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Abstract. Testing and isolation of infectious employees is one of the critical 
strategies to make the workplace safe during the pandemic for many organiza-
tions. Adaptive testing frequency reduces cost while keeping the pandemic under 
control at the workplace. However, most models aimed at estimating test fre-
quencies were structured for municipalities or large organizations such as univer-
sity campuses of highly mobile individuals. By contrast, the workplace exhibits 
distinct characteristics: employee positivity rate may be different from the local 
community because of rigorous protective measures at workplace, or self-selec-
tion of co-workers with common behavioral tendencies for adherence to pan-
demic mitigation guidelines. Moreover, dual exposure to COVID19 occurs at 
work and home that complicates transmission modelling, as does transmission 
tracing at the workplace. Hence, we developed bi-modal SEIR model and R-shiny 
tool that accounts for these differentiating factors to adaptively estimate the test-
ing frequency for workplace. Our tool uses easily measurable parameters: com-
munity incidence rate, risks of acquiring infection from community and work-
place, workforce size, and sensitivity of testing. Our model is best suited for mod-
erate-sized organizations with low internal transmission rates, no-outward facing 
employees whose position demands frequent in-person interactions with the pub-
lic, and low to medium population positivity rates. Simulations revealed that em-
ployee behavior in adherence to protective measures at work and in their com-
munity, and the onsite workforce size have large effects on testing frequency. 
Reducing workplace transmission rate through workplace mitigation protocols 
and higher sensitivity of the test deployed, though to a lesser extent. Furthermore, 
our simulations showed that sentinel testing leads to only marginal increase in 
the number of infections even for high community incidence rates, suggesting 
that this may be a cost-effective approach in future pandemics. We used our 
model to accurately guide testing regimen for three campuses of The Jackson 
Laboratory. 
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1 Introduction  

The Jackson Laboratory (JAX) is a free-standing not-for-profit genetics research insti-
tute of ~2,800 employees distributed in three major campuses in Maine, California, and 
Connecticut. JAX is unique in that it is a hybrid of a pure academic research institution, 
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and a production unit providing mice and services to universities and pharmaceutical 
companies. In Mar’2020, the pandemic was gripping the world and lockdowns were 
being announced throughout the USA. Following the guidelines of the respective state 
governments, all three campuses of JAX were shut down. The immediate measures to 
reopen Jax campuses were reducing the onsite workforce size, requiring social distanc-
ing and mask-wearing as guided by CDC, and importantly, employee testing to identify 
and isolate infectious staff from the workplace and thereby minimizing consequential 
infections. When JAX initiated universal screening for COVID-19 infection to identify 
asymptomatic viral shedders, there was a vigorous debate as to how frequently should 
the workforce be tested. It was recognized that testing frequency has not only major 
cost implications and disruption of work processes, but also social consequences be-
cause of the reluctance of some members of the workforce to the discomfort of frequent 
testing. Using population modeling approaches, it had been recommended that the op-
timal testing frequency in a university setting should be every 3 days. Earlier in the 
pandemic, this was neither financially nor logistically feasible for a distributed work-
force as for JAX. Moreover, the work environment in an institution that has production 
and service in addition to lab-based biomedical research is significantly different from 
a university comprising tens of thousands of young students who are highly mobile 
during the day and evening.  
 
Therefore, we decided to develop an algorithmic approach to dynamically determine 
the optimal testing frequency that takes JAX’s employee behavior characteristics into 
account. As an experimental probe, the testing was initiated at weekly intervals to ob-
tain baseline information on our three geographical sites, California, Maine, and Con-
necticut. Upon investigation, we found that population (community) positivity rates and 
employee sizes at each campus contributed to the very different incidences of positives 
at different campuses. In addition, the positivity rates among JAX employees were sig-
nificantly lower than the population positivity rate in each of the respective state of the 
campus. We hypothesized that the demographics of JAX staff and an effective 
COVID19 education program at Jax led to behaviors that lowered exposure of JAX 
employees and their families to COVID19 resulting in lower positivity rates among 
JAX staff as compared to the local community rates. Another important characteristic 
of workplace spread of COVID19 is that the employees of an organization are exposed 
to COVID19 both at the workplace and at social setting when they return home. The 
exposure would depend on a variety of factors including masking and social distancing 
regulations at work, idiosyncratic employee behavior in personal social settings, and 
exposure potential of the employee’s family. Given that although these parameters 
change across campuses and over time, the trends were consistent for each worksite. 
Therefore, we wanted to have an adaptive testing program so that would take account 
of the consistent patterns we observed at each state site, and project the minimal testing 
frequency for optimal cost and health effects for the workforce.  

Compartmental models [1-2,15], especially the variants of SEIR models [3-8,15], 
have been shown to be effective at estimating trends of epidemics. For dynamic popu-
lations, the floating population models or multi-group models [9-12] have been pro-
posed in the literature. They are effective at capturing trends of an epidemic due to 
within-group spread as well as exposure to a few distinct homogeneous groups. The 
goal typically is to estimate trends in each homogeneous group and guide policies such 
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as travel and closure. Though the multi-group compartmental models have been shown 
to be effective at estimating trends of the epidemic when multiple groups interact such 
as incorporating floating population, they are complex and do not control for the aver-
age rate of transmission of infection from an infectious employee nor account for spe-
cific characteristics of a workplace with limited populations (between 500-5000) and 
employees who are not outward-facing (i.e. whose job is direct contact with the general 
public). Therefore, workplace modeling is different from multi-group modeling in sev-
eral ways including the goal, and the population, population flow, the parameters to be 
measured, and interventions to be deployed. The goal of the workplace model is to 
estimate the minimal testing frequency required to achieve stringent control of the num-
ber of infections at the workplace to be below a pre-chosen threshold, rather than just 
flattening the curve. Unlike multi-group models, there is no jth cluster in the workplace 
model. Staff come to work from home, interact at the workplace and return to their 
homegroup; thus, they constitute a fixed sample of a group that acts as carriers of ex-
ternal infections to the workplace and carriers of workplace infections back to their 
homegroup. The workplace model needs to control a few well defined and controllable 
factors such as interaction among employees (e.g., masking, population size at work, 
social distancing), contact tracing, testing, and quarantining. Hence, a workplace model 
must account for exposure in the home group as well as at work while accounting for 
the workplace measures and community (aka population) parameters. Separate work-
place modeling can help quantify the impact of workplace measures (e.g., testing, mask, 
social distancing, etc) on the transmission of infection and should be used in the mod-
eling along with the population (home group) parameters such as community positivity 
rate and exposure rates. The dynamic nature of these population parameters can easily 
be accounted for through public sources and testing frequency estimates be adjusted. 
Assessing workforce COVID rates also helps adjust the impact of population positivity 
rates since employee exposure in outside social settings will be strongly affected by 
adherence to regulations governing the homegroup and to personal risk tolerances. 

To accomplish this, we developed a bi-modal SEIR (bSEIR) model to model 
COVID19 incidence & transmission at workplace and developed an R-shiny based tool 
to estimate the optimal testing frequency of employees to control the number of active 
cases at workplace. The model is based on the number of onsite employees, population 
positivity rate in the respective county, the quantified relative risk of infection assuming 
exposure of employees to COVID19 outside the workplace (using a Hazard ratio or 
HR), empirical internal transmission rate through contact tracing efforts in the work-
place, and sensitivity of testing. Given the recent waves of vaccinations and their vary-
ing vaccine efficacy rates, our model was adjusted to account for it. The tool allows 
modeling testing frequency for sentinel or cohort testing.  This is a stratagem where a 
fixed proportion of workers would be tested at a particular time interval until the entire 
cohort has been tested. In our bSEIR modeling, we assume that the population risk of 
all employees be homogeneous as most onsite employees live typically within com-
mutable distance from the workplace. We also assume that the interaction among the 
workers is limited only to the workplace i.e., infectious employees may infect their 
colleagues only at workplace even though some workers will have social interactions 
outside the workplace. 
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Our bi-modal SEIR (bSEIR) model allows simple modeling of dual exposure (within 
the workplace and at home) and testing frequency by accounting for easily measurable 
community and workplace parameters of epidemic incidence and transmission. The 
simulations show the importance of employee education and support to minimize their 
exposure outside the workplace in reducing the testing frequency required. Further-
more, sentinel testing, a logistically feasible testing paradigm, was evaluated and shown 
that it only marginally (2-6%) increases the total number of infections over a 3-month 
period. In addition, our simulations show that a moderate vaccination rate of 40-60% 
among employees coupled with reduced population positivity rates would have a multi-
fold reduction in testing frequency requirements. Employee testing may not be required 
at very low population positivity rates if employees continued to exercise caution in 
social settings. We used our tool to generate weekly reports to forecast the expected 
numbers of infections and to recommend testing frequency for each campus of The 
Jackson Laboratory. Overall, our model helped our organization to minimize the cost 
of testing while controlling the epidemic at our workplace. 

2 Methods 

SEIR model  
for a Closed 
community 

 
 

bSEIR model  
for a 

Workplace 
 

Figure 1: Modeling the pandemic: (top) SEIR model for the closed community, and 
(bottom) bi-modal SEIR model for the workplace (open system) - b1 and b2 are con-
version rates from S to E due to exposure work and at home group respectively. 
 
2.1 SEIR model for a closed community 

SEIR (Susceptible, Exposed, Infectious and Removed) model [3-8] (Figure 1, top 
panel) is best suited to model pandemics in a closed community. As per an SEIR model,  
the community members belong to one of the four compartments: Susceptible (S) com-
partment where a subset of the community is not immune and not exposed to the virus 
in the current cycle, Exposed (E) compartment where another subset of members are 
infected with the virus but are not infectious yet, Infectious (I) compartment where in-
fected members are infectious, Recovered/Removed (R) compartment holds the mem-
bers who are infected and recovered from the infection (and become immune to the 
virus in this article) or succumbed to the infection.  Assume N is the total number of 
people in the community, S, E, I, R are the number of people in the four compartments 
respectively at time t i.e., S+E+I+R = N. β, α, γ are the conversion rates from compart-
ments S, E, and I to E, I, and R respectively. µ and Ʌ are the natural death and birth 
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rates. The dynamics of the fraction of people in the four compartments are specified in 
the following system of differential equations and can be solved in a closed form under 
certain conditions [15]. 

   
The conversion rates, β, α, γ, are determined by the model parameters (Tables 1 and 2 
along with the Equation 1). For example, β, the conversion rate from S to E compart-
ment, is determined by the average number of members an infectious member can infect 
during his/her infectious period within the community; α, the conversion rate from E to 
I compartment is determined by the average length of the latent period (LP) of the virus; 
γ, the conversion rate from I to R compartment is determined by the average number of 
days from being infectious to symptom manifestation (Pre) or when a person is tested 
positive and hence is isolated.  

 
Parameter Description Default value 

p1 the proportion of asymptomatic cases in SARS-
CoV-2 cases 0.5 

LP SARS-CoV-2 virus latent period (days) 3 
Pre average no. of days being infectious before 

symptoms onset 4 
Total average no. of days an infectious person remains 

infectious  14 
C no of employees an infectious employee can in-

fect in a workforce 1 
Table 1: Parameters characterizing the spread of the pandemic 
 
β1 = C*0.05249  
α   = 1/LP 
γ   = 1/Pre              for symptomatic cases and  
     = 1/test_freq     for asymptomatic cases (see algorithm for the details) 
µ (normal death rate) = 0 
Ʌ (birth rate) = 0 
 

Equation 1: Computing SEIR conversion parameters 

2.2 bi-modal SEIR (bSEIR) to model dual exposure open group 

The SEIR model is applicable only to a closed community where a certain number of 
infected members are present at the beginning of a simulation, and SEIR models the 
trajectory of number of infections within this closed community. However, members 
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(employees) of a typical workplace are exposed to COVID19 both within and outside 
the workplace on daily basis. Therefore, we extended the SEIR model to this setting 
(bSEIR model in Figure 1, the bottom panel) where susceptible employees are exposed 
both within (with the rate of β1) and outside (with the rate of β2) the workplace every 
day. The internal exposure rate, β1, depends on a workplace’s extant of pandemic and 
the protective measures adopted. The external exposure rate, β2, is determined by the 
probability of exposure to the community infections (hazard ratio or HR) and the local 
community or population positivity rate (P). The HR is estimated based on the empiri-
cal test data from the workplace, described in the following subsection. The bSEIR 
model accounts for the infections of employees from their home community as daily 
incoming waves of infections, followed by conversions from E to I and I to R as in an 
open community model. The bSEIR model is aimed at controlling the average number 
of employees in I, typically to be under 1 in our case, in small to moderate-sized organ-
izations 

We account for both symptomatic and asymptomatic types of COVID19 positive 
cases present in a workforce with a pre-specified proportion. We assume that asympto-
matic positive cases are isolated upon being tested positive; while symptomatic cases 
are isolated upon symptom onset or tested positive before the symptoms manifest, 
whichever is earlier. The employees traced to be in close contact with COVID19 posi-
tive employees will be quarantined upon the identification of both types of cases. We 
also assume that the test can only detect infectious cases (with a specified sensitivity 
and specificity) but not all infected cases, and the infectiousness is uniformly distrib-
uted over the infectious period for both types of COVID19 positive cases. The assump-
tions are summarized in Table 3. 

We implemented our bSEIR model using the deterministic implementation of the 
SEIR model in [2]. A user set parameter is available to control the number of infectious 
employees that can be tolerated throughout the staggered testing period in our online 
tool. The default values of the parameters of the progression of infection and occurrence 
of symptoms are obtained from [1].  The tool can recommend the minimal daily test 
proportion that satisfies the requirement of this parameter. The parameters along with 
their explanation and default values are given in Table 2. The assumptions of bSEIR 
model and their impact is explained in Table 3. 

 
 

Parameter Description default value comments 
C no of employees, an 

infectious employee 
can infect in a work-
force 

1 depends on the pro-
tective measures in 
the organization 

Posrate 
(Positivity 
rate) 

no of positive cases 
per 1000 tested in the 
local community  

daily positivity 
rate in the corre-
sponding state or 
county    
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HR 
(Hazard Ratio) 

probability of expo-
sure to the infections 
in the local commu-
nity outside the work-
place 

0.2 empirically esti-
mated using test 
data. (see methods)  

I no of infectious em-
ployees that are toler-
ated at a workforce 

1 To be adjusted 
based on the organ-
ization characteris-
tics (e.g. # of em-
ployees, nature of 
work, testing and 
social distancing 
measures) and pop-
ulation parameters, 
and feasibility   

N no of employees on-
site 

workplace spe-
cific 

 

unit time unit week Either week or day   
contact-

TracingEff 
proportion of close 
contacts of a positive 
case that can be 
traced 

0 We set it to 0 for a 
conservative esti-
mate and due to low 
internal transmis-
sion rate  

sens test sensitivity 0.95 This should be ad-
justed based on the 
testing kits used.  

spe test specificity  1 This should be ad-
justed based on the 
testing kits used.  

Table 2: Parameters in the bSEIR model. Choice or calculation of their values is ad-
dressed in Methods 
 

 
 

Assumption Impact Range of parameters 
COVID19 tests are pos-
itive for infectious staff 
only. 

Results in false negatives, 
will miss those in E, but not 
infectious. 

Test sensitivity= 0.5 to 
0.95. Our default value is 
0.95 if PCR testing is used 

Asymptomatic staff are 
identified by positive 
test results and are quar-
antined immediately 

There is a delay between 
being tested and being 
quarantined. They could 
spread during this period.  

Assuming there is no de-
lay between a positive test 
result and quarantining. 
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symptomatic employees 
are identified either by 
symptoms or testing 

no of days being infectious 
before symptoms onset var-
ies among employees. Only 
the average period is ac-
counted for in the model. 

Mean number of days: 4 
User can change this pa-
rameter from 3 to 7  

Fixed proportion of 
asymptomatic and 
symptomatic positive 
cases 

Affects how people in I 
compartment move to R 
compartment 

Default value: 0.5 
User can change this pa-
rameter from 0 to 1  

Employees catch the vi-
rus 1) exposure to local 
population, 2) by col-
leagues at workplace 

Resulted in bSEIR model. It 
doesn’t account for varia-
tion among employees. 
Only averages are ac-
counted for. 

Three major parameters of 
bSEIR model are :1) pos-
rate, 2) HR, and 3) C. pos-
rate is projected for a fu-
ture week based on histor-
ical data and HR is esti-
mated using empirical 
data.  

tests negative while be-
ing healthy or while in-
cubating the virus (in-
fected, not infectious 
yet) 
 

It provides a conservative 
estimate of testing fre-
quency. 

The incubation parameter 
can be adjusted by the 
user. The default value is 3 

Infectiousness is uni-
formly distributed over 
the infectious period, 
and assumed to be the 
same for symptomatic 
and asymptomatic cases  

This leads to higher-than-
required testing frequency 
as infectiousness tappers 
off over the course of infec-
tion. 

This can be handled by the 
user settable parameter to-
tal. The default value is 14 

Infection independence. 
Any two infectious em-
ployees infect a non-
overlapping set of em-
ployees at the work-
place  

If this assumption is vio-
lated, the model estimates a 
higher number of infections 
than actual, leading to 
higher-than-required test-
ing frequency  

The internal transmission 
rate can be adjusted based 
on the tracking data at the 
workplace. 

Low internal transmis-
sion rate. Assumes good 
protective measures: so-
cial distancing and 
masking are effectively 
imposed. 

If the internal transmission 
rate goes higher, the inde-
pendent infection assump-
tions will be violated and 
lead to a higher-than-re-
quired testing frequency. 

The parameter C can be 
adjusted to account for the 
deviations from this as-
sumption.  

Employees are either 
fully onsite or fully off-
site. All partial onsite 
employees are 

Leads to higher-than-re-
quired testing frequency. 

An organization can deal 
with it either by adjusting 
the effective number of 
employees by weighing 



9 

accounted as fully on-
site for the modeling 
purposes and the model-
ing is performed only 
for on-site employees.  

each employee propor-
tional to their onsite time. 

Infected employees 
won’t be reinfected 
within the period moni-
tored 

Leads to lower-than-re-
quired testing frequency.  

Users can keep the number 
of employees at the same 
level as the number of on-
site employees at any time 
thus getting a conservative 
estimate of testing fre-
quency. 

The workforce is not 
outward facing 

The outward-facing work-
force may have a higher 
chance of being infected 
e.g., sales staff in grocery 
stores and healthcare staff. 
It can lead to higher HR and 
violating the independence 
assumptions.  

The user can set HR to an 
appropriate level as data 
emerges with a good con-
tact tracing. Our model 
can estimate HR based on 
observed data on infec-
tions and internal trans-
mission rates. 

 
Table 3: Assumptions of Bi-modal SEIR model. 

 
 
bSEIR Algorithm 
Let us assume the following: 
SEIR(ˑ): is an R function in the R package EpiDynamics [13] to estimate the fraction of 
employees in compartments S, E, I, and R at next day given the conversion rates 
prop: proportion of employees that are tested every day   
γ1 (conversion rate from I to R for asymptomatic cases) = prop*sens + (1-
prop*sens)/total 
γ2 (conversion rate from I to R for symptomatic cases) = prop*sens + (1-prop*sens)/Pre 
D: number of days to estimate the fractions 

 
bSEIR () 
let β2 = posrate × LP × HR 
for t in 1:D, do the following 

let st-1, et-1, it-1, rt-1 be the fraction of employees in compartments S, E, I, R at day 
t-1 respectively 

let ast, aet, ait, art be the fraction of employees in compartments S, E, I, R at day 
t respectively due to asymptomatic infections 

let sst, set, sit, srt be the fraction of employees in compartments S, E, I, R at day t 
respectively due to symptomatic infections 

< ast, aet, ait, art> = SEIR(µ, Ʌ, β1, α, γ1, st-1, et-1, it-1, rt-1 ) 
< sst, set, sit, srt> = SEIR(µ, Ʌ, β1, α, γ2, st-1, et-1, it-1, rt-1 ) 



10 

 
st= p1× (ast - β2) + (1- p1)× (sst -  β2) 
et= p1× (aet + β2) + (1- p1)× (set +  β2) 
it= p1× ait + (1- p1) × sit  
rt= p1× art + (1- p1) × srt 

end of for loop 
 

Equation 2: Algorithm for bSEIR Model 

2.2.1 Incorporating vaccination rate and efficacy in the bSEIR model 

The vaccine rate (Vr) is defined as a fraction of employees fully vaccinated i.e., Vr = 
(#of employees fully vaccinated)/(#of employees in the organization). If Vri is the pro-
portion of employees received vaccine i (e.g., Moderna, Pfizer, J&J, etc) whose efficacy 
is Vei, then the overall efficacy of vaccination is estimated as weighted efficacy of all 
vaccine choices received by the workforce, as given below: 

 
Ve = ∑ 𝑉𝑟𝑖 ∗ 𝑉𝑒𝑖!

"#$  
 
We can incorporate vaccination information in two different ways, by  
 
1. Estimating the effective number of employees in S compartment i.e., Se = S*(1-Ve). 
The underlying assumption is that S*Ve employees neither be infected nor be infec-
tious, the assumption supported by recent studies [14]. 
or 
2. Adjusting employee exposure to account for vaccinated employees i.e. HRe = 
HR*(1- Ve)½. The underlying assumption is that the vaccinated employees’ exposure 
to COVID will not lead to being infectious.  
 
Of these two choices, we use (1) for its simplicity and ease of estimation. 

 
2.2.2 Hazard ratio (HR) estimation     

Method 1: The hazard ratio can be estimated using empirical employee testing data. 
The (backward) 14-day moving average positivity rate for day t (Lt) was calculated 
based on the testing data from the Jackson Laboratory. The number of new tests and 
the number of new positive tests each day for each state were downloaded from  
https://covidtracking.com/data/download, and the (backward) state-specific14-day 
moving average positivity rate for day t (Pt) was calculated. The hazard ratio Ht at day 
t is computed as Lt/Pt. Since the number of employees at each campus is small, Lt, hence, 
Ht, are zero when Pt is below 5% (Figure 3). We calculated the average over non-zero 
Ht for a campus and used it as the probability of exposure to the local population risk. 
As shown in Figure 3, Ht estimates are not significantly different among campuses 

 
Method 2: In another method, we estimated the number of infected persons in a week 
based on our simulation model and searched the best HR which minimized the mean 
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squared difference between the observed and predicted number of infected persons in 
a week. To increase the number of data points to estimate HR, we assumed that the 
three campuses had the same HR and pooled the estimation data points from the three 
campuses together. This method is useful when the incidence rates are low. 
 
2.2.3 Community positivity rate projection 

To estimate the testing frequency for a future week, the average daily population or 
local community positivity rate for a future week is needed besides other parameters. 
We assumed the daily positivity rate changed smoothly with time and estimated the 
daily population positivity rates for the next 7 days by polynomial curve (with a degree 
of 2 or 3) fitting of the observed daily population positivity rates during the past few 
months, followed by averaging on the 7 projections. 

3 The Tool (https://rshiny.jax.org/connect/#/apps/156/access) 

  
A screenshot demonstrating predic-
tion of infectious cases at the work-
place with a fixed testing frequency. 

A screenshot demonstrating the predicted 
testing frequency while the number of in-
fectious is under one at the workplace. 

Figure 2: bSEIR R-Shiny tool - The R-shiny interface of the bSEIR tool. Screenshots 
of bSEIR tool for pandemic spread at workplace (left) and estimating testing frequency 
(right). 
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Major predictions or 
features of the tool 

Description Main Parameters 
to set 

Predicting testing fre-
quency 

Weekly testing proportion C, posRate, HR, N 

Estimating spread of 
pandemic – given test-
ing frequency. 

Plot of number of infectious em-
ployees over a period 

C, posRate, HR, N 

Change alerts monitor-
ing. 

Whether the number of infectious 
people in recent tests exceed the up-
per bound; if yes, estimate new test-
ing frequency to get I under control 

If yes, set New 
Obs: no of tests to a 
positive number.  
if no, set it to 0. 

 
Table 3: Predictions available from the tool and the features of the tool 

 
We developed an R-shiny based tool for interactive analysis to predict infected num-

ber of employees at a future time point, to check whether testing frequency to be in-
creased, or to estimate testing frequency. We showed the functions of our tool in Table 
4 and screenshots of the interfaces in Figure 2. The parameters associated with the 
workplace are placed on the left panel of the interface and the parameters associated 
with the spread of the pandemic are placed on the right panel of the interface for ease 
of operation. 

4 Results 

4.1 COVID19 positive cases are detectable even in organizations as small as 
300 employees but depends on community positivity rate 

We conducted a power analysis of our model to identify the occurrence of a single 
infection among a workforce. Figure 3 shows the plots of a minimum size of the 
organization required for different population positivity rates, for different powers of 
detection. The same data is shown in Table 4 for the power of detection at 70% and 
85%. At a population positivity rate of as low as 1%, we can detect the occurrence of 
one infection in an organization of size as small as 300 at a power of 80%. This is 
critical for the testing program to be effective at workplace. 

Community Pos-
itivity rate 

Min #of employees at 
power=0.7 

Min #of employees at 
power=0.85 

0.5% 540 760 
1% 269 379 
2% 134 188 
5% 53 74 
10% 26 36 

           Table 4: Detectability of COVID-19 positive cases 
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Figure 3: Organization size (N) required to detect at least one positive case depends on 
population positivity rate. Four colors stand for detection power of 0.85, 0.8, 0.75, 0.7 
respectively. 
 
 
4.2 Size of the workforce and employee behavior coupled with community 

positivity rate have a major impact on the frequency of testing  

We conducted simulations to assess the influence of population and workplace param-
eters on the testing frequency required to control the number of infectious staff (I) to 
be <=1 at the workplace. The simulations used contact tracing efficiency = 0, clean 
start, monitor from Day1, test sensitivity=0.95, without a gap between sentinel testing 
cycles. The results (figure 4) show that the frequency of testing mostly depends on haz-
ard ratio (HR), size of the workforce and daily population positivity rate. Small to mod-
erate internal infection rates have significant effect on testing frequency for lower pop-
ulation positivity rates or smaller hazard ratios. Large organizations (no of employees 
~5000) need to keep hazard ratio small even for small population positivity rates to 
keep the testing frequency lower to avoid outbreak at the organization. Frequency of 
testing is significantly affected by the size of the organization and hazard ratio, while 
internal transmission rate has a significant impact on testing frequency only when low 
testing frequency is possible i.e., for low HR and low community positivity rate. The 
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sensitivity of testing also has marginal effect on testing frequency (data not shown 
here). 
 

 
Figure 4: Frequency of testing to control the number of infectious employees to be <=1 
(test sensitivity = 0.95, clear start of the cohort, no tracking and monitor the cases from 
day 1, no gap in testing). The frequency of testing mostly depends on the hazard ratio 
and size of the organization. Small to moderate internal infection rates have a signifi-
cant effect on testing frequency for lower population positivity rates (per 1000) and 
smaller hazard ratios. Moderate-sized organizations (EE#=5000) need to keep hazard 
ratio small even for small population positivity rates to control outbreaks at the organ-
ization.  

 
4.3 Sentinel testing leads to marginally higher infections than cohort testing at 

higher HR (Contact tracing efficiency = 0, clean start, monitor from 
Day1) 

Sentinel testing, a schedule of testing all employees over an extended period, is typi-
cally adopted due to its feasibility of logistics and resource availability for testing. For 
example, for a cohort of 400, the population can be tested in blocks of 100 per week 
until all 400 individuals have been tested at least once in the 4-week interval. However, 
we may expect it to lead to higher number of infections compared to testing all employ-
ees at one go i.e., cohort testing. Our simulations (figure 5) show that, over a 90-day 
period, sentinel testing leads to only a marginally higher (2-6% more i.e., fold change 
of 1.02-1.06) infections than cohort testing. The impact will be lower if the hazard ratios 
and population positivity rates are low. Sentinel testing can be further divided into two 
categories, one without gaps between testing cycles and the other allowing variable 
proportion of testing with fixed gaps. The former results in a lower number of infections 
but much higher relative cost, while the later leads to higher average proportion of 
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testing but lower number of total employees infected (data not shown).

 
Figure 5: Ratio of Frequency of testing for sentinel testing vs cohort testing for a fixed 
average weekly proportion of testing of 0.25, 0.33 and 0.5. The analysis is based on test 
sensitivity = 0.95 and Organizational size=500. 

4.4 Impact of Vaccination Rate on Testing frequency 

We conducted simulations to understand the impact of efficacy rates of vaccines against 
COVID19 infections on the testing frequency. We used both models discussed in Meth-
ods section to account for vaccination rates in our bSEIR model i.e., adjusting for HR 
vs adjusting for effective population. Though both models give rise to similar testing 
frequency, adjusting for HR (y-axis) leads to higher frequency of testing (sup figure 
Vac) for a subset of scenarios. 
 

Even a modest vaccination rate has a significant effect on the testing frequency, es-
pecially for medium organizations of size below 1000 employees. The impact is ex-
tremely high for low HR and medium population positivity rates, as highlighted by the 
cyan-colored lines in Figure 6. 
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Figure 6: A modest vaccination rate of 40-60% has a huge impact on testing frequency, 
especially at low population positivity rates or a low hazard ratio of 0.2. Therefore, 
population vaccination, employee vaccination, and continued education of employees 
are important factors to keep the testing frequency low for the economics of organiza-
tions and the health of the employees. 

 
4.5 Adaptive Sentinel Testing at JAX - An application of our tool 

To apply bSEIR model for Jax’s adaptive sentinel testing policy, we projected commu-
nity positivity rates and hazard ratios for all campuses of Jax. 
 
Figure 7 shows that our projections of community positivity rate are within 20% error 
for most of the time, for all campuses. However, the relative error is higher for lower 
community positivity rates, mostly overestimating the community positivity rate which 
results in a higher-than-required testing frequency only for mid to higher HR at low 
community positivity rates. 
 

  
(a) Community positive rate projection 

0 20 40 60 80 100

1
5

10
50

10
0

50
0

Organization Size (No of employees) =, 300

Population Positivity Rate per 1000

Fr
eq

ue
nc

y 
of

 T
es

tin
g(

D
ay

s)

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6
HR=, 1, / Vaccination rate =, 0
HR=, 1, / Vaccination rate =, 0.4
HR=, 1, / Vaccination rate =, 0.6

0 20 40 60 80 100

1
5

10
50

10
0

50
0

Organization Size (No of employees) =, 500

Population Positivity Rate per 1000

Fr
eq

ue
nc

y 
of

 T
es

tin
g(

D
ay

s)

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6
HR=, 1, / Vaccination rate =, 0
HR=, 1, / Vaccination rate =, 0.4
HR=, 1, / Vaccination rate =, 0.6

0 20 40 60 80 100

1
5

10
50

10
0

50
0

Organization Size (No of employees) =, 1000

Population Positivity Rate per 1000

Fr
eq

ue
nc

y 
of

 T
es

tin
g(

D
ay

s)

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6
HR=, 1, / Vaccination rate =, 0
HR=, 1, / Vaccination rate =, 0.4
HR=, 1, / Vaccination rate =, 0.6

0 20 40 60 80 100

1
5

10
50

10
0

50
0

Organization Size (No of employees) =, 5000

Population Positivity Rate per 1000

Fr
eq

ue
nc

y 
of

 T
es

tin
g(

D
ay

s)

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6

HR=, 0.2, / Vaccination rate =, 0
HR=, 0.2, / Vaccination rate =, 0.4
HR=, 0.2, / Vaccination rate =, 0.6
HR=, 0.5, / Vaccination rate =, 0
HR=, 0.5, / Vaccination rate =, 0.4
HR=, 0.5, / Vaccination rate =, 0.6
HR=, 1, / Vaccination rate =, 0
HR=, 1, / Vaccination rate =, 0.4
HR=, 1, / Vaccination rate =, 0.6



17 

  

  
(b) Accuracy of Population positive rate prediction 

 
Figure 7: Projecting community positive rate using a polynomial model fitting, and its 
accuracy across Jax campuses. 
 
Typical HR turned out to be 0.25 for all Jax campuses. However, the HR was expected 
to spike during the holiday season of Thanksgiving and Christmas in 2020. Hence, we 
set HR for normal weeks (=0.25) and holiday weeks (=0.35).  
 
The scatter plot in figure 8 shows a very strong correlation (=0.68) between our predic-
tion of the number of cases to the observed number of cases.  
 

 
 

(a) Scheme for Jax’s adap-
tive sentinel testing 

(b) bi-Model SEIR accurately predicted cases at 
Jax (correlation = 0.68)  

Figure 8: Performance of Bi-Modal SEIR model. 

5 Discussion 

Adaptive testing frequency is crucial to balance between economics of testing and 
to keep the pandemic under control at the workplace. We developed a bi-modal SEIR 
(bSEIR) model to account for changing parameters of the pandemic in the community 
and the workplace where the workforce is not outwardly facing. 

Our bi-modal SEIR allows simple modeling of dual exposure, outbreak, and testing 
frequency by accounting for easily measurable community, and workplace parameters 
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of epidemic incidence and transmission. The simulations show the importance of em-
ployee education and support to minimize their exposure to community infections in 
reducing the testing frequency required. Even a modest vaccination rate of 40-60% with 
vaccines of the efficacy of more than 90% would greatly reduce testing frequency by 
2-4-fold. It is highly pronounced for low HR and medium to high community positivity 
rates. Furthermore, sentinel testing, a logistically feasible testing paradigm, was evalu-
ated and shown that it only marginally (2-6%) increases the total number of infections 
over a 3-month period. Thus, sentinel testing is a viable cost-effective approach to man-
age testing in the workplace. We used our tool to generate weekly reports of forecast 
of population positivity rates, expected number of infections, and recommended testing 
frequency for The Jackson Laboratory. Overall, our model helped our organization to 
minimize the cost of testing while controlling the epidemic. 

An apparent limitation of our model is that it does not explicitly assume the possi-
bility of break-through infections which requires a fraction of employees in the R com-
partment to be moved to the S compartment. However, as we repeat the simulations 
with S to be total onsite workforce size and adjusting the vaccine efficacy rates to ac-
count for changing efficacy of vaccines with time, the break-through infections are in-
directly accounted for which will be good enough to predict the short-term course of 
the pandemic at the workplace. Our formulation, to compute average vaccine efficacy, 
can be generalized not only for different types of vaccines, but also for different effica-
cies due to new variants and different time periods after the most recent vaccinations. 
Furthermore, our model can be applied for a higher internal transmission rate by ad-
justing the internal transmission rate that accounts for one employee being exposed to 
multiple infectious employees. Overall, the apparent limitations of the model can be 
dealt with appropriate adjustment or estimation of its parameters. 
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