospholipid 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 154.06 2.68E-03 1.74E-01 2.53E-02 Lipid Phosphatidylcholine (PC) 

1-oleoyl-GPC (18:1) 48258 136.99 2.72E-03 1.77E-01 2.53E-02 Lipid Lysophospholipid 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 145.43 3.35E-03 2.18E-01 2.72E-02 Lipid Sphingolipid Metabolism 
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orotidine 35172 129.73 4.56E-03 2.96E-01 3.00E-02 Nucleotide 
Pyrimidine Metabolism, Orotate 

containing 

cysteine 1868 187.12 4.98E-03 3.24E-01 3.00E-02 Amino Acid 
Methionine, Cysteine, SAM and Taurine 

Metabolism 

Neurogranin 

N-acetylneuraminate 32377 1574.23 6.97E-26 4.32E-24 4.32E-24 Carbohydrate Aminosugar Metabolism 

C-glycosyltryptophan 48782 1442.13 9.29E-20 5.76E-18 2.88E-18 Amino Acid Tryptophan Metabolism 

N6-succinyladenosine 48130 1234.78 3.19E-18 1.98E-16 6.60E-17 Nucleotide Purine Metabolism, Adenine containing 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 1212.87 1.38E-17 8.53E-16 1.89E-16 Lipid Phosphatidylcholine (PC) 

arabitol/xylitol 48885 1470.51 1.53E-17 9.48E-16 1.89E-16 Carbohydrate Pentose Metabolism 

N-acetylthreonine 33939 1549.35 1.83E-17 1.13E-15 1.89E-16 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

erythronate* 42420 2626.14 1.19E-16 7.40E-15 1.06E-15 Carbohydrate Aminosugar Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 1370.31 5.60E-16 3.47E-14 4.34E-15 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-GPC (16:0) 33955 1202.61 1.09E-15 6.78E-14 7.54E-15 Lipid Lysophospholipid 

N-acetylserine 37076 1719.96 2.67E-15 1.65E-13 1.65E-14 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

YKL-40 

N-acetylneuraminate 32377 162.38 7.62E-17 1.37E-15 1.37E-15 Carbohydrate Aminosugar Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 169.92 1.71E-16 3.08E-15 1.54E-15 Lipid Phosphatidylcholine (PC) 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 160.90 8.86E-16 1.60E-14 5.32E-15 Lipid Sphingolipid Metabolism 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 140.55 1.05E-14 1.89E-13 4.65E-14 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-oleoyl-GPC 

(16:0/18:1) 
52461 171.39 1.29E-14 2.32E-13 4.65E-14 Lipid Phosphatidylcholine (PC) 
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arabitol/xylitol 48885 162.00 7.35E-14 1.32E-12 2.21E-13 Carbohydrate Pentose Metabolism 

1-myristoyl-2-palmitoyl-GPC 

(14:0/16:0) 
19258 147.07 4.57E-13 8.22E-12 1.17E-12 Lipid Phosphatidylcholine (PC) 

N6-succinyladenosine 48130 121.32 2.81E-11 5.06E-10 6.32E-11 Nucleotide Purine Metabolism, Adenine containing 

cysteine 1868 181.51 6.78E-11 1.22E-09 1.36E-10 Amino Acid 
Methionine, Cysteine, SAM and Taurine 

Metabolism 

1-palmitoyl-2-palmitoleoyl-GPC 

(16:0/16:1)* 
52470 148.93 1.16E-10 2.09E-09 2.09E-10 Lipid Phosphatidylcholine (PC) 

S100b 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 0.81 8.99E-07 2.34E-05 2.34E-05 Lipid Sphingolipid Metabolism 

1-stearoyl-2-docosahexaenoyl-

GPC (18:0/22:6) 
52611 0.54 3.45E-05 8.97E-04 4.49E-04 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-oleoyl-GPC 

(16:0/18:1) 
52461 0.73 6.95E-05 1.81E-03 6.03E-04 Lipid Phosphatidylcholine (PC) 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 0.67 1.07E-04 2.79E-03 6.96E-04 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-docosahexaenoyl-

GPC (16:0/22:6) 
52610 0.50 1.59E-04 4.14E-03 8.27E-04 Lipid Phosphatidylcholine (PC) 

sphingomyelin (d18:1/18:1, 

d18:2/18:0) 
37529 0.60 2.07E-04 5.39E-03 8.99E-04 Lipid Sphingolipid Metabolism 

erythronate* 42420 1.18 3.28E-04 8.52E-03 1.22E-03 Carbohydrate Aminosugar Metabolism 

palmitoyl sphingomyelin 

(d18:1/16:0) 
37506 0.55 7.47E-04 1.94E-02 2.43E-03 Lipid Sphingolipid Metabolism 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 0.50 9.45E-04 2.46E-02 2.73E-03 Lipid Phosphatidylcholine (PC) 

sphingomyelin (d18:2/16:0, 42459 0.44 1.53E-03 3.97E-02 3.96E-03 Lipid Sphingolipid Metabolism 
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d18:1/16:1)* 

GFAP 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 10.08 1.76E-07 1.06E-06 1.06E-06 Lipid Phosphatidylcholine (PC) 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 8.07 9.91E-07 5.95E-06 2.97E-06 Lipid Phosphatidylcholine (PC) 

beta-citrylglutamate 54923 7.74 6.92E-06 4.15E-05 1.38E-05 Amino Acid Glutamate Metabolism 

N-acetylneuraminate 32377 8.00 1.59E-05 9.56E-05 2.39E-05 Carbohydrate Aminosugar Metabolism 

gulonate* 46957 6.71 2.75E-05 1.65E-04 3.30E-05 
Cofactors 

and Vitamins 
Ascorbate and Aldarate Metabolism 

arabinose 575 9.80 3.71E-04 2.22E-03 3.71E-04 Carbohydrate Pentose Metabolism 

sTREM2 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 9.59 5.72E-16 1.60E-14 1.60E-14 Lipid Sphingolipid Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 9.81 1.59E-15 4.45E-14 2.23E-14 Lipid Phosphatidylcholine (PC) 

palmitoyl sphingomyelin 

(d18:1/16:0) 
37506 9.18 2.52E-15 7.05E-14 2.35E-14 Lipid Sphingolipid Metabolism 

1-palmitoyl-2-oleoyl-GPC 

(16:0/18:1) 
52461 10.20 9.68E-15 2.71E-13 6.78E-14 Lipid Phosphatidylcholine (PC) 

cholesterol 63 9.08 2.08E-14 5.83E-13 1.17E-13 Lipid Sterol 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 7.89 2.11E-13 5.90E-12 9.83E-13 Lipid Phosphatidylcholine (PC) 

sphingomyelin (d18:2/16:0, 

d18:1/16:1)* 
42459 7.19 3.53E-13 9.88E-12 1.41E-12 Lipid Sphingolipid Metabolism 

C-glycosyltryptophan 48782 8.51 2.09E-12 5.86E-11 7.33E-12 Amino Acid Tryptophan Metabolism 

N-acetylneuraminate 32377 8.35 2.55E-12 7.13E-11 7.92E-12 Carbohydrate Aminosugar Metabolism 

1-myristoyl-2-palmitoyl-GPC 

(14:0/16:0) 
19258 8.45 3.18E-12 8.90E-11 8.90E-12 Lipid Phosphatidylcholine (PC) 
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α-synuclein 

1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0) 
52616 306.42 1.42E-22 1.42E-20 1.42E-20 Lipid Phosphatidylcholine (PC) 

1,2-dipalmitoyl-GPC (16:0/16:0) 19130 337.75 5.02E-20 5.02E-18 2.51E-18 Lipid Phosphatidylcholine (PC) 

N-acetylneuraminate 32377 315.50 2.29E-19 2.29E-17 7.64E-18 Carbohydrate Aminosugar Metabolism 

stearoyl sphingomyelin 

(d18:1/18:0) 
19503 316.41 1.31E-18 1.31E-16 3.28E-17 Lipid Sphingolipid Metabolism 

1-stearoyl-2-oleoyl-GPC 

(18:0/18:1) 
52438 334.85 8.69E-18 8.69E-16 1.74E-16 Lipid Phosphatidylcholine (PC) 

C-glycosyltryptophan 48782 304.78 3.58E-17 3.58E-15 5.82E-16 Amino Acid Tryptophan Metabolism 

palmitoyl sphingomyelin 

(d18:1/16:0) 
37506 297.65 4.24E-17 4.24E-15 5.82E-16 Lipid Sphingolipid Metabolism 

N-acetylthreonine 33939 343.71 4.65E-17 4.65E-15 5.82E-16 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 

N6-succinyladenosine 48130 266.82 9.85E-17 9.85E-15 1.09E-15 Nucleotide Purine Metabolism, Adenine containing 

1-myristoyl-2-palmitoyl-GPC 

(14:0/16:0) 
19258 300.75 1.17E-16 1.17E-14 1.17E-15 Lipid Phosphatidylcholine (PC) 

* Indicates a compound that has not been confirmed based on a standard, but Metabolon was confident in its identity. 853 
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Table 3. Prediction performance (r2) of metabolites in the combined cohort of WRAP and Wisconsin ADRC. 854 

NTK 

biomarkers 

Base model 

r2 (sample 

size*) 

Number of input 

metabolites 

Metabolite model 

r2  

(sample size*) 

Number of 

elastic net-

selected 

metabolites 

Elastic net-

selected 

metabolites 

model r2 (sample 

size*) 

P-tau 0.11 (n=295) 40 0.72 (n=226) 22 0.70 (n=232) 

T-tau 0.10 (n=296) 44 0.71 (n=236) 17 0.69 (n=281) 

Aβ42 0.01 (n=296) 54 0.55 (n=220) 43 0.54 (n=222) 

Aβ40 0.04 (n=293) 73 0.85 (n=162) 70 0.83 (n=166) 

NfL 0.10 (n=297) 23 0.23(n=280) 13 0.22 (n=290) 

Neurogranin 0.07 (n=297) 51 0.78 (n=245) 32 0.76 (n=267) 

YKL-40 0.25 (n=297) 15 0.57 (n=281) 10 0.56 (n=288) 

S100 0.05 (n=296) 20 0.22 (n=281) 4 0.19 (n=293) 

GFAP 0.17 (n=297) 6 0.35 (n=282) 5 0.35(n=288) 

sTREM2 0.05 (n=297) 27 0.52 (n=276) 14 0.50 (n=283) 

α-synuclein 0.03 (n=297) 90 0.97 (n=105) 27 0.68 (n=218) 

Variables included in the base model were age, sex, years of education and cohort. 855 
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Variables included in the metabolite model were age, sex, years of education, cohort and all replicated significant metabolites for 856 

each biomarker. 857 

Variables included in the metabolite model were age, sex, years of education, cohort and elastic net-selected metabolites. 858 

* The sample sizes were different because of the missingness of metabolites.  859 
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Table 4. Significant Mendelian randomization results after Bonferroni correction. 860 

NTK 

biomarkers 
Metabolite 

Compound 

ID 
nSNPs 

nRegions 

(1Mbps) 

F 

statistics 

LIML 

estimate 
LIML 95% CI LIML p 

Adjusted 

p 

sTREM2 
palmitoyl sphingomyelin 

(d18:1/16:0) 
37506 67 21 1.97 12.97 9.14 16.80 2.09E-10 2.50E-08 

Aβ40 erythritol 20699 100 34 6.09 12499.02 7539.22 17458.82 1.40E-06 1.61E-04 

α-synuclein homocarnosine 1633 43 14 2.61 -123.04 -172.61 -73.47 1.96E-06 2.23E-04 

T-tau 
1-palmitoyl-2-stearoyl-

GPC (16:0/18:0) 
52616 19 8 2.81 319.63 187.99 451.28 3.21E-06 3.59E-04 

α-synuclein erythritol 20699 100 34 5.95 172.93 99.70 246.16 5.69E-06 6.31E-04 

Neurogranin 
1-palmitoyl-2-stearoyl-

GPC (16:0/18:0) 
52616 19 8 2.82 1433.89 799.21 2068.57 1.37E-05 1.49E-03 

Aβ40 
1-myristoyl-2-palmitoyl-

GPC (14:0/16:0) 
19258 38 20 2.48 18666.39 10385.64 26947.14 1.43E-05 1.54E-03 

T-tau 
1-palmitoyl-2-stearoyl-

GPC (16:0/18:0) 
52616 19 8 2.79 28.06 15.50 40.62 1.70E-05 1.82E-03 

α-synuclein 
1-palmitoyl-2-stearoyl-

GPC (16:0/18:0) 
52616 19 8 2.82 268.34 137.78 398.90 7.16E-05 7.59E-03 

Aβ40 
1,2-dipalmitoyl-GPC 

(16:0/16:0) 
19130 5 2 6.78 25973.09 12768.09 39178.09 1.41E-04 1.48E-02 
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Aβ40 homocarnosine 1633 43 14 2.55 -6548.41 -9903.63 -3193.19 1.58E-04 1.65E-02 

Neurogranin homocarnosine 1633 43 14 2.61 -444.47 -675.36 -213.58 1.93E-04 1.99E-02 

Aβ40 gulonate* 46957 25 13 6.34 12658.31 6029.03 19287.58 2.17E-04 2.21E-02 

The nSNPs refers to the number of SNPs in each IV, and the nRegions is the approximate number of regions defined by up to a 1Mbps 861 

of the SNPs. The F statistic represent the strength of the IV (strong IV F statistic >10). The estimate of beta, confidence interval and p 862 

values were all based on the limited information maximum likelihood (LIML) method. 863 A
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 864 

(a) 865 
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 866 

(b) 867 

Figure 1. Manhattan plots of MWAS results between CSF metabolites and CSF NTK biomarkers. Each dot represents a 868 

metabolite and the different colors represent the CSF NTK biomarkers (x-axis) in (a) WRAP and (b) the Wisconsin ADRC (only 869 
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significant metabolites after FDR correction in WRAP were included). The -log10(p-value) is shown on the y-axis. The legend box 870 

indicates the number of metabolites that were significant after FDR correction for each NTK biomarker.871 
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72 

Figure 2. The association patterns between significant CSF metabolites and CSF NTK 73 

biomarkers in Wisconsin-ADRC. Each cell represents the association of a CSF metabolites with a 74 

biomarker. The color scale indicates the magnitude of the FDR q values. The metabolites are also groupe75 

colored based on their super pathway. 76 
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