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WMH White matter hyperintensities 106 

Abstract  107 

Background 108 

Posterior white matter hyperintensities (WMH) in subjects across the Alzheimer's disease 109 

(AD) spectrum with minimal vascular pathology suggests that amyloid pathology—not just 110 

arterial hypertension—impacts WMH, adversely influencing cognition. Here we seek to 111 

determine the effect of both hypertension and Aβ positivity on WMH, and their impact on 112 

cognition. 113 

Methods 114 

We analysed data from subjects with a low vascular profile and normal cognition (NC), 115 

subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled 116 

in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and 117 

Dementia Study (n=375, median age 70.2 [IQR 66.0-74.4] years; 176 female; NC/SCD/MCI 118 

127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on 119 

baseline memory and executive function—derived from multiple neuropsychological tests 120 

using confirmatory factor analysis—, baseline preclinical Alzheimer’s cognitive composite 5 121 

(PACC5) scores, and changes in PACC5 scores over course of three years (ΔPACC5). 122 

Results 123 

Subjects with hypertension or Aβ positivity presented the largest WMH volumes 124 

(pFDR<0.05), with spatial overlap in the frontal (hypertension: 0.42±0.17; Aβ: 0.46±0.18), 125 

occipital (hypertension: 0.50±0.16; Aβ: 0.50±0.16), parietal lobes (hypertension: 0.57±0.18; 126 

Aβ: 0.56±0.20), corona radiata (hypertension: 0.45±0.17; Aβ: 0.40±0.13), optic radiation 127 
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(hypertension: 0.39±0.18; Aβ: 0.74±0.19), and splenium of the corpus callosum 128 

(hypertension: 0.36±0.12; Aβ: 0.28±0.12). Hypertension, Aβ positivity, and WMH were 129 

connected to cognition. First, WMH coincided with worse cognitive performance and 130 

outcomes (pFDR<0.05), regardless of Aβ and hypertension. Accelerated cognitive decline was 131 

associated with WMH in the genu of the corpus callosum and segments of the forceps major 132 

and inferior fronto-occipital longitudinal fasciculus (pFDR<0.05). Second, hypertension was 133 

indirectly linked to cognitive performance at baseline and over time via splenial WMH 134 

(indirect-only effect; memory: -0.05±0.02, pFDR=0.029; executive: -0.04±0.02, pFDR=0.067; 135 

PACC5: -0.05±0.02, pFDR=0.030; ΔPACC5: -0.09±0.03, pFDR=0.043). Third, the relationship 136 

between Aβ positivity and baseline and longitudinal cognitive performance was independent 137 

of WMH burden. 138 

Conclusions 139 

Posterior white matter is susceptible to hypertension and Aβ accumulation and it mediates the 140 

association between hypertension and cognitive dysfunction. Posterior WMH could be a 141 

promising target to tackle the downstream damage related to the potentially interacting and 142 

potentiating effects of the two pathologies. 143 

Trial Registration 144 

German Clinical Trials Register (DRKS00007966, 04/05/2015) 145 

 146 

Keywords: white matter hyperintensities; vascular risk; Alzheimer’s disease; cognitive 147 

performance; MRI 148 
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Background 149 

The term "cerebral white matter hyperintensities" (WMH) describes dynamic and diffuse 150 

microstructural alterations in both periventricular and deep white matter, which appear 151 

hypodense on computed tomography and hyperintense on T2-weighted magnetic resonance 152 

imaging (MRI) and coincide with demyelination, axon loss, and gliosis [1,2]. WMH are 153 

common—especially but not exclusively in old age—and relate to a large spectrum of 154 

clinical symptoms, including apathy, fatigue, delirium, depression, progressive cognitive 155 

impairment, physical function disturbances, and increased risk of dementia and stroke [2,3]. 156 

Alterations to the functioning of cerebral micro-vessels—also known as cerebral small vessel 157 

disease (CSVD)—caused, for instance, by long-term exposure to cardiovascular risk factors 158 

(hypertension particularly) have been assumed to drive WMH formation [4–6]. Nonetheless, 159 

recent studies demonstrating elevated global and posterior WMH in patients along the 160 

Alzheimer's disease (AD) spectrum with minimal vascular pathology (for review see [1,7–9]) 161 

call into question the assumption that any "AD-related" WMH solely reflect a vascular 162 

contribution. This viewpoint has also been challenged by studies reporting a more "AD-like" 163 

WMH pattern in Aβ positive subjective cognitive decline (SCD), mild cognitive impairment 164 

(MCI) or AD. The "AD-like" pattern is roughly confined to deep and periventricular posterior 165 

regions comprising the (parieto-)occipital lobe, corona radiata, optic (thalamic) radiation, or 166 

the corpus callosum (especially splenium) and presents neuropathologically with underlying 167 

gliosis, and axonal and myelin loss, but minimal vascular pathology—likely occurring 168 

secondary to cortical neurodegeneration [7–10]. Further studies demonstrate frontal or 169 

temporoparietal WMH dominance in AD as well and others report mixed results on the 170 

relationship between posterior WMH and AD pathology [11–14]. "WMH of presumed 171 
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vascular origin" are, however, usually depicted in deep and periventricular frontal areas, 172 

suggesting some spatial WMH heterogeneity in hypertension compared to AD [8,15]. 173 

Here we use region- and voxel-based lesion analysis to determine the effect of both 174 

hypertension and AD pathology, i.e. β-amyloid (Aβ) positivity, on WMH as well as their 175 

interacting impact on cognition. For that purpose, we study WMH of non-demented 176 

participants of a large multicentre cohort with available cerebrospinal fluid (CSF) AD 177 

biomarkers, history of hypertension, and cross-sectional as well as longitudinal 178 

neuropsychological tests. 179 

Methods  180 

Study design 181 

We used baseline MRI, CSF AD biomarkers, cognitive performance scores, medical records 182 

and longitudinal cognitive performance scores from the DELCODE (DZNE Longitudinal 183 

Cognitive Impairment and Dementia Study) cohort, an observational multicentre study from 184 

the German Centre for Neurodegenerative Diseases (DZNE) that focuses on the multimodal 185 

assessment of preclinical and clinical AD stages [16]. All participants received an extensive 186 

assessment at the local study site prior to joining DELCODE, which included medical 187 

history, psychiatric and neurological examination, neuropsychological testing, blood 188 

laboratory work-up, and routine MRI in accordance with local standards. All memory clinics 189 

used the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) 190 

neuropsychological test battery [17] to assess cognitive function. We focused on non-191 

complaining healthy controls with normal cognition (NC) and participants with SCD and 192 
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MCI and excluded patients with dementia due to AD to enrich our sample by variance due to 193 

vascular disease and Aβ pathology. 194 

The presence of SCD and amnestic MCI was diagnosed using the existing research criteria 195 

for SCD [18,19] and MCI [20], respectively. Participants were diagnosed with SCD if they 196 

reported subjective cognitive decline or memory concerns, as expressed to the physician of 197 

the memory centre, and had a test performance better than -1.5 standard deviations (SD) 198 

below the age, sex, and education-adjusted normal performance on all subtests of the 199 

CERAD battery. The MCI group consisted of participants with amnestic MCI, as defined by 200 

age, sex, and education-adjusted performance below -1.5 SD on the delayed recall trial of the 201 

CERAD word-list episodic memory tests. 202 

The NC group was recruited through local newspaper advertisements. Individuals who 203 

responded to the advertisement were screened by telephone with regard to SCD. The control 204 

group had to achieve unimpaired cognitive performance according to the same definition as 205 

the SCD group. 206 

All participants entered DELCODE based on either their clinical diagnosis derived from the 207 

clinical workup or their identification as a control subject according to the procedures 208 

outlined. Additional inclusion criteria for all groups were age�≥�60 years, fluent German 209 

language skills, capacity to provide informed consent, and presence of a study partner. The 210 

main exclusion criteria for all groups were conditions clearly interfering with participation in 211 

the study or the study procedures, including significant sensory impairment. The following 212 

medical conditions were considered exclusion criteria: current major depressive episode, 213 

major psychiatric disorders either at baseline or in the past (e.g., psychotic disorder, bipolar 214 

disorder, substance abuse), neurodegenerative disorder other than AD, vascular dementia, 215 

history of stroke with residual clinical symptoms, history of malignant disease, severe or 216 
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unstable medical conditions, and clinically significant laboratory abnormalities in vitamin 217 

B12. Prohibited drugs included chronic use of psychoactive compounds with sedative or 218 

anticholinergic effects, use of anti-dementia agents in SCD, amnestic MCI, and control 219 

subjects, and investigational drugs for the treatment of dementia or cognitive impairment one 220 

month before entry and throughout the duration of the study. 221 

All participants gave written informed consent before inclusion in the study. DELCODE is 222 

retrospectively registered at the German Clinical Trials Register (DRKS00007966, 223 

04/05/2015) and was approved by ethical committees and local review boards. 224 

Hypertension 225 

Medical records were retrospectively screened for cardiovascular risk factors at the time of 226 

MRI. Patients diagnosed before to have primary or secondary arterial hypertension were 227 

considered to suffer from arterial hypertension (1: hypertensive; 0: normotensive). Single 228 

blood pressure measurements were not taken into account since repeated, long-term or at-229 

home measurements would be required for the final diagnosis [21]. 230 

Cognitive performance 231 

All participants underwent a rich neuropsychological assessment, comprising the Mini-232 

Mental State Examination (MMSE), Alzheimer’s Disease Assessment Scale–Cognitive 13-233 

item subscale (ADAS-Cog 13), the Free and Cued Selective Reminding Test (FCRST; 234 

including a serial subtraction task, Wechsler Memory Scale revised version (WMS-R), 235 

Logical Memory [Story A] and Digit Span), two semantic fluency tasks (animals and 236 

groceries), the Boston Naming Test (15-item short version analogue to the CERAD battery, 237 

supplemented by five infrequent items from the long version), the oral form of the Symbol-238 

Digit-Modalities Test (including a subsequent free recall of symbols and symbol-digit 239 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2023. ; https://doi.org/10.1101/2022.07.19.22277546doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22277546
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

pairings), Trail Making Test Parts A and B, Clock Drawing and Clock Copying, a recall task 240 

of previously copied figures (as in the CERAD test battery), the Face Name Associative 241 

Recognition Test, and a Flanker task to assess executive control of attention. We focused on 242 

memory and executive function at baseline derived from these neuropsychological tests using 243 

confirmatory factor analysis to reduce the influence of test-specific effects and measurement 244 

errors [22]. 245 

We also leveraged the Preclinical Alzheimer’s Disease Cognitive Composite (PACC5) [23], 246 

which provides a single outcome measure reflective of episodic memory, timed executive 247 

function, and global cognition; domains that have been found sensitive to amyloid pathology. 248 

The PACC5 score was calculated as the mean of an individual’s z-standardised performance 249 

in the FCSRT Free Recall and Total Recall, the MMSE, the WMS-R Logical Memory Story 250 

A Delayed Recall, the Symbol-Digit-Modalities Test, and the sum of the two category 251 

fluency tasks and used the baseline mean and SD values of the cognitively unimpaired group 252 

of our sample to derive the subtest z-scores.  253 

We selected subjects with available PACC5 scores over three annual follow-ups for further 254 

analysis. We estimated rates of change in these PACC5 scores over time using a linear mixed 255 

effect model (ΔPACC5 from hereon). We expressed it as follows: 256 

����5��  �  ���� 	 
�� ��  	  ��� , �1� 

where ����5�� is the PACC5 scores of subject � � �1, �� at visit � � �1, ��; ��� � ���� a 257 

matrix of the � predictor variables; � � �� a vector of fixed-effects regression coefficients; 258 


�� � ����  a design matrix for the � random effects; �� � �� a vector of random effects; and 259 

���  the within-subject measurement errors. The fixed effects structure include clinical group 260 

structure measured at baseline and their corresponding interaction with time (���).The fixed 261 

effects include age, sex and education taken at baseline. 262 
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Structural MRI 263 

Structural MRI scans were acquired at nine German DZNE sites on Siemens MR scanners 264 

(including three TIM Trio, four Verio, one Skyra, and one Prisma system). We used T1-265 

weighted MPRAGE images (3D GRAPPA PAT 2, 1 mm3 isotropic, 256 × 256, 192 sagittal 266 

slices, repetition time 2500 ms, echo time 4.33 ms, inversion time 1100 ms, flip angle 7°, ~5 267 

min acquisition time) and T2-weighted 3D FLAIR images (GRAPPA PAT factor 2, 1 mm3 268 

isotropic, 256 × 256, 192 sagittal slices, repetition time 5000 ms, echo time 394 ms, inversion 269 

time 1800 ms, ~7 min acquisition time). Standard operating procedures, quality assurance 270 

and assessment were provided and supervised by the DZNE imaging network (iNET, 271 

Magdeburg) as described in [16]. We computed the mean background intensity as a surrogate 272 

measure of image quality and motion artefacts [24,25] and adjusted statistical models for it, 273 

as the quality of the scans determine also segmentation performance [26–28]. 274 

Biomarker characterisation 275 

Trained study assistants carried out lumbar punctures for 49% of all DELCODE participants. 276 

CSF samples were centrifuged, aliquoted and stored at -80°C for retests. Biomarkers known 277 

to mirror AD pathology (CSF Aβ42 and Aβ40) were determined by commercially available 278 

kits (V-PLEX Aβ Peptide Panel 1 (6E10) Kit (K15200E)). Each participant was classified as 279 

normal (-) or abnormal (+) with regard to amyloid levels based on the Aβ42/40 ratio, 280 

independently of their phosphorylated Tau (pTau) status, in line with the ATN classification 281 

system. Cut-offs (Aβ negative: Aβ42/40 >0.08; Aβ positive: Aβ42/40 ≤ 0.08) were calculated 282 

from DELCODE using the Gaussian mixture modelling in the R-package flexmix (v2.3-15) 283 

(for details see [16,29]).  284 
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WMH segmentation and spatial processing 285 

We processed baseline T1-weighted and FLAIR scans as follows. We performed bias field 286 

inhomogeneity correction, skull stripping, and segmentation using the Multi-Brain (MB) 287 

toolbox in statistical parametric mapping (SPM) [30]. We segmented grey matter (GM), 288 

white matter (WM), and CSF from T1-weighted scans with MB and identified WMH 289 

probability maps from FLAIR scans using the Lesion Prediction Algorithm in the Lesion 290 

Segmentation Toolbox [31]. We then used MB for normalising tissue classes (and WMH 291 

maps) to a DELCODE-specific MB template. We adjusted for local volume changes 292 

introduced by the normalisation in GM and WMH probability maps by modulation with 293 

Jacobian determinants [30,32]. Finally, we smoothed WMH maps with Gaussian kernels (6 294 

mm full width at half maximum). Processing results of all steps were carefully checked 295 

visually and statistically using covariance-based tools provided in Computational Anatomy 296 

Toolbox 12 (CAT12) [33].  297 

ROI-based processing 298 

We extracted WMH volume from 12 regions of interest (ROI) in cerebral WM, as described 299 

in detail in a previous study [11]. In brief, we created ROIs in accordance with the STRIVE 300 

criteria [34] and included the four lobes of the brain, four major WM tracks and three 301 

sections of the corpus callosum and a global cerebral WM mask. We calculated WMH 302 

volumes for each ROI and adjusted for total intracranial volume (TICV). All computations 303 

were conducted in the template space. 304 

A schematic overview both processing and analysis methods is illustrated in Figure S1. 305 
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Statistical analyses 306 

Relationship between hypertension and Aβ positivity 307 

We tested for associations between hypertension and Aβ positivity given their potential 308 

collinearity [35–38] using the Pearson's Chi-squared test with Yates' continuity correction in 309 

the R-package stats (v3.6.2). 310 

Effects of hypertension and Aβ positivity on WMH 311 

We hypothesised that a history of hypertension and an abnormal build-up of Aβ relate 312 

positively to the volume of WMH, but that both conditions display distinct spatial effects: 313 

hypertension on deep and periventricular frontal regions and Aβ on deep and periventricular 314 

posterior regions, as discussed in the literature [1,4–9]. We used a 2×2 ANCOVA model in 315 

CAT12 to examine the relationship between WMH segmentation maps (outcome) and 316 

hypertension and Aβ (factors) at a voxel level. Similarly, to probe the same relationship at an 317 

ROI level, we built 2×2 ANCOVA models in R (stats, v3.6.2), one for each region of interest 318 

separately. We controlled for covariates and confounders (see ‘Covariates, confounders, and 319 

data transformation’ below).  320 

Effects of WMH on cognitive performance 321 

Our hypothesis was that cognitive performance declined and rates of change in cognition 322 

increased as voxel-wise and regional WMH increased, in agreement with previous findings 323 

[2,3]. For voxel-based analysis, we used multiple linear regression in CAT12 with WMH 324 

segmentation maps as the dependent variable and cognitive performance as the independent 325 

variable. Likewise, for each region of interest, we also used multiple linear regression in R 326 

(stats, v3.6.2) to probe the relationship between regional WMH volume and cognition. We 327 

created different models with memory, executive function, PACC5, and ΔPACC5 as 328 
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dependent variables. Note that, for studying the effect of baseline WMH on change in 329 

cognition, we leveraged summary statistics (ΔPACC5) instead of using a linear mixed effect 330 

model to keep the mass univariate analysis efficient [39] and both the voxel- and region-wise 331 

analyses consistent. We controlled for hypertension and Aβ positivity in addition to 332 

covariates and confounders (see ‘Covariates, confounders, and data transformation’ below). 333 

Mediation models 334 

Assuming that long-term exposure to hypertension and Aβ build-up has a negative effect on 335 

the integrity of the white matter and that its damage—depicted in the form of regional 336 

WMH—impacts cognition negatively, we hypothesise that there is an indirect effect of 337 

hypertension and Aβ on cognition that is mediated by WMH volume, in line with theoretical 338 

considerations [5,6,40,41] (Figure 1). We used the R-package lavaan (v0.6-11) and followed 339 

the steps for mediation analysis suggested by Hair et al. [42] Significance was assessed using 340 

95% confidence intervals generated by bias-corrected bootstrap with 1000 replicates. 341 

Covariates, confounders, and data transformation 342 

We adjusted all models for covariates (age, sex, years of education) and confounders (TICV) 343 

and mean background intensity to reduce biases brought in by correlated regressors. To 344 

account for collinearity between TICV and sex, we chose "overall mean" as "centring" for 345 

TICV and leveraged global scaling for this confounder. We refrained from adjusting our 346 

analyses for clinical groups to avoid collinearity issues with Aβ positivity (namely, Aβ 347 

positivity was more frequent in MCI vs NC and SCD). We log-transformed regional WMH 348 

volumes to account for skewness. 349 
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Explicit mask 350 

We used an explicit mask to constrain the analysis to voxels in which data for at least five 351 

patients were available. 352 

Correction for multiple comparisons 353 

We adjusted p-values for multiple comparisons using the false discovery rates (FDR) 354 

approach to deal with the problem of multiple comparisons.[43] 355 

Results 356 

Sample description 357 

We included baseline data of 375 subjects out of 1079 recruited for DELCODE after quality 358 

control and assessing the availability of CSF biomarkers and MRI (Figure S2; median age 359 

70.0 [IQR 66.0-74.0] years, 46.9% female, median years of education 13 [IQR 12-17]; 360 

European origins). ΔPACC5 was only available for a subset (n=226/375). Demographics and 361 

global WMH volumes stratified by hypertension and Aβ positivity are summarised in Table 362 

1. We found no significant association between arterial hypertension and Aβ positivity 363 

(Χ2=2.1302, p=0.1444). 364 

Table 1 Demographics and WMH volume, stratified by hypertension diagnosis and Aβ positivity (n=375)a 365 

Group 
Subjects 
n (%) 

Age in years 
Median [IQR] 

Female 
n (%) 

Education in years 
Median [IQR] 

WMH volume in mlb 
Median [IQR] 

Hypertension 202 (53.9) 72 [67, 75] 89 (23.7) 13 [12, 17] 1.87 [0.83, 5.83] 

Normotension 173 (46.1) 69 [64, 72] 87 (23.2) 14 [13, 17] 1.19 [0.45, 2.78] 

Aβ positive 132 (35.2) 72 [68, 76] 55 (14.7) 13 [12, 17] 2.39 [1.11, 6.32] 

Aβ negative 243 (64.8) 68 [65, 73] 121 (32.2) 13 [13, 17] 1.16 [0.55, 2.96] 
 366 
aGlobal WMH volumes are higher subjects with hypertension vs normotension (W=13744, p<0.001) and Aβ positive vs negative 367 
(W=11851, p<0.001); age differences between groups explain, to a certain extent, these outcomes (hypertension vs normotension: 368 
W=13014, p<0.001; Aβ positive vs Aβ negative: W=10186, p<0.001) 369 
bUnadjusted WMH volumes in ml 370 
n sample size 371 
IQR interquartile range 372 
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WMH are associated with both arterial hypertension and Aβ 373 

positivity 374 

We initially investigated WMH in relation to hypertension and Aβ positivity. We observed 375 

that the global volume of WMH was a fourth greater in subjects with either a history of 376 

hypertension vs normotension (26% [95%-CI 5%, 52%]) or a positive vs negative Aβ status 377 

(25% [95%-CI 3%, 52%]) (Table 2). Regional variations in the frontal, parietal, and 378 

occipital—not temporal—lobes contributed to this outcome; regression coefficients for both 379 

hypertension and Aβ positivity were comparable in these three regions (Table 2). In posterior 380 

regions of the brain, we found that the relationship between WMH and hypertension was 381 

clearer than that between WMH and Aβ positivity in the splenium of the corpus callosum 382 

(Figure 2 and Table 2); the opposite was true in the optic radiation (Figure 2 and Table 2; 383 

peak: between forceps major and inferior fronto-occipital fasciculus). 384 

Table 2. Subjects with hypertension and Aβ positivity present the largest frontal, parietal, and occipital WMH volumesb 385 

 WMH volumea 
Hypertension Aβ positivity 

B (SE) pFDR B (SE) pFDR 

 Global 0.23 (0.09) 0.030 0.22 (0.10) 0.044 

Lobes 

Frontal 0.42 (0.17) 0.021 0.46 (0.18) 0.021 

Temporal 0.14 (0.14) 0.447 0.22 (0.15) 0.268 

Occipital 0.50 (0.16) 0.003 0.50 (0.16) 0.004 

Parietal 0.57 (0.18) 0.005 0.56 (0.20) 0.008 

Tracts 

Corona radiata 0.45 (0.17) 0.020 0.40 (0.13) 0.046 

External capsule 0.21 (0.13) 0.171 0.27 (0.13) 0.096 

Internal capsule 0.22 (0.14) 0.209 0.07 (0.15) 0.741 

Optic radiation 0.39 (0.18) 0.041 0.74 (0.19) 0.001 

Corpus callosum 

Genu 0.23 (0.11) 0.087 0.07 (0.12) 0.641 

Body 0.21 (0.10) 0.053 0.15 (0.10) 0.212 

Splenium 0.36 (0.12) 0.005 0.28 (0.12) 0.038 
 386 
aWe log-transformed WMH volumes to deal with skewness 387 
bWe built multiple linear regression models to examine regional WMH volume (outcome) in relation to hypertension and Aβ positivity 388 
(factors)—one for each region of interest separately. We controlled for age, sex, education, mean background intensity, and total intracranial 389 
volume. We print pFDR < 0.05 in bold. 390 
pFDR p-values after adjusting for multiple comparisons using FDR 391 
B regression coefficient 392 
SE standard error 393 
 394 
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WMH are negatively associated with cognitive performance and 395 

outcomes 396 

We then investigated whether cognitive performance and outcomes were associated with 397 

WMH (Figure 3 and Table 3). We found a significant association between global WMH 398 

volumes and worse baseline cognitive performance and a sharper cognitive decline over the 399 

course of three years, regardless of hypertension diagnosis and Aβ positivity (Table 3). 400 

Evidence for such a connection was present in most regions of interest, except in the external 401 

capsule. Such relationships were consistently evident around portions of the anterior thalamic 402 

radiation neighbouring the thalamus (Figure 3). In frontal and occipital regions, we also saw 403 

a significant link between WMH and quicker cognitive deterioration (Figure 3 - frontal peak 404 

at the level of the genu of the corpus callosum; occipital peak at the level of the forceps major 405 

and inferior fronto-occipital longitudinal fasciculus). 406 

Table 3. Higher WMH volumes are associated with worse and worsening cognitive performanceb 407 

 

WMH volumea 

Baseline (n=375) Longitudinal (n=226) 

Memory Executive PACC5 ΔPACC5 

B (SE); pFDR B (SE); pFDR B (SE); pFDR B (SE); pFDR 

 Global -0.10 (0.03); <0.001 -0.08 (0.03); 0.005 -0.10 (0.03); 0.001 -0.16 (0.05); 0.001 

L
ob

es
 

Frontal -0.04 (0.05); 0.012 -0.03 (0.02); 0.028 -0.04 (0.02); 0.008 -0.09 (0.03); 0.004 

Temporal -0.07 (0.02); 0.001 -0.05 (0.02); 0.007 -0.07 (0.02); <0.001 -0.13 (0.04); <0.001 

Occipital -0.04 (0.02); 0.006 -0.02 (0.02); 0.335 -0.03 (0.02); 0.078 -0.10 (0.03); 0.001 

Parietal -0.04 (0.01); 0.002 -0.03 (0.01); 0.040 -0.04 (0.01); 0.005 -0.06 (0.03); 0.025 

T
ra

ct
s 

Corona radiata -0.05 (0.01); 0.001 -0.04 (0.02); 0.008 -0.05 (0.02); 0.003 -0.08 (0.03); 0.004 

External capsule -0.03 (0.02); 0.142 -0.00 (0.02); 0.893 -0.03 (0.02); 0.107 -0.07 (0.04); 0.103 

Internal capsule -0.05 (0.02); 0.004 -0.05 (0.02); 0.005 -0.06 (0.02); 0.002 -0.08 (0.03); 0.016 

Optic radiation -0.05 (0.01); 0.001 -0.02 (0.01); 0.198 -0.04 (0.01); 0.010 -0.09 (0.03); 0.001 

C
or

pu
s 

ca
ll

os
um

 Genu -0.07 (0.02); 0.004 -0.04 (0.02); 0.057 -0.06 (0.02); 0.016 -0.11 (0.04); 0.004 

Body -0.11 (0.03); <0.001 -0.10 (0.03); <0.001 -0.11 (0.03); <0.001 -0.16 (0.05); 0.001 

Splenium -0.10 (0.02); <0.001 -0.08 (0.02); 0.001 -0.10 (0.02); <0.001 -0.13 (0.04); 0.002 
 408 
aWe log-transformed WMH volumes to deal with skewness 409 
bFor each region of interest, we used multiple linear regression to probe the relationship between regional WMH volume and cognitive 410 
performance. We created different models with baseline (memory, executive function, and PACC5) and longitudinal (ΔPACC5) cognitive 411 
performance as dependent variables. We adjusted for hypertension, Aβ positivity, age, sex, education, mean background intensity, and total 412 
intracranial volume. We print pFDR < 0.05 in bold. 413 
pFDR p-values after adjusting for multiple comparisons using FDR 414 
n sample size 415 
B regression coefficient 416 
SE standard error 417 
 418 
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The effect of Aβ positivity on cognition does not depend on WMH, 419 

but that of hypertesion does 420 

Our final assessment consisted of determining whether Aβ positivity or hypertension were 421 

associated with cognition (Table 4). Despite the lack of evidence for a direct association 422 

between hypertension and cognitive performance, we found hypertension to be indirectly 423 

linked to both worse performance at baseline and a steeper deterioration over the course of 424 

three years via splenial WMH (regression coefficient ± standard error; memory: -0.05±0.02, 425 

pFDR=0.029; executive: -0.04±0.02, pFDR=0.067; PACC5: -0.05±0.02, pFDR=0.030; ΔPACC5: 426 

-0.09±0.03, pFDR=0.043). On the other hand, the association between Aβ positivity and 427 

baseline and longitudinal cognitive performance (memory: -0.33±0.08, pFDR<0.001; 428 

executive: -0.21±0.08, pFDR<0.001; PACC5: -0.29±0.09, pFDR=0.006; ΔPACC5: -0.34±0.04, 429 

pFDR<0.05) was independent of its association with regional WMH volumes (no grounds for 430 

mediation in general, as shown in Table 2). 431 

Discussion  432 

Using data from a large multi-site cohort of older adults along the AD spectrum (n=375), we 433 

investigated the impact of arterial hypertension and Aβ positivity on WMH and cognition. 434 

Our data suggest that (i) both hypertension and Aβ positivity are associated with increased 435 

volume of WMH at both voxel and regional levels, (ii) WMH are strongly associated with 436 

poor cognitive performance and outcomes, (iii) posterior WMH have a role in the association 437 

between hypertension and cognitive performance at baseline and over time, and (iv) the 438 

relationship between Aβ positivity and cognition does not depend on WMH. 439 

We observed a posterior WMH dominance in Aβ-positive older adults in the predementia 440 

stage of the AD continuum. Global and posterior WMH presence and volume were 441 
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nonetheless the largest when both Aβ retention and hypertension occurred simultaneously 442 

and the smallest when none of them did. The posterior white matter could therefore be 443 

considered vulnerable to the independent yet interacting and potentiating effects of AD 444 

pathology and hypertension-related CSVD. One could thus consider posterior WMH to be a 445 

structural correlate that underlies the common observations that vascular disease, in particular 446 

hypertension, lowers the threshold for all-cause dementia development in face of pre-existing 447 

AD pathology, and vice versa [4–6]. As posterior WMH dominance could also relate to 448 

cerebrovascular deposition of Aβ, i.e. cerebral amyloid angiopathy (CAA), a condition that 449 

highly overlaps with AD pathology (for review see [44,45]), we visually inspected 450 

susceptibility-weighted sequences of all MRIs. Isolated lobar haemorrhagic markers were 451 

found in less than 10% (of them 19 were diagnosed with possible and 4 with probable CAA 452 

according to the Boston criteria [46,47]) of participants, making a relevant impact of CAA on 453 

posterior WMH in our sample highly unlikely. 454 

WMH can negatively impact cognitive function, but associations with memory have been 455 

less consistent compared to associations with executive function (for review see [48]). With 456 

the exception of the external capsule, we found rather substantial evidence for associations 457 

between WMH and worse cognitive performance, likewise affecting memory and executive 458 

function, and outcomes (Table 3). Intriguingly, hypertension was associated with executive, 459 

memory, and baseline and longitudinal global cognitive function only via splenial WMH, a 460 

white matter structure responsible for cognitive processing and a hub where distinct 461 

pathologies impact the neural circuitries interconnecting the temporal and occipital regions of 462 

both cerebral hemispheres [7,49–51]. White matter damage in this region, as associated with 463 

cardiovascular risk, could be expected to translate to lower cognitive functioning in global 464 

cognition but also in discrete domains [7]. In previous studies though, posterior/splenial 465 

WMH have been found associated with executive (including attention), but not memory 466 
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function [7,10]. Differences may arise from WMH quantification methods and/or smaller 467 

sample sizes including AD patients only (not individuals with SCD/MCI), in whom largely 468 

advanced (medial temporal lobe) AD pathology is the major driver for memory decline, 469 

possibly "diluting" concurrent memory effects of posterior WMH. 470 

Contrary to our expectations and to strong evidence from large longitudinal population-based 471 

studies (for review see [6]), we did not see a direct effect of hypertension effect on cognition 472 

but rather an indirect-only effect via splenial WMH. This finding might reflect a selection 473 

bias of the DELCODE study: exclusion of individuals with advanced vascular disease, which 474 

would likewise result in the exclusion of those with severe and uncontrolled hypertension. 475 

This constellation, additionally, explains the somewhat lower prevalence of arterial 476 

hypertension (nearly 54% compared to 63%), with a slightly higher number of Aβ positives 477 

(35% compared to a range of 17% to 34%) compared to that in population-based cohorts 478 

aged over 60 years [52–54]. Our definition of arterial hypertension was based on 479 

retrospective screening of medical records for already existing hypertension diagnoses, which 480 

might have missed those participants with recently, i.e. newly, diagnosed hypertension after 481 

baseline MRI, also contributing to lower prevalence. 482 

This study has limitations. First, our imaging results are cross-sectional. While our findings 483 

suggest WMH are indeed spatially associated with both hypertension and Aβ positivity, they 484 

do not address causality (e.g. vascular risk first, impaired brain drainage second). 485 

Longitudinal analysis of DELCODE imaging data might provide further insights into the 486 

influence of lifestyle over time and help disentangle the mixed effects observed in this cross-487 

sectional study. Second, our mediation model investigates whether WMH volume can 488 

mediate the association between Aβ and hypertension on cognitive function. While this 489 

choice was based on a theoretical consideration [5,6,40,41], a model where the AD and 490 

CSVD pathologies (here as Aβ accumulation and WMH burden) cyclically contribute to each 491 
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other would also be feasible [2,5,55]. Third, the study of WMH probability patterns in other 492 

cohorts of individuals (e.g. whose origins are other than European; DELCODE participants 493 

are predominantly of European origins) with a high vascular but low AD profile or vice versa 494 

could be informative on the mechanisms leading to these findings in a more general way. 495 

Further, we did not consider WMH patterns, which could be punctuated or confluent, for 496 

example, or the clinically established distinction between deep and periventricular WMH.  497 

Conclusion 498 

Our work points toward a large spatial overlap between the effect of arterial hypertension and 499 

Aβ build-up on WMH, with both constellations considered risk factors for white matter 500 

damage. At the same time, our work calls into question whether posterior WMH are a core 501 

feature related to AD pathology, alternatively suggesting that posterior white matter is 502 

vulnerable to both vascular and amyloid pathologies. While the effect of Aβ on cognition 503 

would seem rather independent of WMH, posterior WMH seem to play a role in the 504 

association between arterial hypertension and poor cognitive performance and outcomes; it 505 

could be a promising target to tackle the downstream damage related to the interacting and 506 

potentiating effect of multiple pathologies. 507 
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 705 

Figure legends 706 

Figure 1. Model investigating direct and indirect (via WMH) effects of hypertension and Aβ positivity on 707 
cognition. 708 
Here we seek to understand whether subjects with arterial hypertension or Aβ positive status have worse 709 
cognitive performance at baseline (baseline memory, executive function, and PACC5 scores) and outcomes over 710 
time (ΔPACC5). Because both the Aβ and vascular pathologies may exacerbate the formation of WMH and 711 
these, in turn, may also contribute to brain dysfunction and poor cognitive outcomes [5,6,40,41], we also test for 712 
an indirect mediating effect of hypertension and Aβ positivity on cognitive performance via regional WMH 713 
volumes. We adjusted such models for age, sex, education, mean background intensity, and TICV, as described 714 
in ‘Covariates, confounders, and data transformation’. 715 
 716 
Figure 2. Posterior WMH probability is associated with both history of arterial hypertension and Aβ 717 
positivity.  718 
Analysis. We examined the relationship between WMH segmentation maps (outcome) and arterial hypertension 719 
and Aβ positivity (factors) at a voxel level via 2x2 ANCOVA. We accounted for the effects of age, sex, 720 
education, mean background intensity, and total intracranial volume. We used an explicit mask to constrain the 721 
analysis to voxels in which data for at least five patients were available. Illustration. Glass brain projections 722 
display regions where we found evidence for a link between WMH probability and hypertension and Aβ 723 
positivity (top and middle rows, respectively). In the bottom row, we coloured regions blue if T values for 724 
hypertension were greater than for Aβ positivity and gold otherwise. We thresholded contrast maps at 5% and 725 
adjusted p-values for FDR. Findings. Subjects with hypertension had significantly greater WMH volumes 726 
throughout the whole brain than those with normotension (peak: superior longitudinal fasciculus, xyzMNI = [32, -727 
1, 18], T = 3.88, DoF = [1.0, 367.0], pFDR = 0.015). Moreover, WMH volume was significantly higher in 728 
subjects Aβ positivity versus negativity in posterior regions of the brain, particularly in segments of the forceps 729 
major and inferior fronto-occipital fasciculus (xyzMNI = [30, -58, 4], T = 5.20, DoF = [1.0, 367.0], pFDR = 0.001). 730 
 731 
Figure 3. WMH volume is associated with worse baseline cognitive performance and accelarated decline 732 
over time.  733 
Analysis. We used multiple linear regression with WMH segmentation maps as the dependent variable and 734 
cognitive performance as the independent variable. We accounted for the effects of hypertension, Aβ positivity, 735 
age, sex, education, mean background intensity, and total intracranial volume. We used an explicit mask to 736 
constrain the analysis to voxels in which data for at least five patients were available. We thresholded contrast 737 
maps at 5% and adjusted p-values for FDR. Illustration. Regression results with memory (top left), executive 738 
function (bottom left), PACC5 (top right), and ΔPACC5 (bottom right) as independent variables. Findings. We 739 
found WMH to be significantly associated with worse cognitive performance at baseline and sharper decline 740 
within a three-year period. Such relationships were consistently evident around portions of the anterior thalamic 741 
radiation neighbouring the thalamus (memory: xyzMNI = [-8, -1, 3], T = 7.00, DoF = [1.0, 366.0], pFDR = 1.44×10-742 
5; executive: xyzMNI = [-9, 0, 5], T = 6.74, DoF = [1.0, 366.0], pFDR = 2.85×10-5; PACC5: xyzMNI = [-8, 1, 4], T = 743 
7.20, DoF = [1.0, 366.0], pFDR = 8.43×10-6; ΔPACC5: xyzMNI = [-7, 2, 2], T = 4.53, DoF = [1.0, 217.0], pFDR = 744 
5.12×10-3). Frontal and occipital WMH also coincided with a faster cognitive decline (frontal peak at the level 745 
of the genu of the corpus callosum: xyzMNI = [-1, 23, 4], T = 5.19, DoF = [1.0, 217.0], pFDR = 1.37×10-3; occipital 746 
peak at the level of the forceps major and inferior fronto-occipital longitudinal fasciculus: xyzMNI = [17, -81, 2], 747 
T = 4.69, DoF = [1.0, 217.0], pFDR = 1.23×10-2). 748 
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