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Abstract

Reference intervals (RI) are the best-established methodology used for the interpretation of numerical clinical level data in
healthcare and clinical practice. As the test results are interpreted by comparing with the (population-derived) reference
intervals, the quality of the calculation and implementation of reference intervals play a major role in decision-making
process at the subject level. Here we describe the IRIS workflow to compute Individual Reference Intervals (IRI) based
on multiple ”healthy” data points from the same subjects and also utilising peers’ test results. We have improved the IRI
models so they allow for covariate adjustments, such as sex and age. The IRI is expected to play pivotal roles in i) early
detection of disease transition in chronic diseases by facilitating the detection of small deviations in clinical measurements,
ii) monitoring personal disease progression, either using the standard clinical biochemistry test results or the omics level
data. We demonstrate the utility of IRI in clinical and omics level data (proteomics and metabolomics) from two different
longitudinal studies, including prior data processing and data quality check procedures. We have created an integrated
application IRIS incorporating all described steps in an easy-to-use tool in research and/or clinical practice. We compute
the IRI estimates in a healthy population to demonstrate its diagnostic utility in chronic diseases and from a diseased
cohort to demonstrate its potential in disease monitoring.
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Introduction

Last decade has seen significant advancement of modern

statistical and AI methodologies for interpreting numerical

healthcare information, such as the utilisation of longitudinal

health record data from an individual for the early disease

detection [1]. However, we have not yet witnessed significant

changes in routine healthcare and clinical practice partially due

to the lack of statistical methodologies fit for purpose to handle

these data at the personal level and the blackbox nature of some

of proposed algorithms [2; 3]. It is still common practice today

when consulting a medical practitioner, a biological sample is

taken and some clinical laboratory tests are run testing for

clinical biomarkers that are believed to be associated with

potential disease(s). For any of these biomarkers, a reference

interval is compared with the test result of that sample; when

the result is within the interval, a normal reading is declared,

otherwise further clinical tests may be advised.

The current reference interval estimation procedures mostly

rely on cross-sectional data, i.e. a cross-sectional population

of healthy subjects. This constraint makes them difficult to

be implemented for early disease diagnosis, since patients at

the early stage often behave similarly as the general healthy

population. A novel concept of a personalised version of

reference interval has been recently introduced; these intervals

are referred to as the Individual Reference Intervals (IRI) [4; 5].

This idea enables a more precise interpretation of reference

intervals as it utilises historical individual data, and hence the

IRI is more personalised and narrower than the population-

based version. This makes the IRI an appropriate tool for

assisting the early stage disease diagnosis.

In the last few years, extensive efforts have been made

for integrating multi-omics data in order to provide a better

understanding at the molecular level of diseases, including

chronic diseases [6; 7]. Unlike the clinical biochemistry data,

omics technologies usually give vast information in a high-

throughput and multi dimensional fashion. It is therefore

considered cost effective and comprehensive [8]. Some omics

technologies, such as proteomics and metabolomics, are now

even frequently incorporated in routine biological and medical

studies [9].

By definition, chronic diseases require medical attention

that last for one year or more, and they may progress

over time[10]. Patients with chronic diseases are frequently

diagnosed late, when symptoms are set and the prognosis

is poor. From this perspective, we hypothesise that the

importance of utilizing omics data in defining disease sub-types
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and relationships between chronic diseases is self evident, the

IRI approach is instrumental in the diagnosis of disease onset.

In this manuscript, we aim to answer the question: How

can we utilize individual’s own data together with

his/peers’ as baseline to calculate reference intervals for

a key parameter(s) meaningful for identifying disease

onset/progression. We have developed and described an

extension of the IRI method of Pusparum et al. [5], which allows

for the adjustment of the IRI for covariates (e.g. age, sex).

The methods are illustrated on clinical biochemistry and omics

data (metabolomics and proteomics). In particular, two real-life

datasets: the unique high-dimensional clinical and multi-omics

longitudinal data of IAM Frontier study (IAF) [11] and the

longitudinal multi-omics data of a case-control study in patients

with irritable bowel syndrome (IBS) [12]. With both datasets

we have performed an association analyses for discovering the

relationships between several chronic diseases (CVD, CKD, and

IBS) and omics data. For some selected clinical and omics

biomarkers, the IRIs are computed. These procedures are

further referred as the IRIS workflow, which includes a pipeline

for automated checks for some of the assumptions underlying

the IRI. The pipeline is available as an R Shiny app: IRIS. The

procedures are explained in detail in Section 2. We employ our

recent IRI estimation methodology and its extensions developed

by Pusparum et al. [5] for calculating all IRIs in this study.

We also show two crucial roles of IRI in early detection

of disease transition and in monitoring personal disease

progression.

Throughout this manuscript, 1) a subject has the same

meaning as a person/an individual; 2) subject time series

refer to a series of a clinical or omics values measured in one

subject over a period of time; 3) a feature means a particular

biological parameter that is measured from a laboratory test

or from omics technologies i.e. a clinical feature comes from

a clinical laboratory - total cholesterol, glucose, creatinine

are clinical features while KIM-1 and CCL-28 are proteomics

features; and 4) a biomarker refers to a particular biological

feature which serve as indicator for health- and physiology-

related assessments, or signs of a normal or abnormal process

(related to diseases).

Materials and methods

Datasets
Two datasets were used: the IAM Frontier (IAF) study and a

study on the irritable bowel syndrome (IBS). The IAF dataset

comes from a unique small-scale, high-dimensional longitudinal

cohort study that ran for 13 months in 30 healthy subjects,

consisting of 15 male and 15 female participants. The study

specifically targeted healthy subjects within the age range of

45-59. The subjects were selected based on the inclusion criteria

of not suffering from a chronic disease, diagnosed and currently

followed-up by a medical specialist, including asthma, chronic

bronchitis, chronic obstructive pulmonary disease, emphysema,

myocardial infarction, coronary heart disease (angina pectoris),

other serious heart diseases, stroke (cerebral haemorrhage,

cerebral thrombosis), diabetes, cancer (malignant tumour,

also including leukaemia and lymphoma). The age range was

selected because the highest prevalence of onset of these chronic

diseases occurs from the age of 45-65. At monthly visits,

after an overnight fasting, samples (whole blood, plasma,

urine, stool) were collected and sent to accredited laboratories.

Comprehensive multi-omics and clinical biochemistry data were

Table 1. Overview of the two datasets used in this paper (IAF and

IBS)

Data Cohort M∗ (n) F∗ (n) Age (years) #features

IAF Healthy† 15 15 45-59 (4.24) 88 clinical

249 metabolites

266 proteins

IBS Healthy† 5 19 23-59 (10.89) 24 metabolites

IBS-C 1 21 20-63 (14.21)

IBS-D 10 19 21-61 (12.40)

†Free of chronic diseases at baseline.

∗M is male, F is female participants.

assessed. Self-administered questionnaires on, for example,

health conditions and physical activity were also completed

by the participants. In this article we considered the clinical

biochemistry, proteomics, and metabolomics features of the

IAF study. The clinical biochemistry data consist of 88 clinical

features that were monthly measured by an accredited clinical

laboratory. Furthermore, bi-monthly data of 249 metabolites

measured by NMR metabolomics analytical techniques and 266

proteins from OLINK cardiovascular and inflammation panels

were included in our analyses. All subjects participated in the

study have given their consent for displaying their anonymised

pseudo-names for research purposes i.e. we do not disclose any

of the participants’ real names.

The IBS data were collected from a longitudinal case-control

study that observed and compared healthy subjects to two

types of IBS patients: IBS-C (constipation-predominant) and

IBS-D (diarrhoea predominant)[12]. In this study, a total

of 77 participants were asked to donate their stool samples

on a monthly basis until the sixth month. However, not all

of them provided full samples; therefore, we only included

participants with at least three time points measurements.

Monthly metagenomic sequencing and NMR metabolomics

were also assessed, together with a dietary survey of food

intake and symptom severity at each visit. For this article,

the longitudinal NMR metabolomics dataset consisting of 24

metabolites are analysed. Table 1 presents a further description

of both datasets.

IRIS workflow
The IRIS workflow consists of two steps: IRIS feature selection

and IRIS pipeline. In the first step, a set of features is associated

with the target disease phenotype of interest and a few of the

most relevant features is selected. For the implementation in

preventive practice, we encourage to use phenotype in a form

of predictive risk scores and therefore an IRI would serve as a

predictive tool to assist an early disease detection. In the case

of when the diagnosis has been carried out w.r.t. a particular

disease, the set of features may still be associated with the

binary outcome resulted from the diagnosis (1 if disease is

diagnosed and 0 otherwise). The IRI would then allow to

monitor the disease progression based on the relevant selected

features. In the second step, the selected features, we further

refer them as biomarkers, are entered the IRIS pipeline. In this

pipeline, we analyse each biomarker following the assumption

that the subject time series should be in a stable state. Still in

the pipeline, we finally compute the IRI for each biomarker.
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IRIS feature selection
The aim of IRIS feature selection step is to identify (potentially)

relevant features with the phenotype of interest. We have

included two datasets to demonstrate unique implementations

of IRIS workflow in: IAF data to demonstrate ability in the

early disease detection which needs a risk distribution; IBS data

on identifying potentially disease progression and parameters to

look across disease sub-phenotype.

For the IAF dataset, clinical data were collected in a high

throughput fashion (as per cohort protocol) via laboratory tests

where in practice, usually are available from individuals who are

tested to assess the risks of abnormalities or (chronic) disease

onset. Many clinical features measured in laboratory tests are

known to be associated with an illness or a chronic disease, such

as an abnormal level of albumin may indicate liver diseases,

high creatinine values can be a signal of kidney failures, or

blood glucose levels that are used to identify the diabetes

status. Hence, an IRI can also be estimated for any clinical

biomarkers, for detecting abnormalities that may associate with

a (chronic) disease.

The IAF clinical data is used to compute a 10-year

cardiovascular disease (CVD) risk score [13], with the following

covariates included in the model: age, sex, race, smoking status

(yes/no), systolic blood pressure, diabetes (yes/no), HDL

cholesterol, total cholesterol, and treatment for hypertension

(yes/no). We further performed an association analysis between

the CVD risk scores and each set of metabolomics and

proteomics data. A simultaneous penalised linear mixed model

(SP-LMM), as implemented in the splmm R package, was fitted

for each dataset. This involves a feature selection in a high-

dimensional longitudinal setting [14]. A few metabolites and

proteins with the largest absolute effect size were considered

to be potentially associated with the CVD onset. These

biomarkers were then selected and included in the IRIS pipeline.

The detailed workflow is depicted in Figure 1A.

For the IBS data, an association analysis is performed

for selecting features that can differentiate a healthy subject

from an IBS patient. A generalized linear mixed model

with ℓ1 penalisation was fitted on the log10-transformed IBS

metabolomics data and metabolites with the largest absolute

effect size were selected. A binary response of subjects’ status

(healthy and IBS patient) was considered. For fitting the model,

we used the implementation of the glmmLasso R package [15].

Standard t-tests with a Benjamini-Hochberg (BH) correction

are carried out for comparing the IRI widths between the

healthy subjects and IBS patients. In both the IAF and IBS

modelling, the Bayesian Information Criterion (BIC) value is

used for the model selection.

IRIS pipeline
For each selected biomarker, we performed a data quality check

for ensuring that the subject time series are in a stable state

i.e. the subjects are in a healthy condition over a period of

time. This procedure is part of the IRIS pipeline (Figure 1B)

and it has been implemented in the IRIS application. The

pipeline starts with checking if there are outlying observations

in each time series of one subject. Outliers are defined in

terms of the median absolute deviation (MAD). For each

time series, the MAD threshold was computed. In particular,

x̃ ± Φ−1(0.99)MAD was used to set the lower and the upper

thresholds for the calling of outliers, where x̃ is the median

of each subject time series and Φ−1(0.99) is the 99th quantile

of a standard normal distribution. We also computed the

thresholds and defined outliers for all other features in the

data (besides the selected biomarkers). For each time point

in every subjects, the proportion was taken i.e. the number

of features with outliers proportional to the total number of

features. By default, all outliers will still be included in the IRI

estimation, as they might contain important information and

professionals’ opinions are required to do otherwise. However,

for this study, an arbitrary threshold of 20% was set i.e. if a

particular measurement in the time series is also outlying in

more than 20% of the total features, we assume abnormalities

and hence that measurement will be excluded. All outliers that

are still included and will further be flagged in the final IRI

estimates.

A stable state of subject time series was then assessed

using the nonparametric Mann-Kendall (MK) test of monotonic

trends [16; 17]. We argue that if a monotonic trend is present

within one each time series, it may suggest a decline or a

progression towards a particular health condition (disease),

hence an unstable condition. We chose a nonparametric test,

because in realistic datasets each subject contributes only short

time series (i.e. small sample size). Apart from the MK test for

analysing if either a monotonic increasing or decreasing trend

is present, for each subject, we also computed Spearman rank

correlation coefficients between subject time series and the time

point covariate. In case a monotonic trend and the correlation

are statistically significant, the subject will be excluded from

the IRI estimation. The last step in the data quality check

involves the computation of the variance in each time series.

To support the argument that the subject time series should

be in a stable state, the variance of each time series should

also remain small for all subjects. A similar MAD threshold

was computed; subjects with variance exceeding the threshold

will be excluded. The pipeline overview can be consulted in the

Supplementary Document Figure S1.

Overview of IRI methods
We have implemented the Penalised Joint Quantile Model

2 (PJQM2) for simultaneously estimating the lower and the

upper bounds of the IRIs [5]. This method does not rely on

distributional assumptions, but it makes use of quantile models

that inherit the typical flexibility of the statistical models. With

τ1 (here τ1 = 0.025) and τ2 (here τ2 = 0.975) representing the

probabilities corresponding to the upper and the lower bounds

of the IRIs, the corresponding quantiles are modelled as:

Qi(τ1) = β0 + ui + ziβ1 (1)

Qi(τ2) = β0 + ui + ziβ2, (2)

where β0 is the fixed intercept and ui, zi are the subject-specific

effects. Further, β1 and β2 are the parameters that allow for the

subject-specific IRI widths. The model contains two subject-

specific random effects, ui and zi, that allow for between-

subject variability. A parameter estimation procedure involving

an ℓ2 penalty terms is described in details in Pusparum et al.

[5].

The model allows for covariate adjustment by simply

including additional terms for any covariates. If, for example,

age affects the outcome, then better IRIs can be constructed

if information of subjects of the same age can be shared; this

is approximately the result of these extended models. As the

original theoretical IRI implementation of Pusparum et al. [5]

does not allow for it, as part of this paper, we have extended

our earlier PJQM2 implementation so that covariates can be

included in practice.
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Fig. 1. IRIS workflow for feature selection and IRI calculation. (A) Two clinical and omics datasets are used in this study (IAF and IBS). In the IRIS

feature selection, association analyses are performed on each omics dataset, resulting in a set of potential biomarkers. (B) The selected biomarkers enter

the IRIS pipeline; this includes a data quality check before the calculation of the IRI for each combination of a biomarker and a subject.

In our examples, sex and age are included with the reasoning

subjects’ genetic and biological make ups are generally different

between males and females, and their clinical as well as

molecular level measurements may change as part of the aging

process. The IRI model now become

Qi(τ1) = β0 + ui + ziβ1 + β3age + β4sex (3)

Qi(τ2) = β0 + ui + ziβ2 + β3age + β4sex, (4)

where β3 and β4 are the parameters for the age and sex

effects. The parameter estimation procedure essentially remains

the same as in (1) and (2), except that now Linear Quantile

Mixed Model (LQMM) [18; 19] are fitted with age and sex as

covariates.

Recently, Coşkun et al. [20] proposed another method for

the calculation of a personalised version of reference intervals.

However, their technique relies on the normal distribution. In

real-life settings, it is often difficult to check a distributional

assumption, particularly in rather short-time series such as in

the IAF and IBS datasets. For these reasons, we have not used

this method in this study.

Results

IRI in clinical biochemistry as a standard tool for
assisting diagnosis in clinical laboratory test
We aimed to estimate IRIs for some clinical biochemistry

features available the IAF longitudinal dataset. In particular,

we decided to estimate IRIs of creatinine, as it is widely known

that high levels of creatinine in the blood correspond to kidney

failures, leading to chronic kidney diseases (CKD). In the IAF

study, we collected monthly samples for clinical laboratory tests

over a one year period. However, we only used the first seven

time points for estimating the IRIs and took the last creatinine

measurement at time point 12 or 13 (after ±6 months after the

last measurement) for demonstrating the interpretation of the

IRIs.

Before estimating the IRIs, as part of the IRIS pipeline, we

have first checked for outliers, the presence of monotonic trends,

and the variance of each subject time series. We observed

that several subjects had outlying observations, but we did

not detect any subjects with outliers in more than 20% of the

clinical features. The trend analysis and the variance checking

showed that one subject showed an increasing monotonic trend,

and two subjects had obvious distinct variances as compared to

their peers. Therefore, these three subjects were excluded from

the IRI estimation. Further details on this data quality step can

be consulted in the Supplementary Document Figures S2-S4.

Figure 2 shows the IRI estimates of the creatinine level,

computed using PJQM2 method, with age and sex as additional

covariates. As expected, the IRIs are stretched around each

subject time series and the locations as well as the widths vary

between the subjects. We also see, for example for Adolfina,

that the upper bound is expanded farther away from her time

series measurements. This is in fact a desirable consequence

of the between-subject information-sharing property of the

method[5]: Adolfina has overall smaller observations than the

other subjects, and this is reflected in her IRI, which adapts to

Adolfina’s own data, but also expands into the direction of the

bulk of the data.

The IRIs in practice is shown in Figure 3, where the

historical data (used for estimating the IRIs) and new

measurements are plotted together, with corresponging IRIs.

From the results we can see that the future measurements of

Alfred, Florentina, and Hubert are below the lower IRI bound,
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Fig. 2. The estimated IRIs of creatinine (mg/dl) in the IAF clinical biochemistry data, with age and sex as additional covariates in the model. The

circle dots refer to the subject time series used for the IRI estimation. Outlying observations are included and they are flagged and showed as red dots.
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Fig. 3. The estimated IRIs of creatinine (mg/dl) of ten subjects in the IAF clinical biochemistry data. Seven previous measurements (grey circles) were

used for the estimation. The blue horizontal lines represent the IRIs, the shaded green areas are the population-based reference intervals [21]. A green

dot is presented for each subject referring to a future measurement i.e. the last measurements collected in the study and not used for the IRI estimation.

The IRIs should be used to interpret the future measurements. E.g. the new measurement of Hubert suggests a creatinine abnormality.

while for Adolfina, Rosanna, and Zulma they are somewhat

on the borderline. For these subjects, their last measurements

can be an early sign of hypocreatinemia resulted from the

failures of liver function and low-protein diet Had those new

measurements been located in upper borderline or outside the

upper bound, it might have been an early caution of CKD onset.

IRIs derived from omics data provide personalised
normal values for CVD diagnosis
Clinical laboratory tests are often considered as a golden

standard in assisting disease diagnosis. Alternatively, we have

also seen the prospective of omics data such as proteomics

and metabolomics in supplementing medical diagnosis, as

they are likely to be close to phenotype and therefore may

benefit as a disease’s biomarker [6]. In addition, omics

technologies are also becoming cheaper and more accessible

[6], offering a more affordable analysis to complement the

common clinical laboratory test. In this study, using the

IAF data we examined the most predictive metabolites and

proteins w.r.t. cardiovascular diseases (CVD). The IAF data

was indeed collected from ’apparently’ healthy subjects who

did not suffer or were not diagnosed with CVD. However,

as the participants were in the highest prevalence state of

chronic disease onset, according to their age, there is still a

risk related to lifestyles and physical activities. From the IRIS

feature selection, we identified five and ten most discriminating

metabolites and proteins related to the 10-year CVD risk scores.

The Supplementary Document Section 1.1 can be consulted for

further details of the model. Table 2 explains the list of selected
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Table 2. Estimated effect sizes of each metabolites and proteins

from the metabolomics and proteomics association analysis against

CVD risk scores. The selected biomarkers are in bold face.

Metabolomics Proteomics

Biomarker Estimate Biomarker Estimate

(Intercept) -24.1155 (Intercept) -28.0100

Age 0.3913 Age 0.0266

sex 5.7284 sex 1.2833

Citrate -5.2821 CCL28 3.0866

Glucose 0.3252 GRN 1.6412

Linoleic acid 0.5356 ICAM-2 -11.8859

Lactate 0.2132 IL2-RA 3.3319

S LDL PL 20.2414 KIM1 3.3424

MARCO 0.2771

MMP-10 -0.7601

SELP 6.0702

SHPS-1 -2.8197

THPO -0.2302

proteins and metabolites together with the estimated effect size.

In this manuscript, for illustration purposes we chose citrate

and phospholipids in small density LDL cholesterol (S-LDL-PL)

from the metabolomics dataset as they give the largest effect

size. Analogously, ICAM-2, SELP, and KIM1 were chosen from

the proteomics dataset. The scatter plots of these biomarkers

against the CVD risk scores in Figure 4 shows a negative

association between the CVD risk scores and citrate as well as

the ICAM-2 protein, consistent with their negative estimated

effect sizes.

We performed a data quality check as explained in the IRIS

pipeline in Figure 1B for each metabolite and protein. Figure

5 presents the complete outlier identification of citrate. For

this metabolite, we found that Octave’s citrate measurement

at the first time point is outlying, and at the same time

point, his measurements are also outlying in 21.3% metabolites.

Therefore, we excluded his first citrate measurement from

the data. The second measurement of Cyrille should also

be removed (26.9% of metabolites are outlying at this time

point), but at the end, we completely excluded Cyrille

from the estimation as a monotonic trend was significantly

present. Based on the trend analysis and variance checking (see

Supplementary Document Figure S5-S6), seven subjects were

eventually excluded.

Figure 6 shows the estimated IRIs of citrate in metabolomics

dataset, with age and sex as additional covariates in the

model. Similarly, these IRIs can be used for interpreting

the future measurements of the subjects. From Table 2, a

negative coefficient was estimated for citrate, meaning that

higher citrate levels are more favourable w.r.t. CVD. The

IRI interpretation may hence be more focused on the future

measurements below the lower bound. Results of other selected

metabolites and proteins can be found in the Supplementary

Document Section 3.1.

IRI as a monitoring tool for subjects with Irritable
Bowel Syndrome (IBS)
For the IBS dataset, we aimed to estimate IRIs for biomarkers

measured from both healthy and diseased individuals diagnosed

with IBS. Unlike the routine reference intervals that provide

normal values for detecting abnormalities, here we show how

we can utilise IRIs for disease monitoring. The IRIS feature
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dataset. An example: Cyrille’s measurement at the second time point.
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Fig. 6. The estimated IRIs of citrate (in mmol/l) in the IAF metabolomics data, with age and sex as additional covariates in the model. The circle dots

refer to the subject time series used in the estimation. Outlying observations are included and they are flagged and shown as red dots.

selection suggested the three most discriminating metabolites:

hypoxanthine, glucose, and b-arabinose (see Supplementary

Document Section 1.2 for the model description). The effect

size estimates as well as the estimated odds ratio are presented

in Table 3. In this manuscript, we decided to show the analysis

of hypoxanthine as the largest effect size is contributed by this

metabolite.

Figure 7 presents the estimated IRIs for hypoxanthine for

the three types of cohorts, after the data quality check was

done in the IRIS pipeline. For the healthy and IBS-D IRIs,

the estimates were obtained with models that include both age
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Fig. 7. The estimated IRIs of hypoxanthine (relative abundance) in the IBS metabolomics data for the healthy cohort, IBS-C and IBS-D patients.

Table 3. Estimated effect sizes of each biomarker from the IBS

metabolomics association analysis against the IBS status. The

selected biomarkers are in bold face.

Biomarker Estimate Odds ratio

(Intercept) 0.1802 1.1974

Age 0.0137 1.0138

b arabinose 1.0618 2.8915

Glucose 0.3398 1.4046

Hypoxanthine -3.0712 0.0464

and sex. For the IBS-C IRIs, however, we only incorporated age

(due to a highly imbalance of sex covariate). We clearly see that

healthy subjects in general have larger hypoxanthine IRIs, both

in terms of location as in terms of width, than the IBS patients.

It has been shown that fecal hypoxanthine abundances were

significantly lower in IBS-C and IBS-D patients, and therefore

the decline of hypoxanthine abundances has implication to the

IBS pathogenesis [12]. Similarly, we also observed that the

IRI widths are clearly smaller in IBS-C and IBS-D patients,

as compared to the healthy subjects (see Supplementary

Document Table S1).

The healthy IRIs can be interpreted as the normal values,

where if these subjects have new measurements outside their

IRIs, especially below the lower bound, it should be an early

warning of a potential IBS disease. The interpretation becomes

slightly different for the IBS IRIs. For IBS patients, the

estimated IRIs can serve as a monitoring tool for disease

progression, either an improvement or a decline, as a result

of e.g. an intervention from drug therapy or medication. To

illustrate, if the next hypoxanthine measurement of subject 2

in the IBS-D group is larger by 1 unit than his/her IRI, it

then would suggest an improvement. Certainly, this analysis

should also be still supported by the professional assessments.

Several IRIs from the IBS-C group appear to deviate from their

peers, e.g. IRIs of subject 4, 20, and 69. These IRIs are similar

in location and width as the healthy IRIs, and they perfectly

capture the within-subject variation. If the individuals in this

group are truly IBS-C patients, these IRIs demonstrate that

the IBS state can differ from one subject to another w.r.t.

to hypoxanthine. Results of other selected metabolites can be

consulted in the Supplementary Document Section 3.2.

Discussion

Here we propose IRIS as a workflow for analysing clinical

and omics data to complement early-stage diagnosis and

monitoring of chronic diseases. The IRIS workflow consists

of two steps: IRIS feature selection and IRIS pipeline. In

IRIS feature selection, we describe procedures that can find

the most discriminating features in clinical, metabolomics

and proteomics datasets, w.r.t. cardiovascular diseases (CVD)

and irritable bowel syndrome (IBS) as examples. The

selected biomarkers are then analysed by computing Individual

Reference Intervals (IRIs) [5; 4] with an adjustment of sex and

age as the additional covariates. Prior to the IRI estimation,

the IRIS pipeline that includes a data quality check is also

proposed for checking the underlying IRI assumptions; the

subject time series come from a healthy population (or a

corresponding diseased population) in a stable state. An online

IRIS application has been created incorporating all the steps in

the pipeline for the research and/or clinical practice purposes.

The workflow was implemented in clinical, metabolomics,

and proteomics datasets collected in two longitudinal studies

[11; 12].

In the clinical data, we show that the estimated IRIs of

creatinine can support the diagnosis of CKD. Creatinine is

commonly involved in the detection of CKD, particularly by

calculating the estimated glomerular filtration rate (eGFR)

which incorporates patients’ age and sex information [22; 23].

Similarly, the extension of the IRI estimation method to allow

for covariates in the model (here: age and sex), makes it possible

to complement the CKD diagnosis. In the IAF dataset, the IRI

interpretation is not straightforward as all the samples were

collected from healthy subjects (who did not suffer from CKD)

in a one year period. Therefore, as an illustration, we took their

last measurements and compared them to the IRIs estimated

from the first seven time points. There are no subjects whose

last measurements exceed the upper bound of IRIs, suggesting

that the population was probably free from CKD during the

course of the study. However, when a study follow-up is to be
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conducted, we can still use these estimated IRIs, as the models

include age and sex of the participants.

In the metabolomics and proteomics IAF dataset, several

parameters have been found to be associated with the 10-

year CVD risk scores. Citrate and phospholipids in small LDL

cholesterol (S-LDL-PL) are the most influential metabolites,

and they have been previously found to be associated with

CVD prediction [24; 25]. A negative association of citrate is

supported by a finding that citrate has a protective effect during

ischemia-reperfusion (I/R) injury that leads into morbidity or

mortality associated with CVD [24]. The most discriminating

proteins; ICAM2 and KIM1 have also been proved to be

differentially expressed in coronary artery disease [26; 27].

An analogous interpretation as in the creatinine IRIs can be

drawn from the metabolomics and proteomics IRIs. Since the

metabolomics and proteomics data only consists of maximum

seven time points, we did not show a similar implementation as

in the creatinine IRIs.

The estimated IRIs can serve as a monitor for disease

progression, especially for chronic diseases. We show the IRI

estimates in hypoxanthine, where this metabolite was found to

be associated with IBS. Increased level of fecal hypoxanthine

abundances proved to improve the IBS progression, especially

in IBS diarrhea predominant (IBS-D) patients [12]. Therefore,

when fecal metabolomics measurements are available, the IBS

patients can have their hypoxanthine abundances measured

from time to time in order to monitor their IBS condition via

IRIS.

Future studies with real-life clinical and omics data with

different time series will give multitude of examples of the IRI

implementation. The PJQM2 estimation method has a property

of calculating IRIs of one single clinical or omics feature, taking

into account subjects’ age and sex information. Integration with

other related features or even other omics data could give a

more comprehensive insight and would be immensely beneficial

for the precision health domain.

Key points:

• Individual reference intervals (IRI) give personalised

interpretation of numerical clinical and omics data

by utilising time series values from the same subject

as well as peer’s results. They have unprecedented

application potential in healthcare and clinical

practice.

• We have expanded the state-of-the-art IRI model to

allow for subject’s age and sex adjustment, and we

share the guidelines in the IRIS workflow.

• We demonstrate the utility of IRI in clinical and

omics data, both in healthy and diseased individuals,

that can play a major role in the early detection of

chronic diseases and personal monitoring of disease

progression.

• We present an easy-to-use two step workflow packaged

as a toolbox IRIS that integrates all the required steps

prior to computing the IRIs.
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