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Abstract 

In the absence of a systematic approach to epidemiological modeling in Slovenia, various 

isolated mathematical epidemiological models emerged shortly after the outbreak of the 

COVID-19 epidemic. We present an epidemiological model adapted to the COVID-19 

situation in Slovenia. The standard SEIR model was extended to distinguish between age 

groups, symptomatic or asymptomatic disease progression, and vaccinated or unvaccinated 

populations. Evaluation of the model forecasts for 2021 showed the expected behavior of 

epidemiological modeling: our model adequately predicts the situation up to 4 weeks in 

advance; the changes in epidemiologic dynamics due to the emergence of a new viral variant 

in the population or the introduction of new interventions cannot be predicted by the model, 

but when the new situation is incorporated into the model, the forecasts are again reliable. 

Comparison with ensemble forecasts for 2022 within the European Covid-19 Forecast Hub 

showed better performance of our model, which can be explained by a model architecture 

better adapted to the situation in Slovenia, in particular a refined structure for vaccination, 

and better parameter tuning enabled by the more comprehensive data for Slovenia. Our 

model proved to be flexible, agile, and, despite the limitations of its compartmental structure, 

heterogeneous enough to provide reasonable and prompt short-term forecasts and possible 

scenarios for various public health strategies. The model has been fully operational on a 

daily basis since April 2020, served as one of the models for decision-making during the 

COVID-19 epidemic in Slovenia, and is part of the European Covid-19 Forecast Hub. 

 

Keywords: epidemiological modeling, Covid-19 epidemic in Slovenia, extended SEIR 

model,  short-term forecasts, European Covid-19 Forecast Hub  
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1 Introduction     

The COVID-19 pandemic forced nations worldwide to suspend significant parts of their 

social and economic activities [1]. In Slovenia, SARS-CoV-2 was first detected in March 

2020, and containment measures soon followed [2]. Especially before the development and 

rollout of vaccines against SARS-CoV-2, such non-pharmaceutical interventions were the 

only means available to countries to slow down coronavirus infection rates and avoid 

overburdening health care systems. Because of potentially high social and economic costs 

of containment measures, it is important to make informed decisions about when to 

implement them and at what scale. A useful tool for predicting and controlling the evolution 

of infectious diseases and understanding the impact of public health interventions is 

mathematical epidemiological modeling [3]. 

In the absence of a systematic approach to mathematical epidemiological modeling in 

Slovenia, various isolated mathematical epidemiological models emerged shortly after the 

outbreak of the COVID-19 epidemic. To benefit from more systematic access to 

epidemiological data and peer-review process, some of them [4–7] gathered around  the 

emerging web portal COVID-19 Sledilnik [2]. Soon COVID-19 Sledilnik was widely 

accepted as a portal for aggregation, analysis, and representation of COVID-19 

epidemiological data in Slovenia, and the results of some models [4,7] were used by 

government decision-makers. 

 

In this work, we present an epidemiological model adapted to the COVID-19 epidemic in 

Slovenia [7]. The standard SEIR model [3] was extended to distinguish between age groups, 

symptomatic or asymptomatic disease progression, and vaccinated or unvaccinated 

populations. Similar extensions of SEIR-like models have been widely used in the COVID-

19 crisis, for example, to account for undetected infections, different stages of infection or 

age groups [8–12], the effects of vaccination and coexistence of different viral variants [13], 

to study different behavioral responses to public health interventions [14,15], or to forecast 

burden of epidemics on health care systems [16]. 

 

The model presented in this paper has been fully operational on a daily basis since April 

2020, served as a decision support tool during the COVID-19 epidemic in Slovenia, was 

used for COVID-19 Sledilnik data analyses [2], and has been included in the European 
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Covid-19 Forecast Hub [17] coordinated by the European Centre for Disease Prevention and 

Control. 

 

The rest of the paper is organized as follows. In the Methods section, the structure of the 

model with all its extensions, the outputs of the model, and the model evaluation 

methodology  are explained. The model forecasts were evaluated for the years 2021 and 

2022. The epidemic situation in Slovenia in 2021 and 2022 is described together with the 

evaluation results in the Results section and discussed in the following section. Before the 

final conclusions of the paper, the limitations of the model are explained. 

 

 

2 Methods 

2.1 Model 

We developed a deterministic age-structured compartmental model of SARS-CoV-2 

transmission with a population stratified into 5 age groups. The model was constructed by 

extending the standard SEIR model [3] with additional compartments to model symptomatic 

and asymptomatic disease progression and to model vaccinated and unvaccinated 

populations separately. 

2.1.1 Extended compartmental SEIR model 

We extended the standard SEIR model, by adding compartments to consider different 

courses of COVID-19 disease, as shown in Figure 1. 
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Figure 1: Scheme of the extended SEIR model with additional compartments to model 
asymptomatic and symptomatic cases with hospital and ICU admissions, split into two 

separate submodels to model vaccinated and unvaccinated populations. 

 

Those who are susceptible to the disease (compartment S) may become infected and enter 

the incubation state (compartment E), after some time they become infectious 

(compartment I) and begin to recover from the infection in different ways. Most people 

can have an infection with mild symptoms or are asymptomatic (compartment M) and then 

recover from the infection (compartment R). This is the pathway S→E→I→M→R in the 

model. Some have severe symptoms requiring hospitalization (compartment H), where 

they may remain until further recovery (compartment R). This is the pathway  

S→E→I→H→R in the model. Some of the patients require additional intensive care 

(compartment C). Patients in the intensive care units may recover and go to compartment R, 

this is the pathway S→E→I→C→R, or die, this is the pathway S→E→I→C→D in the model. 

There is an additional compartment Z for modeling people who died from COVID-19 but 

were not treated in hospitals. This corresponds to the pathway S→E→I→Z→D in the model. 

This compartment was added during the second wave of COVID-19 in Slovenia in the 

fall/winter of 2020, when Slovenia witnessed severe outbreaks of SARS-CoV-2 in nursing 

and retirement homes and could not treat all severely ill people in hospitals. In the following 

waves of the epidemic, such a course of the disease was rare. 
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The above idea was applied separately to vaccinated and unvaccinated populations. The joint 

model was then merged from these two submodels by dividing the susceptible group (S) into 

two subgroups, Sn and Sv, representing the unvaccinated and vaccinated susceptibles, 

respectively. The split of the susceptible group into Sn and Sv is defined by the parameter u, 

which represents the proportion of vaccinated at a given time. As can be seen from Figure 

1, the two submodels have identical compartments but differ in parameters related to the 

probability of infection, severity of disease, and possibility of death. 

Table 1: The parameters of the model. All parameters are functions of time. 

Parameter Meaning Value (Range) / Description 
 

𝑢(𝑡)	

 
 

 
proportion of vaccinated 

estimated from daily 
vaccination reports, age-
stratified  

 
𝜆(𝑡)	

 
 

 
force of infection 

calculated from transmission 
coefficients and contact 
matrices (see age-stratified 
model) 

 
1
𝑎(𝑡)	

 

 
mean duration of latent 
period 

 
(3–5) days, 
depends of SARS-CoV-2 
variants 

 
1
𝛾(𝑡)	

 

 
mean infectious period 

 
(3-8) days, 
depends of SARS-CoV-2 
variants 

 
1

𝛾!(𝑡)
	

 

 
mean duration of 
mild/asymptomatic 
infection 

 
(7-14) days, 
depends of SARS-CoV-2 
variants 

 
1

𝛾"(𝑡)
	

 

 
mean duration of non-
ICU hospitalization 

 
(10-15) days 

   
14 days 
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1
𝛾#(𝑡)

	

 

mean duration of the 
disease before death in 
nursing/retirement home 

 
1

𝛾$(𝑡)
	

 

 
mean duration of ICU 
hospitalization 

 
(14-21) days 
 

 
𝑝!(𝑡) = 1 − 𝑝"(𝑡) − 𝑝#(𝑡)	

 

 
proportion of 
mild/asymptomatic 
infections 

 
computed from proportions 
𝑝"(𝑡) in 𝑝#(𝑡),	
age-stratified 

 
𝑝"(𝑡)	

 

 
proportion of infections 
requiring hospitalization 

 
estimated from data, 
proportions between daily 
incidence of cases and 
hospitalizations,  
age-stratified 
 

 
𝑝$(𝑡)	

 

 
proportion of 
hospitalizations requiring 
ICU 

 
estimated from hospitalization 
data reports, 
proportions between daily 
incidence of hospitalizations 
and ICU, 
age-stratified 
 

 
𝑝#(𝑡)	

 

 
proportion of infections 
without hospitals 
resulting in death 
 

 
estimated for the data in the 
2nd wave, in all other waves  
eq. to 0.0, 
age-stratified 

 
𝑝%(𝑡)	

 
 

 
proportion of recovered 
hospitalizations 

 
estimated from hospitalization 
data reports, 
proportions between daily 
incidence of hospitalizations 
and deaths, 
age-stratified 
 

 
1

𝑤𝑓%(𝑡)
	

 
 

 
mean duration of waning 
immunity 

 
(180 - 365) days  
example: 360 days mean 50% 
of recovered lost immunity in 
180 days.  
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𝜆&(𝑡) =
1

𝑓'&(𝑡)
⋅ 𝜆(𝑡)	

 

force of infection in the 
vaccinated group 
 

force of infection in the 
vaccinated group is equal to 
force of infection in the 
unvaccinated group lowered 
by a certain factor fIV  
 
𝑓'&(𝑡)	is	in	range	(2	-	5),	

depends of SARS-CoV-2 
variants 

	

 
𝑝!&(𝑡) = 1 − 𝑝"&(𝑡) − 𝑝#&(𝑡)	

 

 
proportion of 
mild/asymptomatic 
infections in the 
vaccinated group 
 

 
computed from proportions 
𝑝"&(𝑡) in 𝑝#&(𝑡),	
age-stratified 

 

𝑝"&(𝑡) =
1

𝑓"&(𝑡)
⋅ 𝑝"(𝑡)	

 

 
proportion of infections 
requiring hospitalization 
in the vaccinated group 

 
proportion of hospitalization 
in the vaccinated group is 
equal to proportion of 
hospitalization in the 
unvaccinated group lowered 
by a certain factor fHV  
 
𝑓"&(𝑡)	is	in	range	(5	-	10),	

depends of SARS-CoV-2 
variants,  
age-stratified 
 

 
𝑝$&(𝑡)	

 

proportion of 
hospitalizations requiring 
ICU in the vaccinated 
group  

 
𝑝$&(𝑡)	=	𝑝$(𝑡), 
age-stratified 
 

 
𝑝#&(𝑡)	

 

proportion of infections 
without hospitalizations 
resulting in death in the 
vaccinated group 
 

 
0.0  
(vaccination starts in Slovenia 
after the 2nd wave) 

 

1 − 𝑝!"(𝑡) =
1

𝑓#"(𝑡)
⋅ (1 − 𝑝!(𝑡))	

 
 

proportion of 
hospitalizations resulting 
in death in the vaccinated 
group 

proportion of hospitalizations 
resulting in death in the 
vaccinated group is equal to 
the proportion of 
hospitalizations resulting in 
death in the unvaccinated 
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group lowered by the factor 
fDV  
 
𝑓(&(𝑡)	is	in	range	(5	-	10),	

depends of SARS-CoV-2 
variants,  
age-stratified 
 

 
1

𝑤𝑓&	(𝑡)
	

 
 

 
mean duration of waning 
immunity after 
vaccination 

 
(180 - 365) days  
example: 360 days mean 50% 
of recovered lost immunity in 
180 days.  
 

 

All the parameters of the model are summarized in Table 1. The parameters can be broadly 

divided into three groups: the proportion parameters, the duration parameters, and the 

parameters corresponding to the transmission of the infection. The proportion parameters 

are  vaccination rate 𝑢(𝑡),	 the proportion of mild/asymptomatic infections 𝑝!(𝑡), the 

proportion of hospitalizations 𝑝"(𝑡),	the proportion of intensive care hospitalizations 𝑝$(𝑡),	

the proportion of hospitalizations resulted in death 1 −	𝑝%(𝑡),	and	the proportion of deaths 

outside hospital care 𝑝#(𝑡). All these parameters are estimated daily using data on confirmed 

positive cases, regular and intensive care hospitalizations, deaths, and vaccination progress.  

Duration parameters correspond to the latent period duration 1/a(t), the infectious period 

duration 1/𝛾(𝑡), the mild/asymptomatic period duration 1/𝛾!(𝑡), the intensive care 

hospitalization 1/𝛾$(𝑡), the non-ICU hospitalization 1/𝛾"(𝑡), and the pre-death duration 

1/𝛾#(𝑡) of patients in nursing/retirement homes. This group also includes two durations of 

waning immunity: the period of waning immunity after disease 1/𝑤𝑓%(𝑡) and the period of 

waning immunity after vaccination 1/𝑤𝑓&(𝑡).  The time 1/𝑤𝑓%(𝑡) corresponds to the mean 

duration, in which the patient becomes susceptible to re-infection, the time 1/𝑤𝑓&(𝑡) 

represents the mean duration, in which the vaccinated person becomes susceptible to 

infection. The two durations of waning immunity are set to a longer period, e.g., one year, 

which means that in one year those who have been vaccinated or recovered from the disease 

will again become susceptible. Both rates are included in the model in a way to be linearly 

proportional over time, meaning that after six months, for example, half of those who have 

been vaccinated or have recovered from the disease will be susceptible again. In this way, 
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we tried to incorporate in the model also the efficacy of the vaccine, which changes over 

time.  

Disease transmission is included in the model by the parameters 𝜆(𝑡) corresponding to the 

force of infection [3], which are computed in the age-stratified extended SEIR model 

described in the next section. 

2.1.2 Age-stratified extended SEIR model  

The SEIR model from the previous section has been additionally extended to model five age 

groups of the population. This was done by cloning a structure of the base model (Figure 1) 

five times and allowing population mixing across all age subgroups from these submodels. 

The resulting extended SEIR model is shown in Figure 2. 
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Figure 2: Scheme of the group-stratified extended SEIR model obtained by cloning the 

base model from Figure 1, which allows for weighted and time-dependent population 

mixing between groups. The concept was used to model five population age groups. 

Each submodel of the model schemed in Figure 2 allows for modeling of the same disease 

courses and has the same parameters as the base SEIR model shown in Figure 1, whereby 

the values of the parameters in the submodels may differ. We chose to model five age groups 

of the population to obtain an age-stratified model that better fits the epidemiological 

situation with the age-dependent vaccination strategy in Slovenia and the different severity 

of disease progression within different age groups.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.16.22277702doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.16.22277702
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Disease transmission in this model is defined by assuming mixing of populations between 

age groups and between vaccinated and unvaccinated groups. The force of infection in each 

submodel is computed as 

𝜆*(𝑡) = ∑ 𝛽*+(𝑡) ⋅ 𝐼+(𝑡),
+-. + ∑ 𝛽*+(𝑡) ⋅ 𝐼𝑣+(𝑡),

+-. 	,															(1) 

where 𝜆*(𝑡) is the force of infection in the submodel representing age group i, and is 

computed as the sum over all age groups of the rates of how many unvaccinated and 

vaccinated infected individuals from the age group j, denoted by Ij and Ivj, infect susceptibles 

from the age group i.  The rates for each combination of the groups i and j are computed as 

𝛽*+(𝑡) ⋅ 𝐼+(𝑡), where 𝛽*+(𝑡)	represents	the	contact rate between individuals of group i and 

individuals of group j. Contact rates 𝛽*+(𝑡)	are computed as	𝛽*+(𝑡) = 𝛽(𝑡) ⋅ 𝑤*+(𝑡),	where 

𝛽(𝑡)	is an overall transmission rate of the disease, and 𝑤*+(𝑡)	are the weights for increasing 

or decreasing the transmission rate according to the assumed contact mixing of the groups i 

and j.  The weights are stored in the contact matrix W. The overall transmission rate 𝛽(𝑡)	is 

computed as a product of the effective reproduction number R(t) and the mean infectious 

period 1/𝛾(𝑡), namely 𝛽(𝑡) = 𝑅(𝑡)/𝛾(𝑡). 

Note that the forces of infection of vaccinated groups, 𝜆𝑣*(𝑡), are the same as 𝜆*(𝑡) reduced 

by a specific factor fIV(t) that accounts for the effectiveness of vaccination in reducing 

transmission of the disease  (see Table 1). 

2.1.3 Model outputs 

The model produces the following projections for each age group: 7-day averages of daily 

positive cases, daily non-intensive care hospitalization admissions and active stays, daily 

intensive care admissions and active stays, and 7-day averages of deaths. The projections are 

additionally summarized across all age groups to obtain overall projections. From these 

projections, we derived cumulative projections of positive cases, hospitalizations, intensive-

care hospitalizations and total deaths. In addition, the model also generates weekly incidence 

of positive cases, hospitalizations and deaths.   
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2.1.4 Parameters computation and model optimization 

The model is calibrated to the current state of the epidemic in Slovenia by adjusting the 

model parameters in Table 1. All parameters are treated as functions of time, so their values 

may change over time according to the varying epidemiological situation. While some model 

parameters are calculated daily, others are estimated by observing the dynamics of the 

epidemic in the population, and some are set according to the literature and mainly remain 

fixed over time. 

We performed the optimization routine to minimize the error of the model projections on 

four different objective functions: daily reported infections, daily deaths, daily reported 

number of current hospitalizations not requiring intensive care and daily reported number of 

current hospitalizations requiring intensive care. All the data for tunning the parameters were 

collected from COVID-19 Sledilnik [2] and the Slovenian National Institute of Health [18]. 

We collated the population into 5 age groups: 0-24, 25-44, 45-64, 65-74, and older than 75. 

This age grouping was chosen because, from a clinical point of view, these groups represent 

in some cases the finest granularity we could find in the data, and from a computational point 

of view, it reduces the dimension of the optimization problem [12]. 

The parameters estimated daily are the forces of infection 𝜆*(𝑡) and the vaccination rates 

𝑢*(𝑡)	in each age group i.	The force of infection 𝜆*(𝑡) is calculated according to Eq. (1).  For 

these computations we need the daily estimated effective reproduction number R(t) weighted 

by the contact matrix W.  The reproduction number R(t) is estimated from the time-series of 

daily reported infections by using the EpiEstim CRAN R package [19], while the contact 

matrices W(t) were set manually by following [20] and corrected over time to follow the 

current epidemiological interventions in the population. The vaccination rates are computed 

directly from the data of the daily reported vaccination rates in the collated age groups 

provided by the Slovenian National Institute of Health [18].  

The proportions 𝑝"(𝑡), 𝑝$(𝑡), 𝑝#(𝑡) and 𝑝%(𝑡) are also determined daily. The proportion of 

hospitalizations 𝑝"(𝑡) is estimated from the ratio of the time-series of daily active confirmed 

cases and the hospital stays; the proportion of intensive care hospitalizations 𝑝$(𝑡) is 

determined from the time-series of intensive care and non-intensive care hospitalizations; 

and the proportion of hospitalizations resulted in death, 1 −	𝑝%(𝑡), is computed from the 

time-series of hospitalization data and reported deaths. The proportion of deaths outside 
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hospital care 𝑝#(𝑡) was used in the second wave in Slovenia and was estimated from the 

time-series data of hospital deaths and all reported deaths due to COVID-19 in Slovenia in 

that wave. In all other cases it was set to 0. All these proportions are estimated separately for 

each age group. For example, the proportions of hospitalizations or deaths are much lower 

in the 0-24 age group than in the 75+ age group. Similarly, the vaccination rates also differ 

greatly in time between age groups, etc. 

The duration parameters 1/a(t), 1/𝛾(𝑡), 1/𝛾!(𝑡),  1/𝛾$(𝑡), 1/𝛾"(𝑡), 1/𝛾#(𝑡) and the durations 

of waning immunity 1/𝑤𝑓%(𝑡), 1/𝑤𝑓&(𝑡) are determined manually. They were set according 

to the literature and remain mainly fixed over time. We changed them only in cases of 

different SARS-CoV-2 variants when suggested in the literature [21–23]. 

The optimization and additional calibration of the model are performed daily in the following 

way. The effective reproduction number R(t), the proportions 𝑝*"(𝑡), 𝑝*$(𝑡), 𝑝*#(𝑡), 𝑝*%(𝑡)	

and	the vaccination rates 𝑢*(𝑡)	are computed daily from the time-series data of daily active 

confirmed cases, intensive care and non-intensive care hospitalizations, reported deaths and 

vaccination reports. Several runs of the model are performed, perturbing the parameters 

around these estimated values (by using perturbation range of ±10%). The resulting model 

projections are additionally calibrated in each run by automatically adjusting the proportion 

parameters so that the resulting projections better fit the objective functions on the past data. 

Typically, 100 runs are made in such an optimization procedure, resulting in 100 instances 

of model projections. The final projections are created using the median values of these 

instances. By estimating appropriate quantiles from these instances, we also estimate the 

50%- and 95%-confidence intervals of the final projections.   

2.2 Model evaluation 

We have conducted two evaluations of the model: one for the year 2021 (SI-2021 evaluation) 

and one as part of the European Covid-19 Forecast Hub [17], in which we have participated 

with our model since December 2021 (EUHub-2022 evaluation). 

 

In both assessments, we focused on three forecast targets: the weekly incidence of new 

COVID-19 cases, the weekly incidence of new COVID-19 hospitalizations (intensive care 

and non-intensive care), and the weekly incidence of new COVID-19 deaths in Slovenia.  In 
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the SI-2021 evaluation, forecasts were compared with data from COVID-19 Sledilnik  [2]. 

In the EUHub-2022 evaluation, forecasts were compared with data provided by the European 

Covid-19 Forecast Hub [17], which relies on data from the Johns Hopkins University (for 

cases and deaths) and data collated by ECDC from national health authorities (for 

hospitalizations). 

Forecasts were made for 1, 2, 3, and 4 weeks ahead, with forecasts calculated each Monday 

from data up to the last Sunday.  Thus, the parameters of the model were estimated from past 

data, and forecasts were made for up to 4 weeks in advance. Possible future interventions 

planned by the health authorities to change epidemic dynamics were not considered. 

Consequently, we assessed the short-term forecasts of the model rather than different 

possible scenarios according to planned changes in epidemics.  

The quality of the forecasts in the SI-2021 evaluation was assessed graphically and by 

calculating two error statistics. The graphical observations were used to estimate the 

accuracy of the model over time, while the overall performance of the model was measured 

by the two error statistics. The absolute differences 𝑅𝐴𝐸* = |𝑦* − 𝑦N*	|/	𝑦*	 were calculated 

for a set of observations 𝑦* 	, 𝑖	 = 	1, . . . , 𝑛 and point predictions 𝑦N* 	, 𝑖	 = 	1, . . . , 𝑛. The first 

error statistic was then computed as the median of 𝑅𝐴𝐸* with interquartile range to 

compensate for possible outliers in the forecast errors.  To obtain a more scale-free error 

statistic, we compared the model forecasts with baseline forecasts. The baseline forecasts 

were constructed as forecasts by repeating an observation from the current week four times 

to predict future observations 4 weeks in advance. The comparison of forecast errors was 

then measured using a ratio 𝜃	 =	(mean of 	𝑅𝐴𝐸* of our model) / (mean of 	𝑅𝐴𝐸* of baseline 

model). The ratio 𝜃 is a measure of the relative performance of our model compared to the 

baseline model. For 𝜃 < 1 our model outperforms the baseline model, and for 𝜃 > 1	the 

baseline model is better. This measure was developed according to Cramer et al. [24]. 

In the EUHub-2022 evaluation, we reported evaluation results according to the European 

Covid-19 Forecast Hub reporting style, using the relative weighted interval score (rel.wis) 

for the evaluation metric, as described in Cramer et al. [24]. Comparisons of our model were 

made with the ensemble and the baseline EuroCOVIDhub models [25], which were evaluated 

on the Slovenian data. 
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3 Results 

3.1 Epidemic situation in Slovenia in years 2021 and 2022  

Slovenia started 2021 with a peak of COVID-19 cases from a prolonged second wave that 

had already begun in the summer of 2020, and rapid antigen testing (RAT) and vaccination 

against COVID-19 were introduced in late 2020 [2,18,26,27]. 

As shown in Figure 3a, after a brief decline in cases in March 2021, the number of COVID-

19 infections, predominantly with the Alpha variant, which was more than 50% more 

transmissible in humans compared with the original virus,  began to rise again. The 

proportion of vaccinated individuals in Slovenia at that time was approximately 9%, 

including 5% with completed initial vaccination protocol. To stop the rise in infections, a 

partial lockdown was imposed in early April, by keeping education and work at a distance, 

restricting movement, and limiting entry and exit from the country. To visit certain 

establishments, bars, or shelters, people had to be vaccinated, tested, or show proof of 

recovery (3G rule). By summer, the number of COVID-19 infections in Slovenia had 

decreased significantly, after which the measures were relaxed [2,18,26,27]. 

In August 2021, the number of COVID -19 infections in Slovenia started to rise again. At 

the beginning of the new school year in September, about 50% of Slovenians were 

vaccinated, with 45% of the population fully vaccinated. Due to the steady increase in Delta 

variant infections, the government reintroduced the 3G rule for most of social life on 

September 15. Measures included restricting social life, limiting the number of people 

engaged in economic activity, mandatory wearing of surgical or FFP2 masks, and self-

testing (3 times per week) for unvaccinated school children, students, and employees in all 

activities. The increase in infections stalled, but in October the number of new infections 

began to rise again, reaching a record of more than 22.000 weekly confirmed cases in early 

November. Slovenia was on the verge of another lockdown as the capacity of 300 beds in 

intensive care units had almost been reached. The maximum of 288 occupied intensive care 

unit beds was reached on November 25 [2,18,26,27], without any further implementation of 

a lockdown. By the end of 2021, 60% of people had been vaccinated, 57% of the population 

with two doses. 
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(a) Epidemic situation in Slovenia in 2021 

 

(b) Epidemic situation in Slovenia in 2022 

 
Figure 3: COVID-19 epidemic situation in Slovenia in years 2021 (a) and 2022 (b). 

Weekly incidence of confirmed COVID-19 cases (black) and the proportion of population 

vaccinated against COVID-19 with the first (red), the second (yellow), and the booster 

dose (blue) [2,18,26,27] are shown. The phases of the epidemic, together with prevailing 

viral variants and non-pharmaceutical public health interventions, are briefly described in 

the timeline on top. 

The fifth epidemic wave (Figure 3b) began with the first Omicron variant case confirmed in 

Slovenia on December 14, and with stricter restrictions over New year holidays. A dramatic 

increase in infections followed in January 2022, with the wave peaking on January 31 with 

a weekly incidence of confirmed COVID-19 cases of nearly 100,000 (nearly 5% of the 
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country’s population). It should be noted that despite the record number of confirmed cases, 

the number of hospitalizations and deaths was not higher than in the previous waves, due in 

part to the fact that infections with the Omicron variant are often milder than with the Delta 

variant, and in part to the high vaccination rate in the elderly population. Thereafter,  

numbers began to decline more rapidly than in previous waves, and measures were gradually 

relaxed. Entry restrictions and quarantine were lifted, the 3G rule was abolished (except for 

certain high-risk activities), and a less strict mask-wearing regime was introduced. The 

percentage of vaccinated individuals had not improved significantly from data at the end of 

2021 [2,18,26,27]. 

 

3.2 Model forecasts evaluation for Slovenia in year 2021 

Figures 4, 5, and 6 show model forecasts for the weekly incidence of COVID-19 confirmed 

cases, hospitalizations, and deaths in Slovenia in 2021, respectively. More detailed versions 

of these graphs can be found online [28]. 

 

 

Figure 4: Model forecasts of weekly incidence of COVID-19 confirmed cases. Black dots 

represent actual data. The colored dots represent predictions for 1, 2, 3 and 4 weeks 

ahead, the colored areas represent their confidence intervals. Forecasts from the same 

date are represented with the same color.  
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Figure 5: Model forecasts of weekly incidence of COVID-19 hospital admissions. The 

representation is the same as in Figure 4. 

 

Figure 6: Model forecasts of weekly incidence of deaths due to COVID-19. The 

representation is the same as in Figure 4. 

According to the figures, the accuracy of model forecasts over time depends on the 

epidemiological situation. The model forecast is less accurate at the beginning and near the 

peak of the wave, whereas it is more accurate in periods of rising or falling of the wave. This 

pattern can be clearly seen in the weekly incidence of cases (Fig. 3) and in the weekly 

incidence of hospital admissions (Fig. 4), while the forecasts of the weekly incidence of 

deaths (Fig. 6) are more aligned with the actual data even for 4 weeks ahead. 

 

Table 2: Statistics of the forecast performance of our model in 2021. The first row in the 

data cells is the median of RAE with interquartile range in square brackets (1st and 3rd 
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quartiles) and the second row is the relative performance of our model compared to the 

baseline model, measured by the ratio 𝜃. 

 error type\forecast for week 1 week 2 week 3 week 4 

weekly 
incidence 
cases 

median of RAE [Q1, Q3] 
 
Comparison to baseline 

2.9 [1.6, 4.1] % 

𝜃 = 0.14 

3.2 [1.9, 6.7] % 

𝜃 = 0.17 

6.0 [2.4, 17.8] % 

𝜃 = 0.34 

15.0 [4.8, 51.2] % 

𝜃 = 0.57 

weekly 
incidence 
hospitals 

median of RAE [Q1, Q3] 
 
Comparison to baseline 

7.6 [4.1, 12.2] % 

𝜃 = 0.39 

8.5 [4.0, 16.0] % 

𝜃 = 0.26 

11.3 [6.2, 23.2] % 

𝜃 = 0.29 

18.3 [5.9, 35.2] % 

𝜃 = 0.38 

weekly 
incidence 
deaths 

median of RAE [Q1, Q3] 
 
Comparison to baseline 

9.8 [3.9, 20.3] % 

𝜃 = 0.45 

9.8 [4.1, 18.3] % 

𝜃 = 0.27 

9.8 [4.2, 18.7] % 

𝜃 = 0.19 

9.8 [4.1, 21.2] % 

𝜃 = 0.16 

 

The overall assessment of the model forecasts for the year 2021 is summarized in Table 2. 

It can be seen that the median of RAE for the weekly incidence of confirmed cases, 

hospitalizations, and deaths is below or around 10% and exceeds this value only for the 

forecasts of confirmed cases for 4 weeks ahead and the forecasts of hospitalizations for 3 

and 4 weeks ahead. The median of RAE for the weekly incidence of confirmed cases is only 

about 3% for the 1-week-ahead forecast, with the Q3 quartile barely reaching 4%. For the 

longer-term forecasts, the error statistics become larger, as expected, but the median of RAE 

for the forecast of confirmed cases for 3 weeks ahead is still only about 6%. 

The relative performance of the model to the baseline model was measured by the ratio 𝜃.  

The values 𝜃 are in all forecasts well below 1.0, indicating that our model outperformed the 

baseline forecasts in all cases. For almost all forecasts in Table 2, the values are even below 

0.5, which means that our model almost always provides a forecast that is more than twice 

as good as the baseline model. For the forecasts of confirmed cases for 1 and 2 weeks ahead 

and deaths for 3 and 4 weeks ahead, the values 𝜃 are even below 0.2, which means that we 

can expect a more than 80% better prediction compared to the baseline model. 
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3.3 Model forecasts evaluation within European Covid-19 
Forecast Hub for year 2022 

The evaluation of the model for the first three months of 2022 was conducted as part of the 

European Covid-19 Forecast Hub project. The evaluation results in Table 3 show the relative 

weighted interval score (rel.wis) for three models: our model (named ULZF-SEIRC19SI in 

the table), the ensemble model (named EuroCOVIDhub-ensemble in the table) and the 

baseline model (named EuroCOVIDhub-baseline in the table). The evaluation was 

performed using data from January 1, 2022 to March 28, 2022. The ensemble is built from 

all of the models providing forecasts for Slovenia (9 for the weekly incidence of cases, 4 for 

the weekly incidence of hospital admissions, and 7 for the weekly incidence of deaths). The 

baseline forecasts are computed in the same way as in the previous evaluation. Note also that 

the relative interval score is the evaluation measure that compares the performance of the 

evaluated model to all other models, with values below 1.00 indicating better performance 

(lower error) of the evaluated model relative to its compared counterparts. More details can 

be found in Cramer et al. [24]. 

Table 3: Performances of the 3 models within European Covid-19 Forecast Hub project  

on the Slovenian data from January 1, 2022 to March 28, 2022, measured by the relative 

weighted interval score (rel.wis).  

  
model 

rel. wis 

week1 week2 week3 week4 

weekly 
incidence  
cases 

ULZF-SEIRC19SI 0.45 0.51 0.58 0.56 

EuroCOVIDhub-ensemble 0.58 0.62 0.72 0.77 

EuroCOVIDhub-baseline 1.00 1.00 1.00 1.00 

weekly 
incidence 
hospitals 

ULZF-SEIRC19SI 0.49 0.49 0.51 0.61 

EuroCOVIDhub-ensemble 0.61 0.55 0.48 0.64 

EuroCOVIDhub-baseline 1.00 1.00 1.00 1.00 
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weekly 
incidence  
deaths 

ULZF-SEIRC19SI 0.73 0.58 0.47 0.56 

EuroCOVIDhub-ensemble 0.65 0.60 0.54 0.62 

EuroCOVIDhub-baseline 1.00 1.00 1.00 1.00 

 

According to the results in Table 3, our model outperformed the ensemble model in almost 

all forecasts in all three categories. For the forecasts of weekly incidence of cases, our model 

performed better in all 4 forecasts, with a larger gap in the long-term forecasts.  The forecasts 

of hospital admissions are almost the same for weeks 2, 3, and 4, whereas there is a higher 

gap in favor of our model for the forecast for 1 week ahead. The weekly incidence of deaths 

is better forecasted for 1 week ahead with the ensemble model, and for 2, 3, and 4 weeks 

ahead with our model. 

4 Discussion 

The accuracy of the model over time clearly depends on the epidemiological situation, as 

can be seen in Figures 2, 3, and 4. The forecasts are less accurate at the beginning and near 

the peak of the two epidemiologic waves in 2021. Both waves in 2021 were caused by new 

variants of the SARS-CoV-2 virus with different transmission characteristics. The timing of  

the introduction of a new viral variant into the population can be speculated, but not 

accurately predicted. Therefore, forecasts of the onset of waves caused by new variants with 

different transmission characteristics cannot be accurate. However, when the new viral 

variant was detected and its transmission properties were incorporated into the model, model 

forecasts became more reliable and could accurately predict the peak of the wave, assuming 

no additional public health measures were introduced that could affect epidemiologic 

dynamics.  However, in both waves in 2021 in Slovenia (April 2021 and October-December 

2021), a number of public health measures were introduced to slow down the transmission 

dynamics. Accordingly, at the beginning of the waves, we could not include the changes in 

transmission due to the measures in the model. As a result, the long-term forecasts predicted 

peaks without any interventions. The moment the interventions were included in the model, 

the predictions became more accurate.  Errors both at the onset and near the peak of the 
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waves are therefore to be expected and are well known in epidemiological modeling [29–

31]. 

Transmission characteristics of new virus variants were incorporated into the model by 

estimating the effective reproduction number R, whereas interventions were accounted for 

by changes in the contact matrix W. The correct estimation of R and contact matrices remains 

a difficult task and depends strongly on the model structure on the one hand and on the 

behavior of people during the epidemic on the other  [32,33].  

It should also be noted that a vaccination campaign was underway in Slovenia in 2021, where 

5% of the population, primarily the elderly, was fully vaccinated at the start of the first wave 

in March 2021, and the second wave started in September 2021 with 45% of the population 

fully vaccinated. Vaccination was carefully included in the model by dividing the population 

into age groups and modeling vaccinated and unvaccinated populations separately, following 

the modeling approach presented by Matrajt et al. [11,12]. This allowed us to more 

accurately include and track the vaccination strategy in Slovenia, resulting in more accurate 

predictions of hospitalizations and deaths.     

Our model also shows an overall better performance compared to the base model and the 

ensemble model [34] in the European Covid-19 Forecast Hub 2022 evaluation.  Although 

the model is expected to outperform the baseline model, this should not be the case for the 

ensemble model. Nevertheless, in the model assessment of the first three months of 2022, 

conducted as part of the European Covid-19 Forecast Hub project, our model performed 

better than the ensemble model in almost all cases. 

The epidemic situation in Slovenia in early 2022 coincided with a large wave of daily 

confirmed cases that peaked in early February 2022, whereas hospitalizations and deaths did 

not follow this pattern. This was due to the Omicron variant of the SARS-CoV-2 virus, which 

is highly transmissible and does not cause as many severe courses of disease as earlier 

variants [35]. The model could not predict the exact timing of the onset of the Omicron wave, 

but later, when the model was updated with the features of the new variant and since there 

were no interventions that caused substantial changes in epidemic dynamics, we were able 

to accurately predict the timing and height of the peak of the wave as well as the decline. 

More precise tuning of the proportion parameters in the model and separate vaccination 
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modeling allowed our forecasts to more accurately predict hospitalizations and deaths, 

although they did not follow the same pattern as in previous waves. 

Since our model is one of the models included in the ensemble for Slovenian forecasts within 

the European Covid-19 Forecast Hub, better results mean that our model forecasts were 

among the best among all other models. A closer look at the evaluation results of the 

European Covid-19 Forecast Hub 2022 shows that among the models providing forecasts 

for Slovenia, our model performed best in all cases of forecasting hospitalizations and 

deaths, while ranked first for week 1 and second for weeks 2, 3, and 4 for weekly incidence 

of confirmed cases. The better forecasts in these cases were from the USC-SLKJalpha model 

[36].  

The overall better performance of our model compared with other models for the Slovenian 

forecasts could be explained by a more appropriate structure of the model for the epidemic 

situation in Slovenia, in particular by a more refined structure for vaccination and by more 

and better parameter tuning made possible by the data provided by COVID-19 tracker for 

Slovenia [2]. 

5 Model Limitations 

Our model is a compartmental model, in which the epidemic dynamics within the modeled 

subgroups of the population are assumed to be homogeneous. We introduced the 

heterogeneity of transmission to the model by dividing the population into five age groups 

and modeling the vaccinated and unvaccinated populations separately. But this might not be 

sufficient to capture the actual dynamics of transmission in the population. This problem 

could be addressed with other modeling approaches, such as agent-based or network-based 

modeling [37,38]. However, such modeling introduces a lot of open parameters that need to 

be estimated using data from different sources (e.g., mobility, localization data, more 

individual data) that were not available during the epidemics in Slovenia. Therefore, we 

opted for a less complex and well-established compartmental model, but with extensions 

that allowed us to increase the model's accuracy by adding the compartments and parameters 

that can be estimated from the data we have. 
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Nevertheless, our model has more than 100 parameters that need to be properly determined. 

Since many parameters in the model are arbitrarily estimated and may not fully reflect the 

actual epidemic situation, we attempted to compensate for this by performing an additional 

calibration of the proportion parameters in the model optimization process. This calibration 

tries to change the proportion parameters of the model (e.g., the proportion of 

hospitalizations, the proportion of intensive care, deaths, etc.) to better fit the model 

projections to the actual data, even if the parameters would no longer reflect the actual 

situation in the data. In this way, we achieve a better fit of the model projections to the 

current and past data and compensate for some loosely/arbitrarily estimated open parameters 

of the model.   

 

In addition, the model forecasts rely only on current data, and we did not attempt to 

incorporate any expected future interventions into the model, even if they could be predicted 

based on the model projections. Therefore, the forecasts tend to predict what would happen 

without possible future interventions or other unexpected situations. In daily operational runs 

of the model, we also created additional scenarios for situations in which a new 

epidemiologic wave or a new variant of the SARS-CoV-2 virus was expected. Note that 

epidemiological forecasts and other epidemiological statistics for Slovenia are calculated 

daily with our model starting in April 2020. All the results can be found on our web page 

[7]. 

 

6 Conclusion 

The presented compartmental model is used for modeling the COVID-19 epidemic in 

Slovenia. The SEIR model was extended by dividing the population into five age groups and 

allowing separate modeling of vaccinated and unvaccinated populations, to better account 

for the vaccination strategy in Slovenia as well as various courses of the disease and 

transmissibility caused by different SARS-CoV-2 variants. The model was extended to the 

complexity at which the model parameters can still be reliably estimated from the 

epidemiological data available in Slovenia. 
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Despite the known limitations of such modeling, we were able to obtain acceptable forecast 

results for short-term forecasts for up to 4 weeks in advance. Evaluation of model forecasts 

for 2021 showed the expected behavior of epidemiological modeling: if we do not interfere 

with disease dynamics, the model predicts the situation well; the changes in epidemiologic 

dynamics due to the emergence of a new viral variant in the population or the introduction 

of new interventions cannot be predicted by the model, but when the new situation is 

incorporated into the model, the forecasts are again reliable. 

Comparison of model forecasts with the ensemble forecasts for 2022 within  the European 

Covid-19 Forecast Hub showed better performance of our model, which can be explained 

by a more appropriate structure of the model for the epidemic situation in Slovenia, in 

particular a more refined structure for vaccination, and better parameter tuning enabled by 

the more comprehensive data for Slovenia included in our modeling. 

The model has been fully operational on a daily basis since April 2020 and  served as one of 

the models for decision-making during the COVID-19 epidemic in Slovenia. The model is 

also part of the European Covid-19 Forecast Hub, coordinated by the European Centre for 

Disease Prevention and Control. 
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