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Abstract 

Background: Influenza is a major global burden of disease, causing annual epidemics and 

occasionally, pandemics. Given that influenza primarily infects the upper respiratory system, 

influenza infection may be able to be diagnosed by applying deep learning to pharyngeal 

images. 

Objective: We aimed to develop a deep learning model to diagnose influenza infection using 

the data on pharyngeal images and clinical information. 

Methods: We recruited patients who visited clinics and hospitals due to influenza-like 

symptoms. In the training stage, we developed a diagnostic prediction artificial intelligence 

(AI) model based on deep learning to predict polymerase chain reaction (PCR)-confirmed 

influenza from pharyngeal images and clinical information. In the validation stage, we 

assessed the diagnostic performance of the AI model. In the additional analysis, we compared 

the diagnostic performance of the AI model with that of three physicians, and also interpreted 

the AI model using the importance heatmaps. 

Results: A total of 7,831 patients were enrolled at 64 hospitals between Nov 1, 2019 and Jan 

21, 2020 in the training stage, and 659 patients (including 196 patients with PCR-confirmed 

influenza) at 11 hospitals between Jan 25, 2020 and Mar 13, 2020 in the validation stage. The 

area under the receiver operating characteristic curve of the AI model was 0.90 (95% 

confidence interval, 0.87–0.93), and its sensitivity and specificity were 76% (70–82%) and 

88% (85–91%), respectively, outperforming three physicians. In the importance heatmaps, 

the AI model often focused on follicles on the posterior pharyngeal wall. 

Conclusions: We developed the first AI model that can accurately diagnose influenza from 

pharyngeal images, which has the potential to assist physicians make timely diagnosis. 
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Introduction 

According to the Global Burden of Disease Study 2016, influenza is a major global burden of 

disease estimated to be the cause of 39.1 million acute lower respiratory infection episodes 

and 58,200 deaths [1]. It is estimated that influenza is responsible for 291,243 to 645,832 

seasonal respiratory deaths (4.0–8.8 per 100,000 individuals) occur annually [2]. The timely 

and accurate diagnosis of influenza has the potential to prevent wide transmission of virus 

within the population and subsequent epidemic and pandemic, as well as the unnecessary 

prescription of antibiotics in primary care, which is a cause of emerging antibiotic-resistant 

bacteria.  Moreover, early interventions such as hydration and antiviral drugs are expected to 

reduce the mortality risk among high-risk patients, including the elderly and individuals with 

comorbidities.  

Although there are various tests currently used to diagnose influenza infection, the COVID-

19 pandemic and the surge in the use of telemedicine highlighted the importance of 

accurately diagnosing it without increasing the risk of spreading virus through physical 

interactions. The gold-standard method of the diagnosis of influenza infection is the reverse-

transcription polymerase chain reaction (RT-PCR) of nasopharyngeal aspirates or swabs [3, 

4]; however, RT-PCR is not easily performed in primary care, and time to results could 

hamper the timely diagnosis and preventive/treatment interventions. A more commonly used 

test is the rapid immunochromatographic antigen detection tests, but compared with RT-PCR, 

their validity is modest and varies across studies [5, 6]. Both of these tests cannot be 

performed through telemedicine, whereas the sensitivity and specificity of diagnosing 

influenza only with clinical information are suboptimal [7, 8]. Given that more patients are 

diagnosed through telemedicine in recent years, an alternative test of influenza that could be 

conducted through telemedicine is warranted.  
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To address this important knowledge gap, we developed a deep learning model to diagnose 

influenza infection using the data on pharyngeal images and clinical information. We tested 

the performance of the diagnostic prediction artificial intelligence (AI) model using the data 

on the real-world patient population, and also compared it with the diagnostic performance of 

three physicians. We also investigated the regions of the pharynx on which the AI model 

focused to differentiate between individuals with and without influenza infection.  

 

Methods 

Pilot study to develop a medical camera to capture standardized pharyngeal images 

For our pilot study, we recruited 4,765 patients aged 6–90 years with influenza-like 

symptoms who visited 37 clinics or hospitals between Nov 28, 2018 and Feb 4, 2019 

(registered as jRCTs032180041). We developed a pharyngeal camera with a light emitting 

diode light source and a disposable clear cap to hold down the tongue of patients, to capture 

images of the pharynx in a standardized manner (Figure 1). In this pilot study, we adjusted 

the size of the pharyngeal camera and tongue depressors to be suitable for many patients. The 

device contains a full high-definition digital camera and is connected via Wi-Fi to a cloud 

service for the analysis of the pharyngeal images, together with clinical information. We also 

improved the image quality of the camera, such as resolution, brightness, and contrast, during 

this pilot study. We used a rapid continuous shooting function to obtain high-quality 

pharyngeal images in a short time by avoiding motion blur. The camera can capture an image 

every 0.3 seconds, and 30 sequential images are captured per shot. 

Study design and participants  
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The current study included a training stage (registered as jRCTs032190120) and validation 

stage (registered as Pharmaceuticals and Medical Devices Agency clinical trial identification 

code AI-02-01). We enrolled patients with influenza-like symptoms who visited clinics or 

hospitals and satisfied the following inclusion and exclusion criteria at 64 hospitals between 

Nov 1, 2019 and Jan 21, 2020 in the training stage, and 11 hospitals between Jan 25, 2020 

and Mar 13, 2020 in the validation stage. The list of study sites is shown in the 

Supplementary Table 1. 

The inclusion criteria were (i) patients with written consent to participate in the study 

provided by themselves or their parent (if they were younger than 18 years), (ii) those aged 

six years or older, and (iii) those that satisfied at least one of the following four conditions in 

the training stage and at least two in the validation stage: (a) body temperature of 37.0°C or 

higher, (b) systematic influenza-like symptoms, such as joint pain, muscle pain, headache, 

tiredness, and appetite loss, (c) respiratory symptoms, such as cough, sore throat, and nasal 

discharge or congestion, and (d) an episode of close contact with patients with influenza or 

influenza-like symptoms within three days, or in any other scenario in which the consulting 

physician suspected influenza infection. The exclusion criteria included (i) those with 

fluctuating teeth, (ii) those with severe oral lesions, (iii) those with severe nausea, (iv) those 

with difficulty in opening the mouth sufficiently for the use of the camera (e.g., small mouth, 

temporomandibular joint pain, incompatibility of dentures, disturbed consciousness, or 

respiratory failure), (v) those who had participated in another clinical trial within seven days 

prior, those who were scheduled to participate in another clinical trial (excluding post-

marketing surveillance), or those with difficulty in follow-up for mental, family, social, 

geographical, or other reasons, (vi) pediatric patients who clearly did not agree to participate 

in the study, and (vii) those judged to be inappropriate to participate in the study by the 
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responsible physician at each site. Additionally, patients with only poor-quality images were 

excluded from the analysis. 

In the training stage, we aimed to collect clinical information and pharyngeal images of PCR-

confirmed influenza positive and negative patients in a ratio of roughly 1:1 for the most 

efficient supervised learning of the AI model. There is no consensus on the size of samples 

(i.e., number of patients) that should be used to train an AI model; thus, we arbitrarily set 

them to 7,500 patients, including 3,750 influenza PCR-positive and 3,750 PCR-negative. In 

the validation stage, we aimed to determine the lower bound of the 95% one-sided confidence 

interval (CI) of sensitivity to achieve 70% or higher, and that of specificity to achieve 85% or 

higher. With a one-sided p value of 5% and power of 85%, assuming an actual sensitivity of 

80% and specificity of 90% as suggested by our training stage, we calculated the required 

sample sizes to be 137 for influenza PCR-positive cases and 323 for PCR-negative cases. 

Therefore, we planned to stop the recruitment of the study participants on the day that both 

150 positive cases and 350 negative cases were obtained. 

In Japan, the first case of the SARS-CoV-2 infection (COVID-19) was reported on Jan 15, 

2020, and the first wave of the pandemic occurred from late March 2020. During the study 

period, in the validation stage, we asked the participating clinics or hospitals to report any 

suspected cases of COVID-19 in the study participants. There were no such reports from any 

study site throughout the research, which suggests that our study was not affected by the 

COVID-19 pandemic.  

Collection of pharyngeal images, clinical information, and nasopharyngeal specimens 

In addition to the pharyngeal images of the study participants, the following clinical 

information was obtained using a standardized case report form based on electronic data 
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capture: age; sex; time (hours) from symptom onset; highest body temperature before study 

site visit; episode of close contact; status and date of the most recent influenza vaccination; 

use of antipyretics; subjective symptoms, including tiredness, appetite loss, chill, sweating, 

joint pain, muscle pain, headache, nasal discharge or congestion, cough, sore throat, and 

digestive symptoms; and objective findings at the study sites, including body temperature, 

pulse rate, and tonsillar findings (tonsillitis, white moss, and redness) according to the 

consulting physician. 

Furthermore, nasopharyngeal swabbing was conducted to obtain nasopharyngeal specimens 

from the participants, which were sent to the central clinical laboratory (LSI Medience 

Corporation, Tokyo, Japan) for RT-PCR, which is the gold standard (reference standard) for 

diagnosis of influenza infection. We standardized the process of collecting the 

nasopharyngeal specimens among the study sites using a manual. 

Development of the AI model to predict PCR-confirmed influenza 

An ensemble AI model (version 2.0) was developed to predict the probability of PCR-

confirmed influenza using pharyngeal images and clinical information. This model consisted 

of three main machine learning models: a multi-view convolutional neural network (MV-

CNN), multi-modal convolutional neural network (MM-CNN), and boosting models. The 

three models were trained on the same training dataset from the training stage and combined 

using ridge regression [9]. 

First, the MV-CNN was trained using SE-ResNext-50 as an image feature extractor pre-

trained on ImageNet [10, 11]. The MV-CNN architecture used several pharyngeal images 

that contained views from various angles [12]. In pharyngeal imaging, the tongue and uvula 

often overlap with the posterior pharyngeal wall. The MV-CNN addressed this issue by 
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gathering information from various image angles. One to five of the most appropriate images 

per patient were selected by an automatic image quality evaluation system using a 

lightweight CNN model [13]. The system was trained using image quality criteria defined by 

a physician among the authors (MF) in the training stage. The input images for the MV-CNN 

were resized and then augmented (e.g., flipped, rotated, blurred, and contrast changed) to 

improve accuracy and generalization performance. To prevent overfitting, well-established 

training strategies were used, including batch normalization, learning rate decay, and cross-

validation. To manage various pharyngeal magnification rates, MV-CNNs with multiple 

image sizes were trained and their scores were combined by averaging them. 

Second, the MM-CNN was developed based on the MV-CNN to process both multi-view 

pharyngeal images and clinical information as input data [14, 15]. In detail, the final 

classification layer of the MV-CNN was extended and connected to the neural network to 

manage clinical information. The image feature extractor of the MM-CNN was initialized 

with the trained MV-CNN weights. Then, the same training and ensemble strategy as the 

MV-CNN were applied. 

Third, boosting models were trained based on the prediction results of the MV-CNN and 

clinical information. LightGBM and CatBoost were selected as boosting models [16, 17]. 

Finally, the probability of influenza was obtained by integrating each prediction from the 

MV-CNN, MM-CNN, and boosting models using ridge regression. The ridge regression 

parameters were determined using cross-validation. 

Statistical analysis 

In the training stage, we compared the clinical characteristics of the study participants 

according to the PCR test result (positive or negative) using t-tests for continuous variables 
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with a normal distribution (age, highest body temperature before the study site visit, body 

temperature at visit, and pulse rate), the Mann–Whitney U test for continuous variables with a 

non-normal distribution (time from symptom onset), and chi-square tests for categorical 

variables. We repeated these analyses in the validation stage. 

In the training stage, using a five-fold cross-validation method, we conducted receiver 

operating characteristic (ROC) curve analysis to measure the discrimination ability of (i) the 

probability score of the MV-CNN, which uses only pharyngeal images in prediction, (ii) the 

probability score of the clinical information AI, which is an AI model that uses all the other 

aforementioned clinical information (except for the pharyngeal images) in prediction, and 

(iii) the probability score of the ensemble AI model using both the pharyngeal images and 

clinical information. We also measured the reclassification ability of the pharyngeal images 

by comparing the clinical information AI model and the ensemble AI model by calculating 

the continuous net reclassification improvement (NRI) and integrated discrimination 

improvement (IDI) [18].  

In the validation stage, we also conducted ROC analysis and calculated the sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV) for 

influenza infection, according to a selected cut-off point. 

We performed statistical analysis using R (version 4.1.1) and Python (version 3.8.5). P values 

of < 0.05 were considered to be statistically significant. A third-party organization (Statcom 

Co., Ltd., Tokyo, Japan) performed the sample size estimation, and calculation of the area 

under the receiver operating characteristic curve (AUROC) and validity (sensitivity, 

specificity, PPV, and NPV) in the validation stage. 

Additional analysis 
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We conducted two types of additional analysis. First, we compared the performance of the 

AI-assisted diagnosis camera with that of three physicians. For this analysis, we used the 

existing data (pharyngeal images and clinical information) of 200 patients (100 influenza 

PCR-positive cases and 100 PCR-negative cases), which was randomly selected from the 

study participants in the training stage. Three physicians among the authors (SO, MF, and 

MIk), who were blinded to patients’ identifiers and their PCR test results, assessed the data to 

give an influenza prediction score between 0 and 1 (i.e., between 0% and 100%). We applied 

the diagnostic prediction AI model to these existing data, and compared the AUROC of the 

diagnostic prediction AI model with that of each physician and the average prediction score 

of the three physicians. We recalculated the AUROC of the AI model for these 200 patients 

for a fair comparison. 

Second, we attempted to interpret the mechanisms of the MV-CNN prediction to differentiate 

between influenza cases and non-cases from the pharyngeal images. We modified guided 

gradient-weighted class activation mapping (Guided Grad-CAM) for the MV-CNN to 

visualize importance heatmaps. The aim was to show where the MV-CNN focused when 

differentiating between influenza PCR-positive cases and PCR-negative cases. We used the 

same dataset of 200 patients (100 PCR-positive cases and 100 PCR-negative cases) as the 

first additional analysis. To quantify and interpret the importance heatmaps, two physicians 

among the authors (MF and MIk) independently determined whether the MV-CNN 

highlighted each part of the pharynx (classified into five parts: lateral pharyngeal bands, 

posterior pharyngeal wall, palatal arch, tonsils, and follicles) for each patient. When the two 

physicians made different judgements (i.e., presence vs. absence of highlighting by the MV-

CNN), consensus was reached through discussion between them. Consequently, for each part 

of the pharynx, we calculated the proportion of patients with images highlighted by the MV-
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CNN among the 100 PCR-positive cases and 100 PCR-negative cases, and compared the 

groups using chi-square tests. 

 

Results 

The training stage 

In the training stage, we obtained informed consent from 9,029 patients with influenza-like 

symptoms who visited one of 64 clinics or hospitals between Nov 1, 2019 and Jan 21, 2020. 

Among them, 199 patients (2.2%) felt nauseous during the examination when the pharyngeal 

images were being captured, including one patient with severe nausea and 14 patients 

(0.16%) who vomited. We did not complete the image-capturing procedure for these 15 

patients (0.16%). Among the remaining 9,014 patients, we selected 7,831 patients (mean age 

33.8 years [SD 18.4 years], women 50%) with 25,168 high-quality images (out of 

approximately 300,000 images), which consisted of 3,733 influenza PCR-positive patients 

with 12,154 pharyngeal images and 4,098 PCR-negative patients with 13,014 pharyngeal 

images. Table 1 compares the clinical characteristics of patients by PCR test results. 

Compared with the PCR-negative cases, the PCR-positive cases yielded the following results: 

the average age was slightly lower; time from symptom onset to the study site visit was 

shorter; the proportion of close contact, use of antipyretics, and most subjective symptoms 

were higher; and the temperature and pulse rate were higher, whereas the proportion of recent 

influenza vaccinations, digestive symptoms, and tonsillar findings were lower. There was no 

difference in the proportion of sex and sore throat between the groups. 

Using the training dataset, we established the ensemble AI model to estimate the probability 

of influenza for individual patients. The feature importance of each variable in the LightGBM 
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model and CatBoost model is shown in the Supplementary Figures 1 and 2, which suggest 

that pharyngeal images were the most important variable in the diagnostic prediction AI 

model, followed by body temperature and cough. 

In the five-fold cross-validation, the AUROC of the MV-CNN probability score for 

pharyngeal images was 0.76 (95% CI 0.75–0.77) and that of the AI model with clinical 

information (i.e., all the clinical information in Table 1) was 0.83 (95% CI 0.82–0.84) 

(Figure 2). Taken together, the AUROC of the diagnostic prediction AI model was 0.87 

(95% CI 0.86–0.87), which means that the AUROC significantly increased as a result of 

adding pharyngeal images to the AI model with clinical information (p < 0.001). Regarding 

reclassification ability, the continuous NRI was 0.25 (95% CI 0.22–0.29) among PCR-

positive cases and 0.33 (95% CI 0.30–0.36) among PCR-negative cases, and IDI was 0.08 

(95% CI 0.07–0.08), which also indicates that the accuracy of the diagnostic prediction AI 

model significantly improved as a result of adding pharyngeal images to the AI model with 

clinical information. 

The validation stage 

In the validation stage, we obtained informed consent from 706 patients with influenza-like 

symptoms who visited one of 11 clinics or hospitals between Jan 25, 2020 and Mar 13, 2020, 

which comprised a safety analysis set. Among them, 12 patients (1.7%) felt nauseous during 

the examination when the pharyngeal images were being captured, including one patient 

(0.1%) with severe nausea for whom we did not complete the image-taking procedure. 

Additionally, 33 patients (4.7%) did not satisfy the predefined criteria of the protocol for the 

full analysis set, mostly because of trouble in saving the pharyngeal images at the study sites. 

Furthermore, 13 patients were excluded by the automated image quality evaluation system 

that removed low-quality pharyngeal images. Thus, we used the pharyngeal images and 
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clinical information of the remaining 659 patients (mean age 33.3 years [SD 17.6 years], 

women 51.7%) for the following analysis. Similar to the training stage, compared with non-

cases, the PCR-confirmed cases yielded the following results: the average age was slightly 

lower, the proportion of close contact and several subjective symptoms (tiredness, chill, nasal 

discharge/obstruction, and cough) was higher, and the temperature (both before the 

clinic/hospital visit and on site) and pulse rate were higher, whereas the proportion of 

tonsillar findings was lower (Table 1). 

In the validation stage, the AUROC of the diagnostic prediction AI model was 0.90 (95% CI 

0.87-0.93). At a selected cut-off point on the ROC (Supplementary Figure 3), the sensitivity 

and specificity were 76% (95% CI 70-82%) and 88% (95% CI 85-91%), and the PPV and 

NPV were 73% (95% CI 69-79%) and 90% (95% CI 87-92%), respectively (Supplementary 

Table 2). 

The additional analysis 

In our additional analysis, among the 200 randomly selected patients (100 influenza PCR-

positive cases and 100 PCR-negative cases), the AUROC of the diagnostic prediction AI 

model was 0.89 (95% CI 0.84–0.93) and was higher than that of each of the three physicians 

(0.76, 0.73, and 0.74, respectively). It was also higher than that of the average prediction 

score of the three physicians (0.79, 95% CI 0.73–0.85) (Figure 3).  

Figure 4 shows examples of the pharyngeal images and those highlighted using the 

importance heatmaps for three patients. An assessment of the importance heatmaps for the 

200 patients (100 PCR-positive cases and 100 PCR-negative cases) conducted by two 

physicians showed that the proportion of patients with images highlighted by the AI model 

was significantly different between the PCR-positive cases and PCR-negative cases for 
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follicles on the posterior pharyngeal wall (73% vs. 38%, p < 0.001), which suggests that the 

AI model often focused on these parts (Figure 5).  

 

Discussion 

In this study, we developed an AI-assisted diagnosis camera with a diagnostic prediction 

model for influenza. In the training stage, we found that the pharyngeal images contributed 

significantly to the improvement of the diagnosis prediction AI model compared with the 

clinical information AI. In the validation stage, the AUROC of the diagnostic prediction AI 

model was 0.90 (95% CI 0.87-0.93), with a sensitivity and specificity of 76% (95% CI 70-

82%) and 88% (95% CI 85-91%), respectively. In our additional analysis, the AI-assisted 

camera performed better than three physicians in predicting influenza. Furthermore, in the 

importance heatmaps, we found that the AI model often focused on follicles to differentiate 

between PCR-positive and negative cases. 

Clinical characteristics associated with PCR-confirmed influenza infection among people 

with influenza-like symptoms were examined in two previous studies [7, 8]. Both of these 

studies concluded that fever and cough were the best predictors of influenza diagnosis. 

However, the sensitivity and specificity of the combination of these two factors were 

suboptimal, at 78% and 55% in one study [7], and 64% and 67% in another study, 

respectively [8]. In our study, considering the feature importance of each variable in the 

LightGBM model and CatBoost model (Supplementary Figures 1 and 2), body temperature 

and cough were highly ranked among the clinical information, whereas the feature 

importance of pharyngeal images was even larger. 
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Recently, several AI-assisted diagnostic prediction models have been proposed for influenza 

diagnosis [19-22]. A single-center study from Japan reported a machine learning-based 

infection screening system incorporating a random tree algorithm that used vital signs [19]. 

The researchers reported a sensitivity of 81–96% and NPV of 81–96% in their training 

datasets (specificity and PPV were not reported), but the performance of the model was not 

validated outside the center. The University of Pittsburgh Medical Center Health System 

reported machine learning classifiers for influenza detection from emergency department 

free-text reports [20-21]. Among the 31,268 emergency department reports from four 

hospitals, the AUROCs of the seven machine learning classifiers for influenza detection 

ranged from 0.88 to 0.93 [21], which was better than an expert-built Bayesian model [20]. 

These studies were also limited because performance outside the health care system of the 

University of Pittsburgh was unknown. More recently, a Korean study reported an influenza 

screening system based on deep learning using a combination of epidemiological and patient-

generated health data from a mobile health app [22]. However, the gold standard in the study 

was the clinical diagnosis of influenza at a clinic reported by app users instead of laboratory-

based confirmed influenza. Notably, none of the previous studies included an assessment of 

pharyngeal images in their diagnostic prediction models [19-22]. The novelty of our study is 

that we have developed the first AI-assisted diagnosis camera for influenza and prospectively 

validated its performance through a Good Clinical Practice-based clinical trial process. 

We showed that pharyngeal images significantly improved the discrimination and 

reclassification ability of the diagnostic prediction AI model. Additionally, we considered the 

mechanisms by which the AI model differentiated between true influenza cases and non-

influenza cases using pharyngeal images. To the best of our knowledge, there has been no 

established approach to quantitatively scale regions of images on which the AI focuses. 

Indeed, most previous studies on AI-assisted diagnosis cameras showed only representative 
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images highlighted using Grad-CAM or saliency maps to speculate on possible mechanisms 

of AI classification [23-25]. In our study, we attempted to quantify these regions by 

calculating the proportion of patients with images highlighted by the AI model for each part 

of the pharynx among the influenza PCR-positive cases and negative cases. Consequently, we 

found that the AI model mainly focused on follicles on the posterior pharyngeal wall. 

Notably, this finding is in line with previous case reports and case series that suggest that 

follicles on the posterior pharyngeal wall are specific to influenza infection and useful for the 

diagnosis of influenza [26-29]. Physical examination, including visual inspection of the 

pharynx, generally requires the experience of individual physicians, and physical examination 

skills may vary widely among physicians. Our study suggests that AI could minimize the 

variation and may help to standardize physical examination skills among physicians. 

Additionally, when attempting to discriminate between diseases, doctors may be able to learn 

from AI systems where to focus in their visual examination.  

Our study has limitations. First, we recruited study participants with influenza-like symptoms 

from a large number of clinics and hospitals in Japan to increase the generalizability of our 

study. However, there may be a country or cultural difference in terms of people with 

influenza-like symptoms seeking medical care from healthcare providers. In Japan, with its 

universal health care coverage, people have relatively easy and timely access to clinics or 

hospitals compared with those in other countries. Therefore, generalizing our findings to 

different clinical care settings in different countries would require caution and may require 

independent assessment. Second, our additional analysis of the comparison between the AI-

assisted diagnosis camera and three physicians was not pre-planned in the study protocols 

(jRCTs032190120 and Pharmaceuticals and Medical Devices Agency clinical trial 

identification code AI-02-01), although these physicians were blinded to patients’ identifiers 

and their PCR results. Finally, in addition to the pharyngeal images, we collected as many 
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relevant clinical variables (suggested by previous large studies [7, 8]) as possible to establish 

an accurate diagnostic prediction AI model. However, there may be other useful variables for 

the prediction of true influenza diagnosis that were not collected in our study. For example, 

some studies have suggested that the population level trend of influenza outbreaks in an area 

is useful for predicting an individual patient’s influenza infection [22]. Further improvement 

of the AI-assisted diagnosis camera by including additional variables, in addition to an 

improvement of the AI models to analyze pharyngeal images, are justified. 

In conclusion, we developed the first AI-assisted diagnosis camera for influenza and 

prospectively validated its high performance. We found that the AI model often focused on 

follicles, which confirmed previous case reports and series that suggested that visual 

inspection of the pharynx would help to diagnose influenza infection.  
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Table 1. Characteristics of study participants with or without RT-PCR confirmed influenza 

 Participants in the training stage Participants in the validation stage 

 

All 

(n=7831) 

by RT-PCR test result 
All 

(n=659) 

by RT-PCR test result 

Positive 

(n=3733) 

Negative 

(n=4098) 

p 
value 

Positive 

(n=196) 

Negative 

(n=463) 

p 
value 

Age (years), mean±SD 33.8±18.4 33.0±18.5 34.5±18.4 <0.001 33.3±17.6 30.4±18.6 34.5±17.0 0.009 

Sex:    0.539    0.542 

 Male 3930 (50.2%) 1887 (50.5%) 2043 (49.9%)  318 (48.3%) 91 (46.4%) 227 (49.0%)  

 Female 3901 (49.8%) 1846 (49.5%) 2055 (50.1%)  341 (51.7%) 105 (53.6%) 236 (51.0%)  

Time from onset 
(hours), mean±SD 

31.2±25.3 28.3±20.6 33.8±28.6 <0.001 27.5±31.2 24.6±10.8 28.7±36.5 0.671 

Highest BT before visit 
(°C), mean±SD 

38.2±0.9 38.6±0.8 38.0±0.9 <0.001 38.2±0.8 38.6±0.7 38.0±0.8 <0.001 

Close contact 2520 (32.2%) 1687 (45.2%) 833 (20.3%) <0.001 208 (31.6%) 120 (61.2%) 88 (19.0%) <0.001 

Recent flu vaccination 2873 (36.7%) 1248 (33.4%) 1625 (39.7%) <0.001 278 (42.2%) 73 (37.2%) 205 (44.3%) 0.095 

Use of antipyretics 2975 (38.0%) 1530 (41.0%) 1445 (35.3%) <0.001 297 (45.1%) 95 (48.5%) 202 (43.6%) 0.254 

Subjective symptoms:          

 Tiredness 5937 (75.8%) 3010 (80.6%) 2927 (71.4%) <0.001 506 (76.8%) 159 (81.1%) 347 (74.9%) 0.086 

 Appetite loss 3361 (42.9%) 1823 (48.8%) 1538 (37.5%) <0.001 259 (39.3%) 96 (49.0%) 163 (35.2%) <0.00 

 Chill 4215 (53.8%) 2231 (59.8%) 1984 (48.4%) <0.001 338 (51.3%) 115 (58.7%) 223 (48.2%) 0.014 

 Sweating 2188 (27.9%) 1128 (30.2%) 1060 (25.9%) <0.001 206 (31.3%) 60 (30.6%) 146 (31.5%) 0.816 

 Joint pain 3735 (47.7%) 1992 (53.4%) 1743 (42.5%) <0.001 316 (48.0%) 103 (52.6%) 213 (46.0%) 0.124 

 Muscle pain 2362 (30.2%) 1276 (34.2%) 1086 (26.5%) <0.001 192 (29.1%) 62 (31.6%) 130 (28.1%) 0.359 

 Headache 4725 (60.3%) 2414 (64.7%) 2311 (56.4%) <0.001 403 (61.2%) 126 (64.3%) 277 (59.8%) 0.283 

 Nasal discharge or 

congestion 
4472 (57.1%) 2202 (59.0%) 2270 (55.4%) 0.001 410 (62.2%) 134 (68.4%) 276 (59.6%) 0.034 

 Cough 5219 (66.6%) 3053 (81.8%) 2166 (52.9%) <0.001 384 (58.3%) 161 (82.1%) 223 (48.2%) <0.001 

 Sore throat 4928 (62.9%) 2353 (63.0%) 2575 (62.8%) 0.857 440 (66.8%) 126 (64.3%) 314 (67.8%) 0.379 

 Digestive symptoms 1298 (16.6%) 558 (14.9%) 740 (18.1%) <0.001 127 (19.3%) 30 (15.3%) 97 (21.0%) 0.093 

Objective findings:          

 BT at visit (°C)  

 mean±SD 
37.6±0.9 38.0±0.9 37.3±0.8 <0.001 37.5±0.9 37.9±0.9 37.3±0.8 <0.001 
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 Pulse rate, mean±SD 95.0±17.8 100.2±17.7 90.3±16.6 <0.001 93.8±17.7 100.8±18.6 90.9±16.4 <0.001 

 Tonsillitis 1238 (15.8%) 529 (14.2%) 709 (17.3%) <0.001 63 (9.6%) 8 (4.1%) 55 (11.9%) 0.002 

 Tonsillar white moss 126 (1.6%) 17 (0.5%) 109 (2.7%) <0.001 23 (3.5%) 1 (0.5%) 22 (4.8%) 0.007 

 Tonsillar redness 1292 (16.5%) 540 (14.5%) 752 (18.4%) <0.001 69 (10.5%) 13 (6.6%) 56 (12.1%) 0.036 

Abbreviations: BT: body temperature, SD: standard deviation, RT-PCR: real-time reverse transcription polymerase chain reaction 
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Figure legends 

Figure 1. Presentation of the AI-assisted camera and a representative pharyngeal image 

of a patient with PCR-confirmed influenza infection 

AI: artificial intelligence, PCR: polymerase chain reaction. 

Figure 2. Receiver operating characteristic curves of the diagnostic prediction models in 

the five-fold cross-validation of the training dataset 

AUROC: area under the receiver operating characteristic curve, All combined: ensemble AI 

model using pharyngeal images and clinical information, Pharyngeal images only: multi-view 

convolutional neural network using multiple pharyngeal images, Clinical information only: 

ensemble AI model without pharyngeal image information. 

Figure 3. Receiver operating characteristic curves for the diagnostic prediction AI 

model and three physicians  

AUROC: area under the receiver operating characteristic curve, AI: ensemble AI model using 

pharyngeal images and clinical information,  

*average prediction score of three physicians 

Note: The AI model is the same as that used in the validation stage. However, the AUROC is 

slightly different because of the small sample size used in the additional analysis. 

Figure 4. Examples of pharyngeal images (left) and those highlighted using the 

importance heatmaps (right) for three patients 

Note: These importance heatmaps show areas that the AI model focused on to differentiate 

between the PCR-positive cases and PCR-negative cases. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2022. ; https://doi.org/10.1101/2022.07.19.22276126doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22276126
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Figure 5. Proportion of patients with images highlighted by the AI model on each part 

of the pharynx in 100 PCR-positive influenza cases and 100 PCR-negative cases.  

PCR: polymerase chain reaction. 
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Figure 3
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