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What is the key question? 

This review aims to provide a comprehensive assessment of all BPD prediction 

models developed to address the clinical uncertainty of which predictive model is 

sufficiently valid and generalisable for use in clinical practice and research. 

 

What is the bottom line? 

Published BPD prediction models are mostly outdated, single centre and lack 

external validation. 

 

Why read on? 

Laughon’s 2011 model is the most promising but more robust models, using 

contemporary data with external validation are needed to support better treatments. 

 

Total words: 3,452 words 

Total number of figures and tables: 3 figures 2 tables 
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Abstract 

Introduction 

Neonatal bronchopulmonary dysplasia (BPD) is associated with lifelong respiratory 

and neurological sequalae. Prediction models could identify infants at greatest risk of 

BPD and allow targeted preventative strategies. We performed a systematic review 

and meta-analysis with external validation of identified models.  

 

Methods  

Studies using predictors available before day 14 of life to predict BPD in very 

preterm infants were included. Two reviewers assessed 7,628 studies for eligibility. 

Meta-analysis of externally validated models was followed by validation using 62,864 

very preterm infants in England and Wales. 

 

Results 

64 studies using 53 prediction models were included totalling 274,407 infants (range 

32–156,587/study). 35 (55%) studies predated 2010; 39 (61%) were single-centre 

studies. 46 (87%) models were developed for the first week of life. Overall, 97% of 

studies had a high risk of bias, especially in the analysis domain. Internal (25%) and 

external (30%) validation were performed infrequently in the 44 model derivation 

studies. Following meta-analysis of 22 BPD and 11 BPD/death composite models, 

Laughon’s day one model was the most promising in predicting BPD and death with 

a fair C-statistic of 0.76 (95% CI 0.70–0.81) and good calibration. Six models were 
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externally validated in our cohort with a C-statistic between 0.70 to 0.90 but with poor 

calibration. 

 

Conclusion 

Few BPD prediction models were developed with contemporary populations, 

underwent external validation, or had calibration and impact analyses. To reduce the 

adverse impact of BPD, we need contemporary, validated, and dynamic prediction 

models to allow targeted preventative strategies. 
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Introduction 

Bronchopulmonary dysplasia (BPD), one of the most common and complex neonatal 

conditions1, continues to increase and affects approximately 28,000 and 18,000 

babies annually in Europe2 and the US3 respectively. Preterm infants with BPD have 

significant long-term respiratory and neurodevelopmental complications into 

adulthood4, including abnormal lung function5 and poor school performance4. 

 

There are a myriad of trials with at least 24 Cochrane reviews looking at BPD 

preventative interventions, including postnatal corticosteroids. However, their benefit 

in preventing BPD may not outweigh the significant side effects, including 

gastrointestinal perforation and neurodevelopmental impairment6 7. This 

demonstrates the complexity in BPD management in balancing the risk of significant 

long-term morbidity from BPD with that of exposure to potentially harmful 

treatments8.   

 

BPD prediction models aim to provide a personalised risk approach in identifying 

high-risk very preterm infants for timely preventative treatments. Despite numerous 

models being developed, none are used routinely in clinical practice. This review 

aims to provide a comprehensive assessment of all BPD prediction models 

developed to address the clinical uncertainty of which predictive model is sufficiently 

valid and generalisable for clinical and research use. Secondly, we will validate 

eligible models in a large national contemporaneous cohort of very preterm infants.  
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Material and Methods 

Systematic Review 

There was no deviation from the protocol published in PROSPERO9. Standard 

Cochrane Neonatal and Prognosis Methods Group methodology were used. 

 

Inclusion criteria 

Cohort, case-control, and randomised controlled trials used in developing or 

validating the prediction models were included. Very preterm infants born before 32 

weeks of gestational age (GA) and less than two weeks old at the time of BPD 

prediction were included. This ensures the clinical applicability and timeliness of the 

prediction models to support clinical decision making on preventative treatments. 

Studies that used non-universally accessible predictors such as pulmonary function 

tests, ultrasonography and biomarkers were excluded. BPD was defined as a 

respiratory support requirement at either 28 days of age or 36 weeks of corrected 

gestational age (CGA)10. The composite outcome of BPD and death before 

discharge was included as a secondary outcome.  

 

Search methods  

Standard Cochrane Neonatal11 and prognostic study search filters12 were used. 

"Bronchopulmonary dysplasia OR BPD OR chronic lung disease OR CLD" search 

terms were used to search the CENTRAL, Ovid MEDLINE, CINAHL, EMBASE and 

Scopus databases until 13/08/2021 (Appendix 1).  
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Data collection 

Two reviewers (TK, NB or KL) independently screened the title and abstract as well 

as full-text reports for inclusion before independently extracting data and assessing 

the risk of bias using the PROBAST tool13 (Appendix 2). These were done using a 

web-based tool CADIMA14. Any disagreement was resolved by discussion.  

 

Prediction model performance measure 

Discrimination (C-statistics), calibration (Observed:Expected ratio (O:E ratio)) and 

classification (net benefit analysis) measures were extracted alongside their 

uncertainties. 

 

Missing data 

Study authors were contacted to obtain any missing data. Failing that, missing 

performance measure were approximated using the methodology proposed by 

Debray et al.15 and R statistical package "metamisc"16.  

 

Meta-analysis 

Meta-analysis of the performance measures, using the random-effects approach and 

R statistical package "metafor"17, was performed for externally validated models. 

Sensitivity analysis was performed by excluding studies with an overall high risk of 

bias. We pre-specified that we would assess the source of heterogeneity15 and 

reporting deficiencies18 if more than ten studies were included. 
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Conclusions  

The adapted Grades of Recommendation, Assessment, Development and 

Evaluation (GRADE) framework19 was used to assess the certainty of the evidence.  

 

External Validation of Eligible Models 

Study design 

A population-based retrospective cohort study from the UK National Neonatal 

Research Database (NNRD)20 was used to externally validate BPD prediction 

models identified in the systematic review. We included all very preterm infants 

admitted to 185 neonatal units in England and Wales from January 2010 to 

December 2017. This encompasses over 90% of English neonatal units in 2010, with 

full coverage in England and Wales in 2012 and 2014 respectively. Infants with 

birthweight z score below -4 or above 4 were excluded as they were likely erroneous 

entries. Further details of the data items extracted are found within the National 

Neonatal Dataset[29] and Appendix 3. Ethical approval was granted by the Sheffield 

Research Ethics Committee (REC reference 19/YH/0115). 

 

Statistical analysis 

Data extraction and statistical analysis were done using STATA/SE version 16 

(StataCorp) and R version 4 (R Core Team). Summary statistics (median, 

interquartile range (IQR) and percentages) were used to describe the data. Missing 

data was imputed five times using Multivariate Imputation by Chained Equations21. 
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Model performances were assessed in three domains: discrimination (C-statistics), 

calibration (calibration plot and O:E ratio) and utility measure (decision curve 

analysis). 

 

Results 

Systematic review 

Literature search 

Of the 7,628 potentially eligible studies identified, 194 full-text articles were screened 

with 122 articles excluded as studies identified risk factors rather than developing 

prediction models (48%), predictors available after two weeks of age (24%), infants 

above 32 weeks GA at birth (17%), non-universally accessible predictors (10%) or 

wrong outcome measure reported (2%). Data were extracted from the 72 full-text 

articles (Appendix 4), encompassing 64 studies and 53 BPD prediction models 

(Figure 1). 

 

Description of included studies 

Of the 64 included studies, 31 were BPD prediction model development studies, 20 

were validation studies, and 13 were development and external validation studies. 

Fifty-five of the studies were cohort studies; five were randomised controlled trials; 

two used a combination of randomised control trials and cohort studies with one 

case-control study and another with unreported study design. Twenty-six studies 

were performed in North America, fourteen in Europe, thirteen in Asia, five in South 

America and Australia/New Zealand each and one study was carried out worldwide. 
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Twenty studies developed and validated BPD prediction models based on infants 

born before 2000, with a further 15 studies using infants born between 2000 to 2010. 

The 64 included studies recruited 274,407 (range 32 and 156,587) infants, with the 

majority (50 studies) recruited less than 1,000 infants. 39 (61%) studies were 

conducted in single centre. Forty-seven studies used BPD as their outcome, while 14 

studies used a BPD/death composite outcome, with three further studies reporting 

both BPD and BPD/death composite outcomes. Thirty-one studies defined BPD at 

36 weeks CGA, while 22 studies used the timepoint of 28 days old. Six studies 

defined BPD using both timepoints. Five studies did not report how BPD was defined 

(Table 1). 
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Study Country / 
Region 

Number 
of 

centres 

Data 
collection 

period 

Study 
design 

Number of 
infants 

Number of 
BPD 

Number 
of deaths Gestation Birthweight 

(grams) Outcome 

Development only            
Cohen 1983 USA 1 1978 – 1981 Cohort 69 42 NR NR NR BPD 28d 
Palta 1990 USA 5 NR Cohort 42 36 NR NR 1042 ± 267 BPD 30d 

Parker 1992 USA 1 
1976 – 1985 
(D)  1986 – 

1990 (V) 
Cohort 1500 (D)     

875 (V) 
252 (D)        
288 (V) 

328 (D)      
139 (V) 

29.6 ± 2.6 (D)     
28.7 ± 2.9 (V)  

1113 ± 261 (D)    
1066 ± 278 (V)  

BPD 28d & 
Death/BPD28d 

Corcoran 1993 UK 1 1980 – 1990 Cohort 412 140 115 29.7±2.8 1345 ± 445 BPD 28d 

Gortner 1996 Germany  1 1985 – 1992 Case – 
control 

152 76 48 29.2 ± 2.0 1139 ± 249 BPD 28d 

Ryan 1996 UK 1 1991 – 1992 
(D) 1993 (V) Cohort 204 (D)      

47 (V) 

BPD 28d      
85 (D)  
NR (V)        

BPD 36w      
51 (D) 
 NR (V) 

7 (D)        
NR (V) 

27.5 ± 1.5 (D)     
NR (V) 

1283 ± 327 (D)    
NR (V) 

BPD 28d & BPD 
36w 

Groves 2004 NZ 1 1998 – 2000 Cohort 290 60 54 27.9 ± 8.4 863 ± 626 Death/BPD 36w 

Cunha 2005 Brazil 1 2000 – 2002 Cohort 86 45 NR 29.0 ± 2.3  1029 ± 222 BPD 28d 
Choi 2006 Korea 1 2000 – 2005 Cohort 81 48 NR 28.1 ± 1.7 1051 ± 233 BPD 28d 

Henderson-Smart 
2006 

Australia / 
NZ 25 

1998 – 1999 
(D) 2000 – 
2001 (V) 

Cohort 
5599  (D)     
5854 (V) 

1235  (D)      
1475 (V) NR 

28.7 ± 2.2 (D)     
28.7 ± 2.2 (V)  

1233 ± 404 (D)    
1235 ± 408 (V) BPD 36w 

Ambalavanan 2008 USA 16 2001 – 2003 RCT 420 151 202 26.0 ± 2.0  839 ± 262 Death/BPD 36w 
Gottipati 2012 USA 1 2002 – 2007 Cohort 417 NR NR NR NR BPD (NR) 
Roth-Kleiner 2012 Switzerland 1 1998 – 2007 Cohort 936 NR NR NR NR BPD (NR) 
Chock 2014 USA 1 2006 – 2010 Cohort 187 73 12 27.6 ± 2.0 1005 ± 260 Death/BPD 36w 
Yang 2014 Korea 1 2003 – 2010 Cohort 261 66 0 30.6 ± 2.4 1549 ± 487 BPD 28d 
Ochab 2016 Poland 1 NR NR 109 46 NR NR NR BPD 28d 
Wai 2016 USA 25 2010 – 2013 RCT 495 283 53 25.2 ± 1.2 700 ± 165 Death/BPD 36w 
Kim 2017 Korea 1 2008 – 2014 Cohort 304 110 13 28.3  ± 2.3 1032 ± 276 Death/BPD 36w 
Beltempo 2018 Canada 30 2010 – 2015 Cohort 9240 2959 1277 26.7 925 ± 251 BPD 36w 

Boghossian 2018 
USA / 
Puerto 
Rico 

852 2006 – 2014 Cohort 156587 NR NR NR NR BPD 36w 

Hunt 2018 UK 1 2012 – 2017 Cohort 432 228 7 NR NR BPD 28d 
Sullivan 2018 USA 2 2009 – 2015 Cohort 778 186 48 28.0 ± 2.8 1029  ± 298 BPD 36w 
Fairchild 2019 USA 1 2009 – 2014 Cohort 502 172 15 27.3 ± 3.0 1023  ± 335 BPD 36w 
Sun 2019 China 1  2015 – 2018 Cohort 296 144 0 29.9 ± 1.6  1417 ± 328 BPD 28d 
Valenzuela–Stutman 
2019 

South 
America 15 2001 – 2015 Cohort 16407 2580 3938 29 ± 2.9 1099 ± 275 BPD 36w & 

Death/BPD 36w 
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Study Country / 
Region 

Number 
of 

centres 

Data 
collection 

period 

Study 
design 

Number of 
infants 

Number of 
BPD 

Number 
of deaths Gestation Birthweight 

(grams) Outcome 

Dylag 2020 USA 6 2011 – 2014 Cohort 704 

BPD 28d 
414           

BPD 36w 
276 

0 26.7  ± 1.4  922  ± 229 BPD 28d 

Shah 2020 USA 1 2006 – 2016 Cohort 730 343 139 27 ± 2 867 ± 198 Death/BPD 36w 
Sharma 2020 USA 1 2011 – 2017 Cohort 263 155 16 25.2  ± 1.4 805 ± 195 BPD 36w 
Vaid 2020 USA 1 2005 – 2018 Cohort 1832 NR NR NR NR BPD (NR) 

Shim 2021 Korea 66 
2013 – 2016 
(D)  2017 – 

2017 (V) 
Cohort 4600 (D)     

1740 (V) 

BPD 28d      
2583 (D)       
1003 (V)     
BPD 36w      
1370 (D)     
463 (V) 

1053 (D)     
280 (V) 

28.7 ± 2.6 (D)     
28.8 ± 2.6 (V)  

1119 ± 264 (D) 
1127 ± 260 (V)  

BPD 28d & BPD 
36w 

Ushida 2021 Japan  200 2006 – 2015 Cohort 31157 7504 1958 27.8 ± 2.5 973 ± 299 BPD 36w 
          
Development and validation           

Ryan 1994 UK  2 1988 – 1989 Cohort 166 (D)      
133 (V) 

47 (D)         
59 (V) NR 29 ± 2.6 (D)      

30 ± 3.1 (V)  
1043 ± 189 (D)    
1056 ± 177 (V) BPD 28d 

Rozycki 1996 USA 1 
1987 – 1989 
(D) 1990 – 
1991 (V) 

Cohort  

14d model   
116 (D) 61 

(V)          
8h model    
698 (D) 

14d model     
38 (D) 34 (V)   

8h model      
44 (D) 

NR 

14d model       
26.7 ± 2.0 (D) 

NR(V)           
8h mode        

29.7 ± 2.2 (D) 

14d model       
911 ± 227 (D) 

NR(V)           
8h model        

1352 ± 478 (D) 

BPD 28d 

Romagnoli 1998 Italy 1 
1989 – 1991 
(D) 1993 – 
1996 (V) 

Cohort  50  (D)       
149 (V) 

28 (D)         
82 (V) NR 28.4 ± 2.1 (D)     

28.7 ± 2.4 (V)  
893 ± 206 (D)     
931 ± 208 (V) BPD 28d 

Yoder 1999 USA 1 (D)      
3 (V) 

1990 – 1992 
(D) 1993 – 
1995 (V) 

Cohort 48 (D)       
110 (V) 

15 (D)         
33 (V) NR 27.0 ± 2.0 (D)     

26.5 ± 2.1 (V) 
897 ± 243 (D)     
905 ± 222 (V)  Death/BPD 36w 

Chien 2002 Canada 17 1996 – 1997 Cohort 4226 NR NR 29.0 ± 2.0 1390 ± 457 BPD 36w 

Kim 2005 Korea 1 
1997 – 1999 
(D) 2000 – 
2001 (V) 

Cohort  197 (D)      
107 (V) 

30 (D)         
9 (V) 

34 (D)       
11 (V) 

28.2 ± 1.9 (D)     
28.5 ± 1.9 (V) 

1043 ± 263 (D)   
1095 ± 270 (V) BPD 36w 

Bhering 2007 Brazil 1 
1998 – 2003 
(D) 2003 – 
2005 (V) 

Cohort 247 (D)      
61 (V) 

68 (D)         
NR (V) 

5 (D)        
NR (V) 

29.1 ± 2.4 (D)     
NR (V) 

1083 ± 237 (D)    
NR (V) BPD 28d 

May 2007 UK 1 
1995 – 1998 
(D) 2004 – 
2005 (V) 

RCT 
(D)      

Cohort 
(V) 

136 (D)      
75 (V) 

BPD 28d      
82 (D) 32 (V)   

BPD 36w      
38 (D) 22 (V) 

NR 27.7 ± 2.0 (D)     
29.3 ± 2.6 (V) 

1017 ± 246 (D)   
1245 ± 424 (V) 

BPD 28d & BPD 
36w 
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Study Country / 
Region 

Number 
of 

centres 

Data 
collection 

period 

Study 
design 

Number of 
infants 

Number of 
BPD 

Number 
of deaths Gestation Birthweight 

(grams) Outcome 

Laughon 2011 USA 17 2000 – 2004 RCT 3629 (D)     
1777 (V) 

1943 (D)       
1215 (V) 

468 (D)      
210 (V) 

26.7 ± 1.9 (D)     
25.7 ± 1.1 (V) 

897 ± 203 (D)     
830 ± 175 (V) Death/BPD 28d 

Gursoy 2014 Turkey 1 2006 – 2009 
(D) 2012 (V) Cohort 652 (D)      

172 (V) 
150 (D)        
54 (V) NR 29.4 ± 1.9 (D) 

28.9 ± 2.3 (V) 
1218 ± 220 (D)    
1102 ± 251 (V) BPD 28d 

Anand 2015 USA 2 NR Cohort 49 (D)       
46 (V) 

16 (D)         
NR (V) NR NR NR BPD 28d 

Mistry 2020 Australia NR NR Cohort NR NR NR NR NR BPD (NR) 
Baud 2021 France 21 2008 – 2014 RCT 523 125 107 26.4 ± 0.8 854 ± 170 Death/BPD 36w 
             
Validation only            

Fowlie 1998 UK 6 1988 – 1990 Cohort 398 
BPD 28d 75    
BPD 36w 31    81 29.8 ± 2.5 1065 ± 186 BPD 28d & BPD 

36w 

Hentschel 1998 Germany  1 1991 – 1993 Cohort 188 
BPD 28d 61    
BPD 36w 45    30 28.6  ± 0.3 1101 ± 281 BPD 28d & BPD 

36w 
Schroeder 1998 Germany  1 1985 – 1992 Cohort 103 59 NR 28.5 ± 1.9 1000 ± 153 BPD 28d 
Srisuparp 2003 USA 1 1996 – 1997 Cohort 138 47 24 27.6 ± 2.4 995 ± 247 BPD 36w 
Thowfique 2010 Singapore 1  2006 – 2007 Cohort 388 59 40 28.7 ± 3 1029 ± 251 BPD (NR) 
Carvalho 2011 Brazil 2 2002 – 2009 Cohort 86 20 18 28.3 ± 1.8 851 ± 233 BPD 36w 

Onland 2013 Worldwide 85 1986 – 2004  10 
RCTs 3229 1094* 582* 27.3 ± 3.8 989 ± 315 BPD36w & 

Death/BPD 36w 
Truog 2014 USA 1 2008 – 2010 Cohort 158 115 15 NR NR Death/BPD 36w 
Sullivan 2016 USA 1 2004 – 2014 Cohort 566 98 51 28.6 ± 2.9 NR BPD 36w 
Ozcan 2017 Turkey 1 2011 – 2012 Cohort 246 28 32 29.2 ± 2.15 1323 ± 331 BPD 36w 
Gulliver 2018 USA 1  2010 – 2016 Cohort 622 223 61 27.0 ± 1.9 963 ± 301 Death/BPD 36w 
Vasquez 2018 Colombia 2 2010 – 2016 Cohort 335 68 NR 31 ± 1.5 1328 ± 328 BPD 28d 

Jung 2019 Korea 1 2010 – 2014 Cohort 138 57 17 25.9 ± 1.3 780 ± 225 Death/sev BPD 
36w 

Lee 2019 Korea 67 2013 – 2016 Cohort 6938 1916 957 28.3 ± 2.4 1059 ± 283 BPD 36w 

Baker 2020 Australia 2 2016 – 2017 Cohort 187 
72 (sev 
BPD) 18 26.6 ± 1.5 872 ± 178 Death/sev BPD 

28d 
Bhattacharjee 2020 USA 1 2012 – 2013 Cohort 69 31 5 24.75 ± 1.5 722 ± 160 Sev BPD 36w 
Sotodate 2020 Japan  1 2010 – 2017 Cohort 171 74 19 25.5 ± 1.6 741.3 ± 208.2 BPD 36w 
Steocklin 2020 Australia 1 2017 – 2018 Cohort 32 NR NR 26.2 ± 1.0 NR BPD 36w 

Alonso 2021 Spain 1 2013 – 2020 Cohort 202 
BPD 28d 58    
BPD 36w 21 23 29.5 ± 2.1 1142 ± 256 BPD 28d & BPD 

36w 

Rysavy 2021 USA 

14 
(RCT)   

32 
(Cohort) 

1996 – 1997 
(RCT)  2016 – 
2018 (Cohort) 

RCT / 
Cohort 

807 (RCT)    
2370 

(Cohort) 

356 (RCT)     
1417 death / 
BPD (Cohort) 

114 (RCT)   
1417 

death / 
BPD 

(Cohort) 

25.8 ± 1.8 
(RCT)           

NR (Cohort) 

770 ± 136 
(RCT)           

NR (Cohort) 
Death/BPD 36w 
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Table 1 Characteristics of 64 included studies. NR = Not reported. D = Derivation. V = Validation. RCT = Randomised controlled trials. Sev= 

Severe. * Data obtained from the original study protocol (Cools et al 201022). 
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70% of the 44 derivation studies used logistic regression to develop the BPD 

prediction tool, with 11% used univariate analysis; 5% used clinical consensus as 

well as a combination of logistic regression and classification and tree analysis 

(CART) respectively; and 2% used CART, gradient boosting, Bayesian network and 

a combination of logistic regression and support vector machine, respectively. 

Complete case analysis was used in 41% of the included derivation studies, while 

handling of missing data was not reported in the remaining 59%. Internal and 

external validation was done in 25% and 30% of the studies, respectively. Validation 

was not done in the remaining 45% of studies. 75% of the studies assessed 

discrimination using C-statistics. In contrast, only 16% of the studies evaluated 

calibration using the goodness of fit (five studies), calibration plot (1 study) and O:E 

ratio (1 study). Of the 44 models, ten (23%), eight (18%) and four (9%) models 

provided a formula, score chart and nomogram respectively. Only two (5%) models 

provided an online calculator (Table 2).  

 

Of the 53 BPD prediction models identified, 19 used predictors available within 24 

hours of age, while 20 and six models relied on predictors available between two to 

seven days and above seven days of age respectively. Seven models used 

predictors available at various timepoints while the timepoints were unavailable for 

one model. The BPD prediction models considered a median of 14 predictors before 

using a median of five predictors in the final models. The five most used predictors 

were GA, birthweight, the fraction of inspired oxygen (FiO2), gender and invasive 

ventilation requirement, which were used in 33%–69% of models (Appendix 5). 
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Study 
Model Development Model Validation 

Approach  Continuous Missing value Predictor selection Presentation Approach Discrimination Calibration  

Cohen 1983 Clinical consensus Categorical Complete case Clinical consensus NR Same cohort NR None 
Palta 1990 Clinical consensus Kept linear NR Clinical consensus Formula Same cohort NR None 

Parker 1992 Regression Kept linear 
Complete case & 

Replace mean 
Univariate → stepwise Formula 

Bootstrapping / 

Temporal (year) 
NR O:E ratio 

Corcoran 1993 Regression Categorical Complete case Univariate → stepwise Formula Random split NR None 

Ryan 1994 Regression Kept linear NR Univariate → stepwise Formula New dataset ROC None 

Gortner 1996 Regression Kept linear NR Univariate → stepwise Formula Same cohort NR None 

Rozycki 1996 Regression Categorical Complete case Univariate → stepwise Nomogram New dataset NR None 

Ryan 1996 Regression Kept linear NR Univariate → stepwise Formula Temporal (year) ROC None 

Romagnoli 1998 Regression Categorical NR Univariate analysis Formula New dataset ROC None 

Yoder 1999 Regression Categorical NR Univariate analysis Score chart New dataset ROC None 

Chien 2002 Regression Kept linear Complete case NR NR Same cohort ROC Goodness of fit 

Groves 2004 Univariate analysis Kept linear NR Stepwise selection NR Same cohort ROC None 

Cunha 2005 Regression Categorical NR Univariate → stepwise Score chart Same cohort NR None 

Kim 2005 Regression Categorical Complete case Univariate → stepwise Score chart New dataset ROC None 

Choi 2006 Regression Categorical NR Univariate → stepwise Score chart Same cohort ROC None 

Henderson-Smart 2006 Regression Categorical Complete case Univariate → stepwise Formula Temporal (year) ROC Goodness of fit 

Bhering 2007 Regression Categorical Complete case Stepwise selection Score chart New dataset ROC Goodness of fit 

May 2007 Univariate analysis Kept linear NR No selection NR New dataset ROC None 

Ambalavanan 2008 Regression & CART Kept linear Complete case Stepwise selection Nomogram Cross-validation ROC None 

Laughon 2011 Regression Kept linear NR Univariate → stepwise Formula/Online tool New dataset ROC None 

Gottipati 2012 Regression Kept linear NR NR Score chart Same cohort NR None 

Roth-Kleiner 2012 Regression Categorical NR Stepwise selection Score chart Cross-validation ROC None 

Chock 2014 Regression & CART Kept linear NR NR Nomogram Same cohort ROC None 

Gursoy 2014 Regression Categorical NR Univariate → stepwise Score chart New dataset ROC Goodness of fit 

Yang 2014 Univariate analysis Kept linear NR No selection NR Same cohort ROC None 

Anand 2015 Bayesian Network Categorical NR NR NR New dataset ROC None 

Ochab 2016 Regression & SVM Kept linear NR Stepwise selection NR Cross-validation NR None 

Wai 2016 Regression Kept linear Complete case Univariate → stepwise NR Same cohort ROC None 

Kim 2017 Regression Kept linear NR Univariate analysis NR Same cohort NR None 

Beltempo 2018 Regression Categorical Complete case No selection NR Same cohort ROC None 

Boghossian 2018 Regression Categorical NR No selection NR Random split ROC None 

Hunt 2018 Univariate analysis Categorical NR No selection NR Same cohort ROC None 

Sullivan 2018 Regression Transformation NR No selection NR Bootstrapping  ROC None 

Fairchild 2019 Regression Kept linear NR Stepwise selection NR Same cohort ROC None 

Sun 2019 Univariate analysis Kept linear Complete case No selection NR Same cohort ROC None 

Valenzuela–Stutman 2019 Regression Kept linear NR Stepwise selection NR Random split ROC None 

Dylag 2020 Regression Kept linear Complete case Stepwise selection NR Random split ROC None 

Mistry 2020 Regression Kept linear NR NR NR Same cohort ROC None 

Shah 2020 Regression Kept linear Complete case A priori knowledge NR Same cohort ROC None 

Sharma 2020 CART Kept linear Complete case CART Nomogram Same cohort ROC None 

Vaid 2020 Gradient boosting NR Complete case NR NR Cross-validation ROC None 

Baud 2021 Regression Kept linear NR Stepwise selection Formula Same cohort ROC Goodness of fit 
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Shim 2021 Regression Kept linear Complete case Stepwise selection Formula Temporal (year) NR None 

Ushida 2021 Regression Kept linear Complete case Stepwise selection Formula/Online tool Random split ROC Calibration 

Table 2 Methodology used by the derivation studies. NR = Not reported. CART = Classification and regression tree. SVM = Support vector machine. 

ROC = receiver operating characteristics curve. O:E ratio = Observed:expected ratio. 
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Risk of Bias 

The majority of the studies were assessed to have a low risk of bias for the 

participants (84%), predictors (92%) and outcome (89%) domains. 60 (94%) studies 

were assessed to have a high risk of bias in the analysis domain based on the 

PROBAST tool13 due to various reasons including calibration not assessed (55 

studies (86%)); small sample size (37 studies (58%)); inappropriate handling of 

missing data (21 studies (33%)); lack of internal/external validation (9 studies (14%)); 

inappropriate selection approach for predictors (6 studies (9%)); and inappropriate 

handling of continuous predictors (2 studies (3%)). 

 

Twenty-one studies (33%) had high applicability concerns in the participant’s domain 

as they targeted a specific group of very preterm infants, usually infants at a higher 

risk of BPD (for example, ventilated infants only in 17 studies (27%)). Although 

universally accessible, predictors used in ten studies (16%) may not be routinely 

collected. Eight studies (13%) used BPD definitions that deviated against current 

consensus10 (Figure 2, Appendix 6).  

 

Discrimination 

The C-statistics of the included prediction models ranged from 0.52–0.95 in the 

external validation studies with better performance in models using predictors 

beyond seven days of age. Meta-analysis could only be done on 22 (50%) and 11 

(35%) models for BPD and BPD/death composite outcome respectively, as the 

remaining 22 and 20 models were only validated in one study. The C-statistics 

confidence interval (CI) were wide due to the small number of studies in each meta-
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analysis. The five models with CI above 0.5 for BPD from the meta-analysis were 

CRIB I23, CRIB II24 as well as Valenzuela–Stutman 201925 (Birth, Day 3 and 14 

models). Similarly, for the BPD/death composite, the five models with CI above 0.5 

from the meta-analysis were Laughon 201126 (Day 1, 3, 7 and 14 models) and 

Valenzuela–Stutman 201925 (Day 14 model) (Appendix 7). Meta-analysis for the 

Valenzuela–Stutman 2019 models25 could only be performed after including 

validation findings from our cohort study. 

 

Calibration 

The O:E ratio was reported in four external validation studies27-30 evaluating six 

prediction models (Rozycki 199627, Parker 199228 and Laughon 201126 (Day 1, 3, 7 

and 14 models)) with considerable variation in the O:E ratio among the included 

models. Meta-analysis of the O:E ratio could only be done on one model (Laughon 

201126 (Day 1)) with an O:E ratio of 0.96 (95% CI 0.85–0.99) (Appendix 8).  

 

The calibration plot was reported in three studies29-31, assessing six models (Palta 

199032, Sinkin 199033, Ryan 199634, Kim 200535 as well as Laughon 201126 (Day 1 

and 3 models) (Appendix 9).  

 

Classification 

No studies reported net benefit or decision curve analyses.  
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Heterogeneity and reporting deficiencies 

As there were less than ten validation studies in a meta-analysis, subgroup analysis 

and funnel plots were not performed. Sensitivity analysis was not performed as all 

studies had an overall high risk of bias except for two studies29 36. 

 

Summary of findings 

Due to the lack of validation studies, a conclusion could only be made for one model 

Laughon 201126. There was moderate quality of evidence that the discrimination and 

calibration performances of the Laughon 201126 model in predicting the BPD/death 

composite outcome using predictors at day one of age with C-statistic of 0.76 (95% 

CI 0.70–0.81) and O:E ratio of 0.96 (95% CI 0.85–0.99). The evidence was 

downgraded by one level due to study limitation whereby there was variation in the 

BPD definition used, as well as some studies recruiting high-risk infants only (such 

as invasively ventilated infants) to validate the model.  

 

External validation 

Patient cohort 

After exclusions (Appendix 10), 62,864 very preterm infants were included 

(Appendix 11). 17,775 (31%) infants developed BPD while 5,718 (9%) infants died 

before discharge from the neonatal unit.  

 

Model performance 
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We were able to externally validate six prediction models (Henderson-Smart 200637, 

Valenzuela–Stutman 201925 (Day1, 3 and 14 models), Shim 202138 and Ushida 

202139) in our retrospective cohort. The variables in the remaining models were not 

available in our cohort. The discrimination (C-statistics) and calibration (O:E ratio and 

calibration plot) (Figure 3) performances were variable among the models. Although 

the models displayed fair to good discrimination with C-statistics of 0.70–0.90, they 

had poor calibration as indicated by the calibration plot and O:E ratio between 0.39–

2.31. The Valenzuela–Stutman 2019 models25 appear to overestimate the predicted 

risk, whereas the remaining three models (Henderson-Smart 200637, Shim 202138 

and Ushida 202139) tend to underestimate the predicted risk. Of the six externally 

validated models, four models (Henderson-Smart 200637, Valenzuela–Stutman 

201925 (Day 14 models), Shim 202138 and Ushida 202139) indicated superior net 

benefit across a reasonable range of threshold probabilities of 30% to 60% in 

deciding postnatal corticosteroid treatment in the decision curve analysis (Appendix 

12). The threshold probabilities used were identified in a meta-regression of 20 

randomised controlled trials8. 

 

Discussion 

Our study is an update to the systematic review carried out nearly a decade ago31, 

with a further 27 prediction models identified since the last review. Our systematic 

review identified 64 studies that developed and/or validated 53 BPD prediction 

models with meta-analysis carried out on 22 models. Due to the lack of external 

validation studies, we could not identify a prediction model for routine clinical use. 

Further external validation, including assessment of both discrimination and 
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calibration performances in a population similar to that whereby the model will be 

used, is needed before any model could be adopted in clinical practice. However, the 

most promising prediction model that could be considered based on our meta-

analysis was Laughon 201126 in predicting the BPD/death composite outcome using 

predictors at day one of age. Further re-calibration of the model based on the local 

population of interest, with re-assessment of its performance in subsequent external 

validation studies (if re-calibrated), may be needed before being used in clinical 

practice.  

 

We have also externally validated six prediction models25 37-39 in our retrospective 

population-based cohort study. Although they have fair to good discrimination, they 

were not well calibrated in our cohort. To be useful, prediction tools need to be 

generalizable to current datasets highlighting the importance of external validation.  

 

Implications for clinical practice and research 

The implementation of BPD prediction models in clinical practice is limited by the 

lack of external validation of the published models. Less than a third of the identified 

prediction models were externally validated. Furthermore, half of the externally 

validated models were only validated by one study. This potentially limits the 

generalisability of the model performance to other infant populations.  

 

Sample size 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2022. ; https://doi.org/10.1101/2022.07.19.22277664doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22277664
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

Most external validation studies had small sample sizes or were restricted to specific 

high-risk infant populations (for example, ventilated infants only). Furthermore, 61% 

of studies were single centre only. This potentially limits the generalisability of the 

models. It is recommended that prediction model development studies should have 

at least 20 infants with the outcome of interest for each candidate predictor, while 

validation studies should have at least 100 infants with the outcome13.  

 

Missing values 

The majority of the studies did not report missing data or excluded infants with 

missing data. A clear description of the handling of missing data should be provided. 

Complete case analysis should be avoided if possible13. 

 

Variation in prediction timepoint and outcome definition 

Nearly three-quarters of the included prediction models predicted BPD, the 

remainder predicting the BPD/death composite outcome. As death and BPD are 

semi-competitive risks, infants who died before 36 weeks CGA may have a higher 

risk of developing BPD if they had survived until 36 weeks CGA. Hence, the potential 

predictive information of death should be accounted for in BPD prediction modelling. 

The included models also made predictions at a variety of timepoints. Therefore, a 

meta-analysis of the models was difficult and may limit the clinical settings in which 

the model can be used. It may be sensible for the performance of future prediction 

models to be externally validated for BPD as well as the BPD/death composite 

outcome at three prediction timepoints of one, seven days and 14 days of age. 
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These timepoints would allow timely preventative treatment or research recruitment 

to be targeted to high-risk infants.   

 

Predictors 

The predictors used in the model should be easily assessed routinely during daily 

clinical practice and not dependable on clinical practice, such as weight loss and 

fluid intake. Future prediction models should also be dynamic, accounting for the 

changing status of the infant over time and clinical trajectory.  

 

Predictor selection based on traditional stepwise approach or univariable analysis 

should be avoided, especially in small datasets. Instead, predictor selection based 

on a priori knowledge or statistical approach not based on prior statistical tests 

between predictor and outcome (e.g. principal component analysis) may be better 

methods13. 

 

Model performance 

Both discrimination (C-statistics) and calibration (calibration plot or O:E ratio) 

performances of the prediction models need to be assessed during external 

validation. A model with fair to good discrimination may be poorly calibrated31. 

Hosmer-Lemeshow goodness-of-fit test alone without other calibration measures 

was found not to be a suitable method to assess calibration as it is sensitive to 

sample size13. The test is often non-significant (i.e. good calibration) in small 

datasets while usually significant (i.e. poor calibration) in large datasets. Since the 
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recommendation to assess calibration in the last review nearly a decade ago31, only 

two further studies29 30 assessed calibration using calibration plots or O:E ratios.  

 

An impact analysis was not carried out in any of the identified prediction models to 

evaluate if the prediction model improved patient outcomes. Decision curve 

analysis40 may be used as an initial screening method to assess the net benefit of 

using the prediction model before carrying out further impact analysis. Decision 

curve analysis can be used on the external validation dataset without further data 

collection.  

 

Practicality of model  

Prediction models developed should be practical and easy to use at the bedside. 

Only two published models26 39 provided online calculators to allow easy access risk 

assessment. 

 

Changes in clinical practice and rising BPD rates, potentially makes previously 

published models outdated affecting its predictive ability. Over half of the published 

models used data from babies born more than a decade ago. Hence, new models 

should consider a built-in feature to allow it to learn from future babies and adapt its 

performance to new practices.    

 

Strength 
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The systematic review was carried out based on standard Cochrane methodologies 

as well as recent recommendations for meta-analysis of prediction models15 and risk 

of bias assessment13. There were no language nor date restrictions. The review is 

anticipated to guide clinicians and researchers in not only developing and/or 

validating BPD prediction models in very premature infants based on 

recommendations of the review, but also in identifying the most promising prediction 

model to be externally validated in their local population.  

 

The use of recent routinely collected clinical information in our external validation 

study, coupled with its large population coverage, provides an accurate 

representation of the current neonatal practice in England and Wales. This large 

cohort of nearly 63,000 very preterm infants, including infants receiving both invasive 

and non-invasive ventilation, forms an ideal cohort to externally validate and assess 

BPD prediction models.  

 

Limitation 

Only six out of the 53 identified prediction models could be validated in our cohort. 

Hence, the performance of the remaining models in our cohort was unclear. 

However, it is crucial that future models should only use predictors that are easily 

assessed in clinical practice to ensure their successful clinical implementation.  

 

Conclusion 
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As preterm infant survival increases, more survivors are diagnosed with BPD along 

with the long-term respiratory and neurological consequences. Despite almost a 

doubling in the number of BPD prediction models published over the last decade, 

most identified in our systemic review are not used in routine clinical practice. This is 

due to a lack of good quality external validation studies assessing their performance 

on the local population of interest. Furthermore, calibration of the models is often not 

appropriately evaluated in most of the models. Models should be externally validated 

with a subsequent impact analysis before being adopted in clinical practice. Decision 

curve analysis may be a good screening tool to assess the net benefit of the tool 

prior to impact analysis.  

 

Our systematic review has also made recommendations for future BPD prediction 

models including consideration of additional predictors, a more dynamic model 

accounting for changes in the infant's condition over time and their trajectory, and the 

ability to adapt performance with evolving clinical practice. A good quality, well-

validated BPD prediction tool is needed to provide personalised preventative 

treatment and allow targeted trial recruitment to reduce the long-term impact in this 

vulnerable and expanding population.  
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Figure 1: Flow diagram of literature search and included studies.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2022. ; https://doi.org/10.1101/2022.07.19.22277664doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22277664
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

 

Figure 2: Summary of risk of bias assessments for included studies based on the 

PROBAST tool13.   
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Figure 3: Discrimination (C-statistics) and calibration (O:E ratio and calibration plots) 

characteristics of prediction models externally validated using a retrospective cohort 

for (A) bronchopulmonary dysplasia (BPD) (n=57,572) and (B) composite BPD and 

death (n=62,864).   
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