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Abstract   

Machine learning (ML) algorithms to detect critical findings on head CTs may expedite patient 

management. Most ML algorithms for diagnostic imaging analysis utilize dichotomous classifications to 

determine whether a specific abnormality is present. However, imaging findings may be indeterminate, 

and algorithmic inferences may have substantial uncertainty. We incorporated awareness of uncertainty 

into an ML algorithm that detects intracranial hemorrhage or other urgent intracranial abnormalities and 

evaluated prospectively identified, 1000 consecutive noncontrast head CTs assigned to Emergency 

Department Neuroradiology for interpretation. The algorithm classified the scans into high (IC+) and low 

(IC-) probabilities for intracranial hemorrhage or other urgent abnormalities. All other cases were 

designated as No Prediction (NP) by the algorithm. The positive predictive value for IC+ cases (N = 103) 

was 0.91 (CI: 0.84-0.96), and the negative predictive value for IC- cases (N = 729) was 0.94 (0.91-0.96). 

Admission, neurosurgical intervention, and 30-day mortality rates for IC+ was 75% (63-84), 35% (24-

47), and 10% (4-20), compared to 43% (40-47), 4% (3-6), and 3% (2-5) for IC-. There were 168 NP 

cases, of which 32% had intracranial hemorrhage or other urgent abnormalities, 31% had artifacts and 

postoperative changes, and 29% had no abnormalities. An ML algorithm incorporating uncertainty 

classified most head CTs into clinically relevant groups with high predictive values and may help 

accelerate the management of patients with intracranial hemorrhage or other urgent intracranial 

abnormalities.  

 

Background  

 A patient with an urgent neurological abnormality requires prompt imaging. If the etiology is 

hemorrhage, immediate evacuation or treatment of an aneurysm may be lifesaving. If the cause is an 

ischemic stroke from a large vessel occlusion, thrombectomy can result in a favorable outcome. There are 

many additional causes of urgent neurological deficits including masses, infections, inflammatory 
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diseases, and acute hydrocephalus for which prompt intervention could markedly decrease morbidity and 

mortality. Rapid identification of such a finding is critical for triaging patients to appropriate 

management. CT is commonly the first imaging method employed in this situation, and computer-based 

image evaluation tools that rapidly classify and triage CT scans would be valuable.   

 The application of artificial intelligence (AI) in neuroimaging has expanded with the potential to 

accelerate the accurate diagnosis of intracranial hemorrhage or other urgent intracranial abnormalities. 

Many machine-learning (ML) algorithms rely on dichotomous classification schemes where an algorithm 

determines the presence or absence of specific intracranial abnormalities such as intracranial hemorrhage, 

large vessel occlusion, or metastasis.(1-4) However, abnormal findings on neuroimaging are not always 

definitive. For instance, a streak artifact on CT may mimic intracranial hemorrhage. Uncertainties can 

also be introduced at different stages in the development of ML algorithms for various reasons including 

suboptimal input data, weak supervision, as well as inter- and intra-observer variability.(5) With the 

expansion of real-life applications of various ML algorithms and the growing need for safety, the 

recognition and appropriate handling of uncertainty is becoming critical.(6)(7) 

 Clinical ambiguity is also common. For instance, stroke symptoms including a facial droop and 

speech difficulty may not only result from early ischemia but also from acute intracranial hemorrhage or a 

mass lesion. An appropriate neurological assessment may not be feasible in patients who are obtunded 

from various causes such as ischemia, infection, and inflammation. The clinical issue at hand is therefore 

complex, and more than one ML algorithm may be needed for adequate characterization of the head CT, 

including an algorithm that rapidly identifies a major abnormality such as hemorrhage, mass lesions, and 

other stroke mimics as well as another algorithm that quickly assesses the likelihood of ischemic injury. 

 In this study, our aim was to evaluate an ML tool that classifies non-contrast CT scans into three 

categories based on the probability of the presence of an intracranial hemorrhage or other urgent 

intracranial abnormality other than acute ischemia. We assessed the impact of this classification in 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.07.19.22277808doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22277808


predicting clinical outcomes including hospital admission, neurosurgical intervention, and 30-day 

mortality.  

Materials and Methods  

Deep Learning Algorithm  

The algorithm employed was derived from an intracranial hemorrhage detection and subtype 

classification system first created by finetuning four ImageNet-pretrained - deep convolutional neural 

networks (DCNNs)—VGG16,(8) ResNet-50,(9) Inception-v3, (10) and Inception-ResNet-v2, (11) with 

ICH training data obtained from the imaging archives of our institution.(12) Specifically, 5 mm thick two-

dimensional (2D) axial images from 904 non-contrast head CTs were labeled by 5 subspecialty-trained US 

board-certified neuroradiologists as to the absence or presence of intracranial hemorrhage as well as all 

identifiable subtypes (intraparenchymal, intraventricular, subdural, epidural, subarachnoid). These studies 

were randomly divided into training and validation sets and additional retrospectively and prospectively 

collected data sets were used for testing. Finetuning of the DCNNs with this labeled data occurred after the 

last fully-connected layers were replaced with three consecutive layers containing a global average pooling 

(GAP)(13) layer, a fully-connected layer, and an element-wise sigmoid layer. All models were optimized 

using a mini-batch stochastic gradient descent with Nesterov momentum(14) with a batch size of 64 to 

maximize GPU utilization. We used a weight decay of 5x10-5 and a base learning rate of 0.001, decayed by 

0.1 three times when the validation loss plateaus. Computations were conducted on an NVIDIA DevBox 

equipped with four TITAN X GPUs with 12GB of memory per GPU, and all deep learning models were 

implemented using Keras (version 2.1.2, http://keras.io) with a Tensorflow(15) backend (version 1.3.0).  

The model provided a probability on a slice-by-slice basis of the presence of intraparenchymal hemorrhage, 

interventricular hemorrhage, subdural hematoma, epidural hematoma, and subarachnoid hemorrhage. This 

multi-label classification task was reformulated into a binary classification of intracranial hemorrhage as 

positive if one or more of the subtype outputs are positive and negative if not. The binary cross entropy loss 
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function was weighted by the ratios of positive and negative instances for each class label, in a similar 

fashion as described previously(16, 17).   An ensemble of the four models was created using unweighted 

averaging such that the final probability is defined as an average of probabilities predicted by the four 

models.  We also applied the Z directional moving average window method to determine the results of the 

target image by considering the results of the images above and below the Z-axis. This method is more 

accurate than the 2D method and has better memory usage and algorithm speed than the 3D method. The 

model assigned for each slice of a CT scan, a probability of 0 to 1 for the presence of intracranial 

hemorrhage. Complete details are described by Lee et al.(12) 

 

Adapting the Algorithm for Clinical Use 

The algorithm underwent a preliminary evaluation using ED neuroradiology head CTs acquired 

over a period of one month.  Review of the results revealed that the algorithm identified as abnormal 

significant intracranial abnormalities other than ICH. We deduced that this was a form of transfer learning 

and a valuable feature of the algorithm. We also observed that when a study had 3 or more slices with 

probabilities of at least 0.9, ICH or other significant intracranial abnormality was very likely.  We also 

noted that if a study contained just 1 or no images with probability greater or equal to 0.6, ICH or other 

abnormality was very unlikely.  For our prospective study we classified studies with 3 or more slices with 

probabilities of 0.9 or greater as IC+; studies with all slices except one having probabilities of 0.6 or less 

were classified as IC-.  All other studies were given the designation of NP indicating no prediction by the 

algorithm. 

 

Imaging Test Data Collection  

This study was approved by the institutional review board (IRB). Prospectively, we identified 

1000 consecutive non-contrast head CTs assigned for review by the emergency department 
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neuroradiology service. Most of the studies were non-contrast head CT, but some were performed in 

conjunction with CT angiography. Regardless of the type of the study, only the axial, 5-mm, noncontrast, 

standard reconstruction kernel, head CT images were evaluated. Most of the studies (N = 953) were 

acquired in the emergency department or inpatient CT scanners (GE Discovery CT750 HD, GE 

LightSpeed VCT, Siemens SOMATOM Definition Edge). The remaining 47 studies were performed on 

the outpatient scanners (Philips IQon -Spectral CT, GE Discovery CT750 HD). 

The clinical information was derived from electronic medical records. In addition to patients’ 

demographic data, the rates of admission, neurosurgical intervention, and 30-day mortality were also 

collected. Neurosurgical interventions included craniotomy, craniectomy, cranioplasty, ventricular 

catheter placement or removal, biopsy, and interventional neuroradiology procedures. If a patient had 

multiple imaging exams during the same admission, it was counted as a single admission. There were 4 

patients who were discharged and re-admitted subsequently during the data collection. Their admissions 

were counted as two separate admissions. 

Imaging Data Analysis and Clinical Information 

Each CT scan classified by the algorithm was compared to the formal clinical interpretation by 

neuroradiologists with certificates of added qualification (CAQ), which served as the ground truth. The 

clinical interpretations were made without the knowledge of the ML algorithm results. The presence of 

intracranial hemorrhage or other urgent intracranial abnormalities was recorded and compared with the 

algorithm results. 

Statistical Analysis 

Descriptive summaries were computed for the overall cohort.  Continuous variables were 

summarized as the median and interquartile range (IQR: 25th and 75th quantile) and categorical variables 

as percentages.   
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Separate generalized estimating equations, with an independence correlation structure (GEE-I), 

were used to quantify the association between classification (IC+, IC-, NP) and each imaging finding 

(acute intracranial hemorrhage, mass lesion, artifact, post-op changes, acute/subacute infarcts, 

encephalomalacia, miscellaneous, and normal imaging) and each outcome (hospital admission, 

neurosurgical intervention, and 30-day mortality). Linear combinations of parameter estimates were 

computed to summarize the prevalence of each imaging finding and the occurrence of each outcome by 

classification group as well as all pairwise comparisons (outcomes only) between classification groups 

along with their associated confidence intervals and P values. Similarly, GEE-I estimates were 

constructed to estimate predictive values while acknowledging the possibility of multiple admissions and 

scans per subject.  All analyses were performed using R 4.1.1 (R: the R project for statistical computing; 

www.r-project.org) and the geepack library.(18) 

 

Results 

One thousand consecutive head CT scans were performed on 857 patients. Some patients had 

multiple studies during the data collection period. Of these 857 subjects, 761 had a single scan, while 66 

had two scans, and 33 had three or more scans. There were 423 female (49.4%) and 434 male (50.6%) 

patients. The median age was 65 years (IQR: 50-77). The overall hospital admission rate was 47.1% (CI: 

43.8-50.4) which is higher than the ~30% admission rate of all patients evaluated in our institution’s 

emergency department. Neurosurgical interventions, including craniotomies and endovascular 

procedures, were performed in 7.7% (6.1-9.7) and the 30-day mortality was 4.4% (3.2-6.0).    

Of the 1000 scans, 10.3% were classified by the algorithm as IC+ (high probability of an 

intracranial hemorrhage or other urgent intracranial abnormality), and 72.9% were classified as IC- (low 

probability of an ICH or other urgent intracranial abnormality).   Studies classified as No Prediction (NP) 

constituted 16.8% of the 1000 scans. Table 1 lists the imaging findings tabulated for IC+ and IC- cases.    
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Imaging findings 
IC+ 

(n = 103) 

IC- 

(n = 729) 
P value 

Acute intracranial 

hemorrhage 
80.6 (69.6-88.3) 5.6 (3.7-8.4) <0.001 

Non-hemorrhagic 

mass/mass effect with 

urgent findings 

10.7 (5.1-20.9) 0.3 (0.1-1.1) <0.001 

Non-hemorrhagic 

mass/mass effect without 

urgent findings 

0 (-) 3.7 (2.5-5.5) <0.001 

Artifact 3.9 (1.4-10.1) 0.8 (0.4-1.8) 0.017 

Postop changes without 

acute hemorrhage 
0 (-) 8.1 (6.1-10.6) <0.001 

Acute/Subacute Infarcts 0 (-) 3.7 (2.3-5.8) <0.001 

Encephalomalacia 1.9 (0.5-7.5) 6.9 (5.2-9.0) 0.075 

Miscellaneous 1.0 (0.1-6.6) 1.4 (0.7-2.5) 0.741 

Normal Imaging 1.9 (0.5-7.5) 69.5 (65.7-73.2) <0.001 

Table 1. Neuroimaging Abnormality Distribution by Classification. The proportion in percent (95% confidence 

interval) of major intracranial abnormalities for studies classified as IC+ and IC-. Intracranial hemorrhage includes 

acute hemorrhage associated with aneurysmal rupture, posttraumatic, hemorrhagic infarcts, hemorrhagic mass, 

and/or postoperative changes. Urgent findings associated with mass/mass effect includes herniation, ventricular 

effacement, and/or ventricular entrapment from various etiologies including neoplasm, infection, inflammation, and 

cerebral edema. Postoperative changes include findings such as resection cavity or pneumocephalus from 

craniotomy without acute intracranial hemorrhage or substantial mass effect. Acute/subacute infarcts include non-

hemorrhagic ischemic infarction. Miscellaneous includes ventriculomegaly, chronic subdural collections, and 

hygromas. All estimates (main effects: percentage, 95% CI, comparisons: odds ratios, 95% CI, P values) are based 

on separate generalized estimating equations using an independent correlation structure. 

The algorithm classified 103 cases as IC+. Examples of IC+ scans are shown in Figure 1.  Over 

80% of these patients had intracranial hemorrhages, either primary or secondary to underlying lesions 

identified on the non-contrast CT or associated examinations.   
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Figure 1. IC+ Cases. A: Examples of IC+ cases with acute intracranial hemorrhages. The left panel shows a large 

intraparenchymal hematoma centered in the left basal ganglia (arrow) as well as intraventricular hemorrhages within 

the bilateral occipital horns (arrowhead). The middle panel shows a large left holohemispheric subdural hematoma 

with rightward subfalcine herniation. The right panel shows multifocal, hemorrhagic lung cancer metastases. B: 

Examples of nonhemorrhagic IC+ cases. The left panel shows a large area of confluent hypoattenuation involving 

the right hemisphere, which was subsequently found to be toxoplasmosis in a patient with human immunodeficiency 

virus (HIV) and acquired immunodeficiency syndrome (AIDS). The middle panel shows diffuse reversal of gray-

white differentiation as well as partial effacement of the ventricles, most consistent with diffuse cerebral edema from 

a severe hypoxic-ischemic injury. For instance, the left caudate head has an abnormally hypodense appearance 

compared to the adjacent internal capsule. The right panel shows a large, left hemispheric, Spetzler Martin grade 5 

arteriovenous malformation. C: Examples of false positive IC+ cases. The left panel shows streak artifact from 

metallic hardware. The middle panel shows encephalomalacia of the right frontal lobe. The right panel shows an old 

right posterior cerebral artery territory infarction.  
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Non-hemorrhagic masses or lesions causing substantial mass effect were the second most 

common findings in over 10% of cases.   Several cases with urgent pathology including diffuse cerebral 

edema and large vascular malformation were also classified as IC+.  There were 9 IC+ false positives.  

There was only a single normal study that was classified as IC+ with the erroneous classification thought 

to be secondary to residual intracranial vascular enhancement from an earlier exam performed with 

intravenous contrast.   

Among the IC+ cases, there were 94 true positive and 9 false positive cases for major intracranial 

abnormality, resulting in a positive predictive value 0.91 (0.84-0.96). Patients with IC+ scans had a very 

high rate of admission, 74.6% (62.5-83.8).  The rates of neurosurgical intervention, 34.9% (24.2-47.4), 

and 30-day mortality, 9.5% (4.3-19.6), were also high. These outcomes were significantly greater in IC+ 

patients compared to IC- patients (Table 2).  

Outcome 

 

Overall 

Classification Comparison 

IC+ 

Percent 

(95% CI) 

IC- 

Percent 

(95% CI) 

IC+ vs IC- 

Odds Ratio 

(95% CI), P value 

Admission 

 

 

47.1  

(43.8-50.4) 

 

74.6  

(62.5-83.8) 

 

43.3  

(39.6-47.1) 

 

3.85  

(2.14-6.91), P <0.001 

Neurosurgical 

Intervention 

 

 

7.7  

(6.1-9.7) 

 

34.9  

(24.2-47.4) 

 

4.3  

(3.0-6.1) 

 

11.90  

(6.29-22.50), P <0.001 

30-Day 

Mortality 

 

 

4.4  

(3.2-6.0) 

 

9.5  

(4.3-19.6) 

 

3.0  

(1.9-4.6) 

 

3.42  

(1.32-8.86),  P = 0.011 

Table 2. Clinical Outcomes by Classification. All estimates (main effects: percentage, 95% CI, comparisons: odds 

ratios, 95% CI, P values) are based on separate generalized estimating equations using an independent correlation 

structure.  
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The findings on the 9 false positive IC+ scans are listed in Table 3.  The false positive cases 

included 4 with artifacts, 4 with large areas of encephalomalacia and one from a patient that received 

intravenous contrast during an earlier exam.   

 

Case  Findings  

1 Extensive hardware streak artifact  

2 Residual contrast from the same day CT angiogram 

3 No acute intracranial findings. Old right posterior cerebral artery territory infarction 

4 Mild motion degradation 

5 No acute intracranial findings, old right posterior cerebral artery territory infarction 

6 No acute intracranial findings, right temporal and bifrontal lobe encephalomalacia 

7 No acute intracranial findings, old right posterior cerebral artery territory infarction 

8 Motion degradation.  

9 Motion degradation, deep brain stimulator in place, 1.9 cm presumed planum sphenoidale 

meningioma with minimal mass effect. No associated herniation or ventricular effacement. 

Table 3. False positive IC+ cases 

 

Most patients (N = 729) had scans classified as IC-, and examples are shown in Figure 2.  The 

negative predictive value was 0.94 (0.91-0.96).  
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Figure 2. IC- cases. A: Examples of true negative IC- cases. The left panel shows a normal noncontrast head CT. 

The right panel shows small old infarcts in the left basal ganglia. B: Examples of false negative IC- cases. The left 

panel shows a small isodense subdural hematoma along the left frontal convexity. The right panel shows trace 

subarachnoid hemorrhage along the medial aspect of the left frontal lobe.  

 

The rates of admission, neurosurgical intervention, and 30-day mortality for the IC- group were 

substantially lower than those in the IC+ group (Table 1). There were 686 true negative cases, and they 

had no abnormal findings or small chronic abnormalities (Figure 2).  There were 43 scans that were 

classified as IC- that were false negatives (Table 4).  Nearly all, 39 of 41, of the false negative scans had 

only very small areas of hemorrhage, petechial intraparenchymal or trace extra-axial in nature, without 
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appreciable mass effect.  (Figure 2). The remaining 2 false-negative cases had mass lesions in the 

cerebellum with partial effacement of the fourth ventricles.   

 

Case Findings 

1 Small bilateral SDH 

2 Small bilateral SDH 

3 Right SDH measuring up to 6 mm in thickness  

4 

Small volume acute SAH over the left frontal convexity and possibly in the dependent portion of 

the left sylvian fissure. 

5 Trace SAH along the left frontal lobe 

6 Left hypodense to isodense SDH 

7 Trace scattered SAH 

8 Trace SDH 

9 Right thalamic possible ICH 

10 Right thalamic IPH 

11 

Small volume SAH along the inferior left temporal lobe extending to the left temporo-occipital 

junction and trace SDH along the left tentorial leaflet 

12 Thin linear hyperattenuation along the right tentorial leaflet, consistent with a small SDH 

13 Small left frontal and parietal SDH 

14 Small scattered foci of extra-axial hemorrhage along the bilateral frontal convexities and falx 

15 Mildly hyperdense 2 mm extra-axial collection concerning for small SDH 

16 Small foci of extra-axial hemorrhage along the frontal convexities.  

17 Small right frontal extra-axial hematoma 

18 Bifrontal extra-axial hyperdense foci, SDH vs myeloid sarcoma in the setting of AML 

19 Small right frontal extra-axial hematoma.  

20 Multicompartmental ICH (isodense right SDH, evolving predominantly hypodense R IPH) 

21 

Small hemorrhagic contusions at the left middle frontal gyrus with surrounding vasogenic edema, 

with a possible component of subarachnoid hemorrhage. 

22 2 mm left parietal convexity SDH 

23 Small left parafalcine SAH 
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24 Left frontal convexity and right parafalcine SDH 

25 Left frontal contusion and trace extra-axial hemorrhage  

26 Possible subacute infarct with hemorrhagic transformation in the posterior left temporal lobe 

27 

Minimal tract hemorrhage along the previously seen course of ventricular catheter embedded 

within the corpus callosum splenium.  

28 Small hemorrhagic contusion 

29 

Less dense appearance of extra-axial foci along the bilateral frontal convexities, likely reflecting 

evolving blood products 

30 

Evolving posterior left temporal subacute infarct with a small degree of hemorrhagic 

transformation 

31 Bilateral SDH 

32 Trace right parietal SAH 

33 Small focus of acute subdural hematoma along the right aspect of the posterior falx cerebri 

34 Subdural collection with acute blood products or granulation tissue 

35 SAH 

36 Mass effect in the left cerebellar hemisphere with partial effacement of the fourth ventricle 

37 Left cerebellar metastasis with partial effacement of the fourth ventricle 

38 SAH 

39 SAH  

40 Stable small left parietal hematoma, possible trace left parietal SAH 

41 Trace SAH in the suprasellar and interpeduncular cisterns and small IVH 

42 Small volume traumatic SAH 

43 Small volume traumatic SAH 

SDH = subdural hematoma, SAH = subarachnoid hemorrhage, ICH = intracranial hemorrhage, IVH = 

intraventricular hemorrhage, IPH = intraparenchymal hematoma, AML = acute myeloid leukemia 

 

Table 4. False negative IC- cases.  

 

The NP patient group included 168 scans (Figure 3). Many of the patients had urgent 

abnormalities including 41 with intracranial hemorrhage, and 13 with mass lesions or substantial mass 

effect.  
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Figure 3. No Prediction cases. A: Trace acute subarachnoid hemorrhage along the right anterior cingulate 

gyrus. B: Noncontrast head CT degraded by motion artifact. C: Normal noncontrast head CT.  

 

Interestingly, the NP group included the highest number of scans with artifacts, 19, and 

postoperative changes, 33. Forty-nine of the scans were normal.  The rates of admission, neurosurgical 

intervention, and 30-day mortality were 53.4% (44.9-61.7), 12.0% (7.5-18.7), and 9.0% (5.2-15.2), 

respectively. The rates of admission and neurosurgical intervention were significantly higher for the IC+ 

cohort compared to NP with the odds ratios of 2.57 (1.32-4.97, P = 0.005) and 3.92 (1.88-8.19, P <0.001), 

respectively. When compared to the IC- cohort, the NP cohort had significantly higher rates of admission 

and neurosurgical intervention with the odds ratios of 1.50 (1.03-2.18, P = 0.033) and 3.03 (1.59-5.77, P < 

0.001), respectively. The rate of 30-day mortality of the NP was not significantly different compared to 

the rate for the IC+ cohort (odds ratio 1.06 (0.38-2.97), P = 0.910) but was significantly higher than the 

rate for the IC- cohort (odds ratio 3.22 (1.54-6.76), P = 0.002). 

There were 33 patients who had an acute, subacute, or age-indeterminate ischemic infarction. 

Twenty-eight patients were classified as IC- and 5 patients were classified as NP group.  
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Discussion 

 Diagnostic ambiguity is common when a patient is evaluated for a new neurological symptom or 

after an event such as trauma. For example, symptoms such as a facial droop and speech difficulty may 

result from ischemia, hemorrhage, mass lesion and other pathologies. Even greater ambiguity occurs in 

patients who are unable to respond. Imaging is effective in narrowing the differential diagnosis, but 

imaging and image interpretation are also imperfect. Since time is of the essence, ML algorithms that 

quickly identify imaging abnormalities are promising new tools, but their inferences also have 

uncertainties that must be recognized and managed.  

Following the suggestions by Kompa and colleagues(7), we incorporated uncertainty into an ML 

algorithm that analyzes head CT scans.  The algorithmic system correctly identifies IC+ and excludes IC- 

scans with intracranial hemorrhage or other urgent intracranial abnormalities in most patients. The studies 

with high algorithmic uncertainty were placed in the NP group.  This is a system that has utility as a 

prioritization tool in busy settings and may be especially useful to caregivers when radiologists are not 

available.   

Transfer learning is routinely used in machine learning. In transfer learning, a network trained to 

solve one problem using one dataset serves as the starting point for training the network for a related 

problem using a completely different dataset. The first dataset provides domain adaptation and cuts down 

the training time for the second problem. By exploiting what has been learned in one setting helps to 

improve generalization in another setting. Our use of a network trained for ICH to detect other 

abnormalities represents a form of transfer learning that works by learning features that are common to 

both ICH and other abnormalities. Most likely our trained network learned certain features from the base 

dataset and inductively transferred them to other brain abnormalities.  Our network performs well for ICH 

detection, but the process of training narrowed the model bias in a beneficial way where it became useful 

for other intracranial abnormalities such as tumors and other hemorrhage-like conditions. While our 
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network’s performance on non-ICH conditions can be further improved by subjecting it to more specific 

training, its performance even without such training is remarkable. 

IC+ Scans 

The IC+ cohort comprised about 10% of the test group and had a >90% positive predictive value 

for an intracranial hemorrhage or other urgent intracranial abnormality. Moreover, three-fourths of this 

group were admitted, over a third had a neurosurgical intervention and nearly a tenth died within 30 days. 

It is evident that an IC+ classification is a powerful biomarker, and those patients should be promptly 

assessed clinically, and their scans immediately reviewed by an imaging expert.  In a setting where a 

radiologist is not available, an IC+ classification provides an important alert to caregivers and can prompt 

additional action to manage the patient. It is noteworthy that the even the false negative IC+ scans had 

imaging abnormalities, mostly encephalomalacia or artifacts.  

IC- Scans 

The IC- cohort had a 94% negative predictive value for intracranial hemorrhage or other urgent 

intracranial abnormality. This classification identified patients with significantly lower rates of admission, 

neurosurgical intervention, and 30-day mortality. Nearly all the false-negative cases within this cohort 

were due to a small amount of intracranial blood.  While triage to a lower priority for review of these 

scans may be justified, IC- scans still require review by trained interpreters to identify small bleeds. 

NP Scans 

The patients whose scans were placed into the uncertain NP cohort had interesting characteristics.  

Of the 168 NP scans, 31% had image artifacts or post-operative changes and 29% were normal. However, 

nearly a third had intracranial hemorrhage or other urgent intracranial abnormalities.  Thus, immediate 

review of these scans by a radiologist or trained interpreter of head CTs is warranted for these scans, 

making the reviewer aware of the 1 in 3 chances of the presence of an intracranial hemorrhage or other 

urgent intracranial pathology.    
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Early Ischemic Stroke 

 The ML algorithm does not identify ischemic injury.  Not a single case of ischemic infarction was 

classified as IC+.  Acute, subacute, and age-indeterminate infarctions occurred in 27 patients with scans 

classified as IC-, and 5 patients assigned to the NP group. These results were expected because although 

ischemic stroke may produce severe neurological deficits, early ischemia may not create CT scan 

abnormalities that are detectable by even experienced neuroradiologists.  It is thus not surprising that the 

ML algorithm presented here did not infer an abnormality in early ischemia patients.  When imaging is 

needed to confirm ischemia, patients often undergo diffusion MRI.  Our algorithm would not change this.  

However, progress has been made to train an algorithm to detect early cerebral ischemia.  Our group has 

created such an algorithm and it is currently undergoing validation.  We foresee aggregating these 

algorithms to provide a more thorough assessment of patients who present with symptoms that may 

suggest a stroke.  Such a suite of algorithms would be especially valuable in settings where a 

neuroradiologist may not be immediately available.    

Potential clinical applications 

The head CT ML algorithm described here performs sufficiently well to serve as a radiology 

assistant. It is a tool that can help radiologists manage busy imaging centers such as the emergency 

department.  It might be extremely valuable when a radiologist is not available. Rapid evaluation of 

studies in urgent care environments is needed to properly manage patients, especially those with 

intracranial pathology. It is easily feasible for algorithm analyses to be available at the time that the scans 

appear on the image review station and be marked as IC+, IC- or NP.    Since IC+ scans have a >90% 

probability of intracranial hemorrhage or other urgent intracranial pathology as well as one-third of the 

NP scans, the radiologist’s attention can immediately focus on the most impactful scans.  The radiologist 
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would also know that the IC- scans are usually normal, but that small hemorrhages may be present and 

may thus focus her diagnostic skills to identify subtle bleeds.  

Other ML algorithms have been shown to reduce the turnaround time for the identification and 

interpretation of intracranial hemorrhage or other urgent intracranial abnormalities such as intracranial 

hemorrhage on head CTs.(19) However, many algorithms have the limitation of only prioritizing studies 

with a single intracranial abnormality such as hemorrhage, which can lead to inadvertent delays in the 

interpretation of studies with other intracranial abnormalities that require urgent treatment. For instance, 

in a clinical practice where an ICH detection algorithm is implemented for worklist prioritization, a study 

with a large non-hemorrhagic mass with herniation requiring immediate attention may be shifted to the 

lower end of the reading queue due to the absence of ICH. Our ML algorithm is more likely to expedite 

the identification of patients with more urgent needs for admission and intervention. This system also 

allows flexibility in additional types of clinical settings. For instance, practices that have a longer time 

interval between the study scan time to radiologist interpretation, such as outpatient imaging centers, may 

triage IC+ and NP cases to ensure more timely identification of an intracranial hemorrhage or other 

urgent intracranial abnormality, which could otherwise wait for some time on a radiology worklist before 

the images are seen by anyone.  This algorithm would be especially valuable in emergency and urgent 

care centers where a radiologist may not be available when the patient is scanned. 

 

Shortcomings and Future Directions 

The algorithm has shortcomings. Most importantly the algorithm was trained only on scans where 

hemorrhage was present or absent. Despite the absence of training using scans with other pathologies, the 

algorithm performance was surprisingly good but can be improved.  The obvious path forward is to 

retrain the algorithm using scans with other pathologies, which we are doing. The decision rules used to 

define classification (i.e., IC+ are those with a predicted probability of at least 0.9 on 3 slices) were based 
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on an empirical evaluation of a test data set but may not be optimal.  Other thresholds may improve the 

performance of the algorithm and we will investigate this further after retraining the algorithm.  

To reduce selection bias, 1000 consecutive cases that were processed by the algorithm were 

included in the study. While most of the studies were from the emergency department, a subset of cases 

included inpatient, intraoperative, and outpatient cases. However, these were also deemed urgent or 

emergent and were directed to the emergency neuroradiology service for interpretation. Finally, the 

algorithm was not used to assist in the real-time evaluation of imaging studies, so it remains uncertain 

how much of a clinical impact the algorithm would have in actual clinical practice.  

 

Conclusion: This ML algorithm that incorporates uncertainty can categorize head CT scans with or 

without intracranial hemorrhage or other urgent intracranial abnormalities with high predictive values and 

result in clinically relevant classification. It may help expedite patient triage and appropriate management 

in various clinical settings.  
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