
 1 

Integrated host-microbe metagenomics for sepsis diagnosis in critically ill adults 1 

 2 

*Katrina Kalantar1, *Lucile Neyton2, Mazin Abdelghany3, Eran Mick3, Alejandra Jauregui2, 3 

Saharai Caldera3, Paula Hayakawa Serpa3, Rajani Ghale2,3, Jack Albright4, Aartik Sarma2, 4 

Alexandra Tsitsiklis3, Aleksandra Leligdowicz4, Stephanie Christenson2, Kathleen Liu5, Kirsten 5 

Kangelaris6, Carolyn Hendrickson3, Pratik Sinha7, Antonio Gomez8, Norma Neff9, Angela Pisco9, 6 

Sarah Doernberg3, Joseph L. Derisi9,10, Michael A. Matthay2, †Carolyn S. Calfee2, †Charles R. 7 

Langelier3,9. 8 

*†equal contributions 9 

 10 

 11 

Affiliations:  12 

1Chan Zuckerberg Initiative, San Francisco, CA, USA 13 

2Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, 14 

University of California San Francisco, San Francisco, CA, USA 15 

3Department of Medicine, Division of Infectious Diseases, University of California San 16 

Francisco, San Francisco, CA, USA 17 

4Department of Critical Care Medicine, Western University, London, Ontario, Canada 18 

5Department of Medicine, Division of Nephrology, University of California San Francisco, San 19 

Francisco, CA, USA 20 

6Department of Medicine, University of California San Francisco, San Francisco, CA, USA 21 

7Washington University, St Louis, St. Louis, MO, USA 22 

8Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA 23 

9Chan Zuckerberg Biohub, San Francisco, CA, USA 24 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.16.22277700doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.07.16.22277700


 2 

10Department of Biochemistry and Biophysics, University of California San Francisco, San 25 

Francisco, CA, USA 26 

 27 

Keywords: sepsis, metagenomics, transcriptional profiling, classifier, machine learning, plasma  28 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.16.22277700doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.16.22277700


 3 

Abstract 29 

Sepsis is a leading cause of death, and improved approaches for disease diagnosis and 30 

detection of etiologic pathogens are urgently needed. Here, we carried out integrated host and 31 

pathogen metagenomic next generation sequencing (mNGS) of whole blood (n=221) and 32 

plasma RNA and DNA (n=138) from critically ill patients following hospital admission.  We 33 

assigned patients into sepsis groups based on clinical and microbiological criteria: 1) sepsis with 34 

bloodstream infection (SepsisBSI), 2) sepsis with peripheral site infection but not bloodstream 35 

infection (Sepsisnon-BSI), 3) suspected sepsis with negative clinical microbiological testing; 4) no 36 

evidence of infection (No-Sepsis), and 5) indeterminant sepsis status. From whole blood gene 37 

expression data, we first trained a bagged support vector machine (bSVM) classifier to 38 

distinguish SepsisBSI and Sepsisnon-BSI patients from No-Sepsis patients, using 75% of the cohort. 39 

This classifier performed with an area under the receiver operating characteristic curve (AUC) of 40 

0.81 in the training set (75% of cohort) and an AUC of 0.82 in a held-out validation set (25% of 41 

cohort). Surprisingly, we found that plasma RNA also yielded a biologically relevant 42 

transcriptional signature of sepsis which included several genes previously reported as sepsis 43 

biomarkers (e.g., HLA-DRA, CD-177). A bSVM classifier for sepsis diagnosis trained on RNA 44 

gene expression data performed with an AUC of 0.97 in the training set and an AUC of 0.77 in a 45 

held-out validation set. We subsequently assessed the pathogen-detection performance of DNA 46 

and RNA mNGS by comparing against a practical reference standard of clinical bacterial culture 47 

and respiratory viral PCR. We found that sensitivity varied based on site of infection and 48 

pathogen, with an overall sensitivity of 83%, and a per-pathogen sensitivity of 100% for several 49 

key sepsis pathogens including S. aureus, E. coli, K. pneumoniae and P. aeruginosa. 50 

Pathogenic bacteria were also identified in 10/37 (27%) of patients in the No-Sepsis group. To 51 

improve detection of sepsis due to viral infections, we developed a secondary RNA host 52 

transcriptomic classifier which performed with an AUC of 0.94 in the training set and an AUC of 53 

0.96 in the validation set. Finally, we combined host and microbial features to develop a proof-54 
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of-concept integrated sepsis diagnostic model that identified 72/73 (99%) of microbiologically 55 

confirmed sepsis cases, and predicted sepsis in 14/19 (74%) of suspected, and 8/9 (89%) of 56 

indeterminate sepsis cases. In summary, our findings suggest that integrating host 57 

transcriptional profiling and broad-range metagenomic pathogen detection from nucleic acid 58 

may hold promise as a tool for sepsis diagnosis.59 
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Introduction 60 

Sepsis causes 20% of all deaths globally and contributes to 20-50% of hospital deaths in 61 

the United States alone1,2. Early diagnosis and identification of the underlying microbial 62 

pathogens is essential for timely and appropriate antibiotic therapy, which is critical for sepsis 63 

survival3,4. Yet in over 30% of cases, no etiologic pathogen is identified5, reflecting the 64 

limitations of current culture-based microbiologic diagnostics6. Adding additional complexity is 65 

the need to differentiate sepsis effectively from non-infectious systemic illnesses, which often 66 

appear clinically similar at the time of hospital admission.  67 

As a result, antibiotic treatment often remains empiric rather than pathogen-targeted, 68 

with clinical decision-making based on epidemiological information rather than individual patient 69 

data. Similarly, clinicians often continue empiric antimicrobials despite negative microbiologic 70 

testing for fear of harming patients in the setting of falsely negative results. Both scenarios lead 71 

to antimicrobial overuse and misuse, which contributes to treatment failures, opportunistic 72 

infections such as C. difficile colitis, and the emergence of drug-resistant organisms7. 73 

With the introduction of culture-independent methods such as metagenomic next 74 

generation sequencing (mNGS), limitations in sepsis diagnostics may be overcome8,9. Recent 75 

advancements in plasma cell-free DNA sequencing have expanded the scope of metagenomic 76 

diagnostics by enabling minimally invasive detection of circulating pathogen nucleic acid 77 

originating from diverse anatomical sites of infection9. The clinical impact of plasma DNA 78 

metagenomics has been questioned, however, due to frequent identification of microbes of 79 

uncertain clinical significance, inability to detect RNA viruses that cause pneumonia, and limited 80 

utility in ruling-out presence of infection10,11.  81 

Whole blood transcriptional profiling offers the potential to mitigate these limitations by 82 

capturing host gene expression signatures that distinguish infectious from non-infectious 83 

conditions, and viral from bacterial infections12,13. However, because transcriptional profiling 84 

exclusively captures the host response to infection, it does not provide precise taxonomic 85 
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identification of sepsis pathogens, which limits the utility of this approach when performed alone. 86 

Further, transcriptional profiling has traditionally required isolating peripheral-blood mononuclear 87 

cells, or stabilizing whole blood in specialized collection tubes, and it has remained unknown 88 

whether a simple plasma specimen could yield informative data for host-based infectious 89 

disease diagnosis.     90 

In recent work, a single-sample metagenomic approach combining host transcriptional 91 

profiling with unbiased pathogen detection was developed to improve lower respiratory tract 92 

infection diagnosis14. Sepsis, defined as, “life-threatening organ dysfunction from a dysregulated 93 

host response to infection15,” provides an additional clear use case for this integrated host-94 

microbe metagenomics approach. Here, we study a prospective cohort of critically ill adults to 95 

develop a novel sepsis diagnostic assay that combines host transcriptional profiling with broad-96 

range pathogen identification. By applying machine learning to high dimensional mNGS data, 97 

we evaluate host and microbial features that distinguish microbiologically confirmed sepsis from 98 

non-infectious critical illness. We then demonstrate that plasma nucleic acid can be used to 99 

profile both host and microbe for precision sepsis diagnosis. 100 

 101 

Results 102 

Clinical features of study cohort 103 

We conducted a prospective observational study of critically ill adults admitted from the 104 

Emergency Department (ED) to the Intensive Care Unit (ICU) at two tertiary care hospitals 105 

(Figure 1). Patients were categorized into five subgroups based on sepsis status (Methods). 106 

These included patients with: 1) clinically adjudicated sepsis and a microbiologically confirmed 107 

bacterial bloodstream infection (SepsisBSI), 2) clinically adjudicated sepsis and a 108 

microbiologically confirmed non-bloodstream infection (Sepsisnon-BSI), 3) suspected sepsis with 109 

negative clinical microbiologic testing (Sepsissuspected), 4) patients with no evidence of sepsis and 110 

a clear alternative explanation for their critical illness (No-Sepsis), or 5) patients of indeterminant 111 
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status (Indeterm). The most common diagnoses in the No-Sepsis group were cardiac arrest, 112 

overdose/poisoning, heart failure exacerbation, and pulmonary embolism. The majority of 113 

patients, regardless of subgroup, required mechanical ventilation and vasopressor support 114 

(Supplementary Table 1). Patients with microbiologically proven sepsis (SepsisBSI + Sepsisnon-115 

BSI) did not differ from No-Sepsis patients in terms of age, gender, race, ethnicity, 116 

immunocompromise, APACHEIII score, maximum white blood cell count, intubation status, or 117 

28-day mortality (Figure 1, Supplementary Table 1).  All but one patient (in the No-Sepsis 118 

group) exhibited ≥ 2 systemic inflammatory response syndrome (SIRS) criteria16. 119 

Host transcriptional signature of sepsis from whole blood 120 

We first assessed transcriptional differences between patients with clinically and 121 

microbiologically confirmed sepsis (SepsisBSI, Sepsisnon-BSI) versus those without evidence of 122 

infection (No-Sepsis) by performing RNA sequencing (RNA-seq) on whole blood specimens (n 123 

= 221 total) to obtain a median of 5.8 x 107 (95% CI 5.3-6.3 x 107) reads per sample. 5,807 124 

differentially expressed (DE) genes were identified at an adjusted P value < 0.1 (Figure 2a, 125 

Supplementary Data 1). Gene set enrichment analysis (GSEA), a method that identifies groups 126 

of genes within a dataset sharing common biological functions17, demonstrated upregulation of 127 

genes related to neutrophil degranulation and innate immune signaling in the patients with 128 

sepsis, with concomitant downregulation of pathways related to translation and rRNA 129 

processing (Figure 2b, Supplementary Data 2).   130 

To further characterize differences between sepsis patients with bloodstream versus 131 

peripheral site (e.g., respiratory, urinary tract) infections, we performed differential gene 132 

expression (DE) analysis between the SepsisBSI and Sepsisnon-BSI groups, which identified 5,227 133 

genes (Supplementary Data 3). GSEA demonstrated enrichment in genes related to CD28 134 

signaling, immunoregulatory interactions between lymphoid and non-lymphoid cells, and other 135 

functions in the Sepsisnon-BSI patients, while the SepsisBSI group was characterized by 136 
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enrichment in genes related to antimicrobial peptides, defensins, G alpha signaling and other 137 

pathways (Supplementary Data 4). 138 

Host transcriptional classifier for sepsis diagnosis from whole blood 139 

 Given the practical necessity to identify sepsis in both SepsisBSI and Sepsisnon-BSI 140 

patients, we constructed a ‘universal’ sepsis diagnostic classifier based on whole blood gene 141 

expression signatures. After dividing the cohort (n=221) into independent training (75% of data, 142 

n=165) and validation (25% of data, n=56) groups, we employed a bagged support vector 143 

machine learning approach (bSVM) to select genes that most effectively distinguished patients 144 

with sepsis (SepsisBSI and Sepsisnon-BSI) from those without (No-Sepsis). We elected to use a 145 

bSVM model due to better performance compared to random forest and gradient boosted trees, 146 

which were also tested (Supplementary Table 2). The bSVM model achieved an average 147 

cross-validation AUC of 0.81 (standard deviation (SD) 0.05) over 10 random splits within the 148 

training dataset (75% of data, n=165). In the held-out validation set (25% of data, n=56), an 149 

AUC of 0.82 was obtained. Additionally, an AUC of 0.85 (SD 0.02) was obtained over 10 150 

randomly-generated validation sets (Figure 2c, Supplementary Data 5). 151 

Host transcriptional classifier for sepsis diagnosis from plasma RNA 152 

Sequencing of plasma DNA has emerged as a preferred strategy for culture-153 

independent detection of bacterial pathogens in the bloodstream9.  It remained unknown, 154 

however, whether plasma RNA could provide meaningful and biologically relevant gene 155 

expression data, as sepsis transcriptional profiling studies have historically relied on isolation of 156 

PBMCs or collection of whole blood. 157 

To test this, we sequenced RNA from patients with available plasma specimens 158 

matched to the whole blood samples, and obtained a median of 2.3 x 107 (95% CI 2.2-2.5 x 107) 159 

reads per sample. Calculation of input RNA mass (Methods) demonstrated that samples with 160 

transcript counts below our QC cutoff (< 50,000) had a lower average input mass than those 161 
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with sufficient counts (65.2 pg versus 85.8 pg, respectively, p <0.0001, Supplementary Data 162 

8).   After filtering to retain samples with ≥ 50,000 transcripts (n=138), we performed DE 163 

analysis to assess whether a biologically plausible signal could be observed between patients 164 

with sepsis (SepsisBSI and Sepsisnon-BSI, n=73) and those without (No-Sepsis, n=37), and found 165 

62 genes at an adjusted P value < 0.1 (Supplementary Data 6), 28 of which were also 166 

significant in the whole blood analysis (Supplementary Figure 1). Remarkably, several of the 167 

top differentially expressed genes were previously reported sepsis biomarkers (e.g., elevated 168 

CD177, suppressed HLA-DRA),18–21 suggesting a biologically relevant transcriptomic signature 169 

from plasma RNA (Figure 2d, Supplementary Data 6). 170 

We then asked whether a host transcriptional sepsis diagnostic classifier could be 171 

constructed using plasma RNA transcriptomic data by dividing the cohort into independent 172 

training (75% of data, n=82) and validation groups (n=28), and employing the same bSVM 173 

approach to select genes that most effectively distinguished SepsisBSI and Sepsisnon-BSI patients 174 

from No-Sepsis patients. This approach yielded a classifier that achieved an average cross-175 

validation AUC of 0.97 (SD 0.03) over 10 random splits within the training dataset (75% of data, 176 

n=82). In the held-out validation set (25% of data, n=28), an AUC of 0.77 was obtained. An AUC 177 

of 0.90 (SD 0.06) was obtained over 10 randomly-generated validation sets (Figure 2e, 178 

Supplementary Data 7). 179 

Detection of bacterial sepsis pathogens from plasma nucleic acid 180 

We began microbial metagenomic analyses by assessing DNA microbial mass 181 

(Methods), which was significantly lower in negative control water samples, but did not differ 182 

between adjudicated sepsis groups (Figure 3a, Supplementary Data 8).  We next carried out 183 

bacterial pathogen detection using the IDseq pipeline22 for taxonomic alignment followed by a 184 

previously developed rules-based model (RBM)14 that identifies established sepsis pathogens 185 

overrepresented in mNGS data compared to less abundant commensal or contaminating 186 
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microbes14 (Methods, Figure 3b).  187 

We then asked how well the metagenomic RBM pathogen predictions agreed with 188 

bacterial blood culture data. Polymicrobial blood cultures of ≥ 3 organisms were excluded (n=2) 189 

given their unclear clinical significance, leaving a total of 40 blood culture-positive cases 190 

available for comparison (Supplementary Data 9). Sensitivity versus blood culture as a 191 

reference standard was 83%, and varied by pathogen, ranging from 0% (e.g., C. difficile) to 192 

100% (e.g., E. coli, S. aureus/argenteus Figure 3c).  Pathogens were called by the RBM in 193 

10/37 (27%) of patients in the No-Sepsis group, equating to a specificity of 73%.   194 

Detection of sepsis pathogens from peripheral sites using plasma nucleic acid  195 

 Plasma DNA mNGS identified 2/25 (8%) of culture-confirmed bacterial lower respiratory 196 

tract infection (LRTI) pathogens in the Sepsisnon-BSI group and 3/8 (38%) culture-confirmed 197 

bacterial urinary tract infection (UTI) pathogens (Figure 3d, Supplementary Data 9).  mNGS 198 

did not identify C. difficile in any of the three patients with severe colitis from this organism. 199 

Additional putative bacterial pathogens not detected by culture were detected in 8/73 (11%) of 200 

patients with microbiologically confirmed sepsis (Supplementary Data 9).  201 

Identification of viral infections using host transcriptional profiling of RNA and whole blood 202 

Only one of 13 (8%) respiratory viruses identified by clinical testing could be detected by 203 

plasma RNA mNGS (Supplementary Data 9). Recognizing that an alternative approach would 204 

be needed, we asked whether host response could instead be used to identify viral sepsis by 205 

carrying out differential gene expression analysis of patients with or without clinically confirmed 206 

viral sepsis within the SepsisBSI and Sepsisnon-BSI groups, using whole blood (Supplementary 207 

Data 10) or plasma (Supplementary Data 11) transcriptomic data.   GSEA demonstrated that 208 

pathways related to interferon signaling and genes important for antiviral immunity were 209 

enriched in samples from patients with viral sepsis versus those with bacterial sepsis, in data 210 

derived from both whole blood (Figure 4a, Supplementary Data 12a) and plasma (Figure 4b, 211 
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Supplementary Data 12b) datasets.   212 

We then leveraged this host signature to build a secondary bSVM diagnostic classifier 213 

for viral sepsis selecting differentially expressed genes as potential predictors, which on whole 214 

blood samples achieved an average cross-validation AUC of 0.90 (SD 0.07) over 10 random 215 

splits within the training dataset (75% of data, n=96). In the held-out validation set (25% of data, 216 

n=33), an AUC of 0.79 was obtained. An AUC of 0.87 (SD 0.04) was obtained over 10 217 

randomly-generated validation sets (Figure 4c, Supplementary Data 13). Slightly better 218 

performance was obtained when building a classifier using plasma RNA-seq data, with an 219 

average cross-validation AUC of 0.94 (SD 0.09) over 10 random splits within the training 220 

dataset (75% of data, n=54). In the held-out validation set (25% of data, n=19), an AUC of 0.96 221 

was obtained. An AUC of 0.94 (SD 0.07) was obtained over 10 randomly-generated validation 222 

sets (Figure 4d, Supplementary Data 14). Incorporation of the host-based viral sepsis 223 

classifier improved the sensitivity versus clinical respiratory viral PCR testing to 12/13 (92%), 224 

and predicted viral infection in one additional Sepsisnon-BSI patient who didn’t undergo viral PCR 225 

testing (Supplementary Data 15). 226 

Integrated host-microbe sepsis diagnostic model using plasma nucleic acid 227 

Given the relative success of each independent host and pathogen model, we 228 

considered whether combining them could enhance diagnosis, and potentially serve as a sepsis 229 

rule-out tool. To test this possibility, we developed a proof-of-concept integrated host + microbe 230 

model based on simple rules. It returned a sepsis diagnosis based on either host criteria: [host 231 

sepsis classifier probability > 0.5] or microbial criteria: [(pathogen detected by RBM) 232 

AND (microbial mass > 20 pg)] OR [host viral classifier probability > 0.9]. Applying 233 

these rules enabled detection of 42/42 (100%) of cases in the SepsisBSI group and 30/31 (97%) 234 

of cases in the Sepsisnon-BSI subjects, for an overall sensitivity of 72/73 (99%) (Figures 5a, 5b). 235 

This proof-of-concept model yielded a specificity of 29/37 (78%) within the No-Sepsis subjects 236 
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(Figure 5c, Supplementary Data 15). 237 

Application of the integrated model to suspected and indeterminant sepsis cases  238 

Next, we asked whether patients with clinically adjudicated sepsis, but negative in-239 

hospital microbiologic testing (Sepsissuspected) would be predicted to have sepsis using the 240 

integrated host-microbe plasma mNGS model.  14/19 (74%) were classified as having sepsis, 241 

(Figure 5d), eight of which had a putative bacterial pathogen identified. Two additional patients 242 

had viral host classifier probabilities > 0.5, but did not meet the threshold for sepsis-positivity in 243 

the integrated model. With respect to the indeterminate group, the integrated host + microbe 244 

model classified 8/9 (89%) as sepsis-positive (Figure 5e, Supplementary Data 15). Of these, 245 

two had a putative bacterial pathogen identified and one had a putative viral infection identified 246 

by the viral host classifier. 247 

 248 

Comparison against clinical variable models for sepsis diagnosis  249 

 Lastly, we asked how host/microbe mNGS compared against sepsis diagnostic models 250 

derived exclusively from clinical metrics that would be available at the time of initial evaluation in 251 

the ED.  We tested three different machine learning methods to distinguish Sepsis (SepsisBSI 252 

and Sepsisnon-BSI) from No-Sepsis patients, using 34 clinical variables as input (Supplementary 253 

Table 3a). The data were split into training (75%) and validation (25%) sets, and model 254 

performance was evaluated on the latter. The greatest average AUC achieved was 0.62 (SD 255 

0.04) using a random forest model (Supplementary Table 3b). We then computed the AUC 256 

using the qSOFA score, a widely used clinical score for sepsis diagnosis15.  The qSOFA 257 

achieved an average AUC of 0.48 (SD 0.02).  258 

  259 

Discussion 260 

Sepsis is defined as a dysregulated host response to infection15, yet existing diagnostics 261 
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have focused exclusively on either detecting pathogens or assessing features of the infected 262 

host.   Here, we combined host transcriptional profiling with broad-range pathogen detection to 263 

accurately diagnose sepsis in critically ill patients upon hospital admission.  Further, we 264 

demonstrate that an integrated host-microbe metagenomics approach can be performed on 265 

circulating RNA and DNA from plasma, a widely available clinical specimen type with previously 266 

unrecognized utility for host-based infectious disease diagnosis.  267 

Identifying an etiologic pathogen is critical for optimal treatment of sepsis. We found that 268 

concordance between pathogen detection by plasma mNGS and traditional bacterial blood 269 

culture varied by organism. For instance, mNGS sensitivity for detecting S. aureus and E. coli, 270 

two of the most globally important sepsis pathogens5, was 100%.  In contrast, mNGS missed 271 

several important but less common sepsis pathogens, such as S. pyogenes. We noted that in all 272 

false-negative cases, the patients had received antibiotics prior to mNGS sample collection, 273 

which may have reduced the abundance of circulating bacterial DNA available for detection. 274 

Furthermore, mNGS and blood cultures were performed on different samples, with research 275 

specimens collected up to 24 hours after blood cultures, which may have resulted in lower 276 

concordance than if samples had been collected contemporaneously.  277 

Several of the microbes missed by mNGS were organisms that in many contexts exist 278 

as commensals (e.g., Fusobacterium, Gemella and Streptococcus species). It is unclear 279 

whether these organisms were truly etiologic sepsis pathogens or commensals translocated to 280 

the blood in the setting of critical illness, and incidentally identified in culture. Clostridium 281 

species are frequently found as contaminants in blood cultures23, which is perhaps why mNGS 282 

also did not detect an unspeciated Clostridium isolated in blood culture from one patient. 283 

With respect to non-BSI sepsis, our findings suggest that plasma mNGS may be most 284 

useful for identifying UTI-associated pathogens, although we also observed some utility for 285 

respiratory pathogen detection, in line with a prior report24. mNGS failed to detect C. difficile in 286 

any patients with colitis from this pathogen, although this is not surprising given that the 287 
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organism is rarely associated with bacteremia25.  288 

Within the No-Sepsis group, 10/37 (27%) of patients had a pathogen detected by 289 

mNGS, each of which was validated to be present at statistically significantly higher levels than 290 

in background controls.  Notably, 9/10 (90%) of the pathogens were gram negative enteric 291 

organisms, which may reflect gastrointestinal translocation of microbes, a well described 292 

phenomenon during critical illness26. In addition, all 10 of these patients had received antibiotics 293 

in the first day of study enrollment, so it is possible that sequences derived from non-viable 294 

organisms unable to grow in culture. 295 

Plasma RNA sequencing alone performed poorly for detecting sepsis-associated 296 

respiratory viruses. Incorporation of a host-based viral classifier, however, markedly improved 297 

detection of clinically confirmed viral LRTI. The viral classifier predicted previously unrecognized 298 

viral infections in three patients with sepsis who did not undergo viral PCR testing during their 299 

hospitalizations.  Prior work has demonstrated that different viral species elicit distinct host 300 

transcriptional signatures in the peripheral blood27, suggesting that future studies could extend 301 

the RNA host viral classifier to identify specific viral pathogens, such as influenza or SARS-CoV-302 

2, for which therapeutics exist. Future studies could additionally explore the use of targeted 303 

enrichment methods28,29 to enhance detection of viral sepsis pathogen nucleic acid. 304 

In line with prior reports13, we found that viral sepsis has a unique host transcriptional 305 

signature characterized by expression of interferon and other signaling pathways.  We also 306 

observed transcriptional differences based on whether sepsis was due to a bloodstream versus 307 

peripheral site infection, which was less expected. The host response in SepsisBSI patients was 308 

characterized by lower expression of genes related to CD28 signaling and T cell activation, and 309 

greater expression of genes related to antimicrobial peptides, defensins and G alpha signaling, 310 

compared to Sepsisnon-BSI patients. 311 

We found that detection of a pathogen alone was in many cases insufficient for sepsis 312 

diagnosis, but when combined with a host transcriptional profile, had promising diagnostic utility 313 
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and potential as a tool for infection rule-out.  In addition to defining host signatures of sepsis 314 

from whole blood, we also found biologically relevant host transcripts in plasma. This may have 315 

direct clinical applications given that plasma mNGS is increasingly being used in hospitals for 316 

pathogen detection in patients with sepsis and other infectious diseases, with turnaround times 317 

of ≤48 hours.  318 

Inappropriate antimicrobial use is a major challenge in the management of critical illness, 319 

and is often driven by the inability to rule-out infection in patients with systemic inflammatory 320 

diseases. Indeed, we found that clinical variables alone, including the qSOFA score, were 321 

unable to accurately distinguish patients with sepsis from those with non-infectious critical 322 

illnesses at the time of initial evaluation in the ED.  In contrast, our proof-of-concept assessment 323 

of the integrated host + microbe mNGS model demonstrated 99% sensitivity across patients 324 

with microbiologically confirmed sepsis, and 78% specificity within the No-Sepsis group, which 325 

was comprised almost entirely of patients meeting the clinical definition of systemic 326 

inflammatory response syndrome16.   327 

Host/microbe mNGS may facilitate precision antimicrobial stewardship by discriminating 328 

sepsis from diverse types of non-infectious febrile inflammatory syndromes, ranging from 329 

autoimmune diseases to macrophage activation syndrome. We envision this assay being used 330 

at the time of ED presentation for all suspected sepsis patients, as an adjunct to blood cultures 331 

and other traditional microbiological testing. 332 

Distinguishing true sepsis pathogens from environmental contaminants or human 333 

commensals (e.g., Gemella), is a challenge for both mNGS and traditional culture-based 334 

microbiologic methods. Concomitant assessment of a host-based metric offers an opportunity to 335 

determine whether the detected pathogen exists in the context of an immunological state 336 

consistent with infection. Considering this, host/microbe mNGS diagnostic classification could 337 

theoretically be more difficult in immunocompromised patients. Arguing against this, however, is 338 

prior work demonstrating accurate performance of a host/microbe mNGS pneumonia diagnostic 339 
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in an ICU cohort with a 40% prevalence of immunocompromised individuals14. 340 

Our study has several strengths, including the novel use of plasma RNA transcriptomics 341 

for sepsis diagnosis, development of the first sepsis diagnostic combining host and microbial 342 

mNGS data, detailed clinical phenotyping, and a large prospective cohort of critically ill adults 343 

with systemic illnesses.  It also has some limitations. First, as noted above, mNGS and blood 344 

cultures were performed on different samples collected at different times, so the observed 345 

concordance with clinical microbiological testing may be an underestimate. Second, a significant 346 

fraction of plasma samples had insufficient host transcripts to permit gene expression analyses, 347 

leading to a smaller sample size for the plasma versus the whole blood cohorts.  This limitation 348 

may be addressable in future studies by increasing the input plasma volume and thus RNA 349 

mass.  350 

The host immune response during sepsis is dynamic, and thus the stage of infection at 351 

which gene expression is measured may influence accuracy of the classifier. While our study 352 

was cross-sectional in design, we attempted to control for this by sampling at a consistently 353 

early stage of critical illness, within the first 24 hours of ICU admission. Lastly, because we did 354 

not have access to any other sepsis studies with either plasma gene expression data or paired 355 

host and microbial mNGS data from blood, additional studies in an independent cohort will be 356 

needed to validate these findings.  357 

In conclusion, we report that combining host gene expression profiling and metagenomic 358 

pathogen detection from plasma nucleic acid enables accurate diagnosis of sepsis. Future 359 

studies are needed to validate and test the clinical impact of this culture-independent diagnostic 360 

approach.  361 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.16.22277700doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.16.22277700


 17 

 362 

Figure 1. a) Study flow diagram. Patients studied were enrolled in the Early Assessment of Renal 363 
and Lung Injury (EARLI) cohort. Sepsis adjudication performed following hospital discharge was 364 
based on ≥ 2 or systemic inflammatory response syndrome (SIRS) criteria plus clinical suspicion 365 
of infection, and was used to delineate 5 patient subgroups. Following quality control (QC), whole 366 
blood underwent RNA-seq and plasma underwent RNA-seq and DNA-seq. b) Analytic 367 
approaches. Host transcriptional sepsis diagnostic classifiers were trained and tested on RNA-368 
seq data from whole blood (n=221) and plasma (n=110), with a goal of differentiating patients with 369 
microbiologically confirmed sepsis (SepsisBSI + Sepsisnon-BSI) from those without clinical evidence 370 
of infection (No-Sepsis).  Viral infections were identified via a secondary host transcriptomic 371 
classifier. Sepsis pathogens were detected from plasma nucleic acid using metagenomic next 372 
generation sequencing (mNGS) followed by a rules-based bioinformatics model (RBM). Finally, 373 
an integrated host + microbe model for sepsis diagnosis was developed and evaluated.  374 
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Figure 2. Host gene expression differentiates patients with sepsis from those with non-infectious 376 
critical illnesses. a) Heatmap of top 50 differentially expressed genes from whole blood 377 
transcriptomics comparing patients with microbiologically confirmed sepsis (SepsisBSI + Sepsisnon-378 
BSI) versus those without evidence of infection (No-Sepsis). b) Gene set enrichment analysis of 379 
the differentially expressed genes with the top 10 up- and down-regulated pathways (P < 0.05) 380 
highlighted. c) Receiver operating characteristic (ROC) curve demonstrating performance of 381 
bagged support vector machine (bSVM) classifier for sepsis diagnosis from whole blood 382 
transcriptomics (n=221). The area under the ROC curve (AUC) and standard deviation (SD, in 383 
parentheses, when applicable) are listed in the figure panel for cross validation (CV) in the training 384 
set (red line: average over 10 random splits; red shaded area: ±1SD), the held-out validation set 385 
(dashed grey line), and over 10 randomly-generated validation sets (solid grey line: average; grey 386 
shaded area: ±1SD). d) Plasma RNA-seq expression differences of selected differentially 387 
expressed genes previously identified as sepsis biomarkers, with Sepsis patients in maroon, and 388 
No-Sepsis patients in grey. Adjusted P value provided above boxplot. Boxes represent the 25-75 389 
percentiles and whiskers represent the 5-95 percentiles. e) ROC curve demonstrating 390 
performance of bSVM classifier for sepsis diagnosis from plasma RNA (n=110). The AUC and 391 
SD are listed in the figure panel for CV in the training set (red line: average over 10 random splits; 392 
red shaded area: average ±1SD), the held-out validation set (dashed grey line), and over 10 393 
randomly-generated validation sets (solid grey line: average; grey shaded area: average ±1SD).   394 
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 395 

Figure 3. Plasma metagenomic next generation sequencing (mNGS) for detecting sepsis 396 
pathogens. a) Microbial plasma DNA mass differences between sepsis groups. Black bars 397 
represent median and error bars represent the interquartile range. b) Graphical depiction of the 398 
rules-based model (RBM) for sepsis pathogen detection from two different exemplary cases. The 399 
RBM identifies established pathogens with disproportionately high abundance compared to other 400 
commensal and environmental microbes in the sample. c) Concordance between plasma DNA 401 
mNGS for detecting bacterial pathogens in SepsisBSI patients with bacterial bloodstream 402 
infections compared to a gold standard of culture. d) Sensitivity of plasma nucleic acid mNGS for 403 
detecting pathogens in Sepsisnon-BSI patients with sepsis from non-bloodstream, peripheral sites 404 
of infection. Legend: LRTI = lower respiratory tract infection; UTI = urinary tract infection; CDI = 405 
Clostridium difficile infection. Mass data are tabulated in Supplementary Data 8. Clinical 406 
microbiology and metagenomics data are tabulated in Supplementary Data 9. *** = P ≤ 0.001, ** 407 
= P ≤ 0.01, * = P ≤ 0.05.  408 
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 409 

Figure 4. Detection of viral sepsis based on host gene expression. a) GSEA of differentially 410 
expressed genes from whole blood RNA-seq (n=129) demonstrating pathways enriched in 411 
patients with viral sepsis. Gene sets with P < 0.05 included. b) GSEA of differentially expressed 412 
genes from plasma RNA-seq (n=73) demonstrating pathways enriched in patients with viral 413 
sepsis. Gene sets with P < 0.05 included. c) ROC curve demonstrating performance of bagged 414 
support vector machine (bSVM) classifier for detecting viral sepsis from whole blood RNA-seq 415 
(n=129). The area under the ROC curve (AUC) and standard deviation (SD, in parentheses, when 416 
applicable) are listed in the figure panel for cross validation (CV) in the training set (red line: 417 
average over 10 random splits; red shaded area: ±1SD), the held-out validation set (dashed grey 418 
line), and over 10 randomly generated validation sets (solid grey line: average; grey shaded area: 419 
±1SD). d) ROC curve demonstrating performance of bSVM classifier for detecting viral sepsis 420 
from plasma RNA-seq (n=73). The AUC and SD are listed in the figure panel for CV in the training 421 
set (red line: average over 10 random splits; red shaded area: ±1SD), the held-out validation set 422 
(dashed grey line), and over 10 randomly generated validation sets (solid grey line: average; grey 423 
shaded area: ±1SD). 424 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.16.22277700doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.16.22277700


 22 

  425 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.16.22277700doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.16.22277700


 23 

Figure 5.  Integrated host-microbe mNGS model for sepsis diagnosis from plasma. Host criteria 426 
for positivity can be met by a sepsis transcriptomic classifier probability > 0.5 (maroon bars, 427 
dotted line). Microbial criteria can be met based on either: 1) detection of a pathogen by mNGS 428 
and a sample microbial mass > 20 pg (grey bars), or 2) viral transcriptomic classifier probability 429 
> 0.9 (blue circles, dotted line).  Host and microbial metrics are highlighted for patients with 430 
sepsis due to a) bloodstream infections (SepsisBSI), b) peripheral infection (Sepsisnon-BSI), c) 431 
patients with non-infectious critical illness (No-Sepsis), and d) patients with suspected sepsis 432 
but negative microbiological testing (Sepsissuspected) and patients with indeterminant sepsis 433 
status (Indeterm). Maroon cross: sepsis positive based on model. Blue circles: virus predicted 434 
from plasma RNA secondary viral host classifier. Filled blue circles = virus also detected by 435 
clinical respiratory viral PCR. Cases with < 20pg microbial mass indicated by lighter grey 436 
shading. Samples with mNGS-detected pathogens have the microbe(s) listed below the sample 437 
microbial mass.  Raw values for plots and original training/test split assignments are tabulated in 438 
Supplementary Data 16.  439 
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Methods 440 

Study design, clinical cohort, and ethics statement 441 

We conducted a prospective observational study of patients with acute critical illnesses 442 

admitted from the ED to the ICU. We studied patients who were enrolled in the Early 443 

Assessment of Renal and Lung Injury (EARLI) cohort at the University of California, San 444 

Francisco (UCSF) or Zuckerberg San Francisco General Hospital between 10/2010 and 445 

01/2018 (Supplementary Table 1). The study was approved by the UCSF Institutional Review 446 

Board (IRB) under protocol 10-02852, which granted a waiver of initial consent for blood 447 

sampling. Informed consent was subsequently obtained from patients or their surrogates for 448 

continued study participation, as previously described30,31. 449 

For the parent EARLI cohort, the inclusion criteria are: 1) age ≥ 18, 2) admission to the 450 

ICU from the ED, and 3) enrollment in the ED or within the first 24 hours of ICU admission.  For 451 

this study, we selected patients for whom PAXgene whole blood tubes and matched plasma 452 

samples from the time of enrollment were available. PAXgene tubes were collected on patients 453 

enrolled in EARLI during the time period listed above who were hypotensive and/or 454 

mechanically ventilated at the time of enrollment.   The main exclusion criteria for the EARLI 455 

study are: 1) exclusively neurological, neurosurgical, or trauma surgery admission, 2) goals of 456 

care decision for exclusively comfort measures, 3) known pregnancy, 4) legal status of prisoner, 457 

and 5) anticipated ICU length of stay < 24 hours. Enrollment in EARLI began in 10/2008 and 458 

continues.  459 

Sepsis adjudication 460 

 Clinical adjudication of sepsis groups was carried out by study team physicians (MA, CL, 461 

AL, KL, PS, CH, AG, CC, KK, MM) using the sepsis-2 definition32 (≥ 2 SIRS criteria + suspected 462 

infection) and incorporating all available clinical and microbiologic data from the entire ICU 463 

admission, with blinding to mNGS results. Each patient was reviewed by at least four 464 
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physicians. Disagreements were handled by discussion with the most senior physicians (CC, 465 

MM) in the phenotyping panel. Patients were categorized into five subgroups based on sepsis 466 

status (Figure 1a, Supplementary Figure 1). Patients with clinically adjudicated sepsis and a 467 

bacterial culture-confirmed bloodstream infection (SepsisBSI), sepsis due to a microbiologically 468 

confirmed primary infection at a peripheral site other than the bloodstream (Sepsisnon-BSI), 469 

suspected sepsis with negative clinical microbiologic testing (Sepsissuspected), patients with no 470 

evidence of sepsis and a clear alternative explanation for their critical illness (No-Sepsis), or 471 

patients of indeterminant status (Indeterm). Clinical and demographic features of patients are 472 

summarized in (Supplementary Table 1) and tabulated in (Supplementary Data 16 and 17).  473 

Metagenomic sequencing 474 

Following enrollment, whole blood and plasma were collected in PAXgene and EDTA 475 

tubes, respectively. Whole blood PAXgene tubes were processed and stored at -80C according 476 

to manufacturer’s instructions, and plasma was frozen at -80C within two hours.  To evaluate 477 

host gene expression and detect microbes, RNA-seq was performed on the whole blood and 478 

plasma specimens, and DNA-seq was performed on plasma specimens. RNA was extracted 479 

from whole blood using the Qiagen RNeasy kit and normalized to 10ng total input per sample.  480 

Total plasma nucleic acid was extracted by first clarifying 300uL of plasma via maximum-speed 481 

centrifugation for five minutes at 21,300 x g, and then employing the Zymo Pathogen Magbead 482 

Kit on the supernatant following manufacturer’s instructions. 10ng of total nucleic acid 483 

underwent DNA-seq using the NEBNext Ultra II DNA Kit.  Samples with at least 10ng of 484 

remaining total nucleic acid were treated with DNAse (Qiagen) to recover RNA, and then 485 

underwent RNA-seq library preparation using the NEBNext Ultra II RNA-seq Kit as described 486 

below.  487 

For RNA-seq library preparation, human cytosolic and mitochondrial ribosomal RNA and 488 

globin RNA was first depleted using FastSelect (Qiagen). For the purposes of background 489 
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contamination correction (see below) and to enable estimation of input microbial mass, we 490 

included negative water controls as well as positive controls (spike-in RNA standards from the 491 

External RNA Controls Consortium (ERCC))33. RNA was then fragmented and underwent library 492 

preparation using the NEBNext Ultra II RNA-seq Kit (New England Biolabs) according to 493 

described methods . Finished libraries underwent 146 nucleotide paired-end Illumina 494 

sequencing on an Illumina Novaseq 6000 instrument. 495 

Index swapping can lead to read misassignment with Illumina sequencing. Dual 496 

indexing, that is adding barcode index sequences on both ends of the molecule, reduces the 497 

rate at which this misassignment occurs by requiring concordance between the two barcode 498 

sequences. The frequency of index-swapped reads has been estimated to be more than 35X 499 

lower when using dual vs single indexing35. Because we used dual indexing and because the 500 

RBM for pathogen detection operates by only identifying pathogen sequences 501 

disproportionately abundant in a sample versus the other sequences, our methods would not be 502 

expected to be negatively influenced by index swapping, which would only be anticipated to 503 

misassign low abundance reads irrelevant to the RBM. 504 

Host differential expression and pathway analysis  505 

 Following demultiplexing, sequencing reads were aligned with STAR36 to an index 506 

consisting of all transcripts associated with human protein coding genes (ENSEMBL v. 99), 507 

cytosolic and mitochondrial ribosomal RNA sequences, and the sequences of ERCC RNA 508 

standards. Samples retained in the dataset had a total of at least 50,000 counts associated with 509 

transcripts of protein coding genes. 510 

 Differential expression analysis was performed using DESeq2  and including covariates 511 

for age and gender. Significant genes were identified using an independent-hypothesis-512 

weighted, Benjamini-Hochberg false discovery rate (FDR) < 0.138,39. We generated heatmaps of 513 

the top 50 differentially expressed genes by absolute log2-fold change. To evaluate signaling 514 
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pathways from gene expression data, we employed gene set enrichment analysis using 515 

WebGestalt40 on all ranked differentially expressed genes with a P value < 0.1. Significant 516 

pathways and upstream regulators were defined as those with a gene set P value < 0.05. 517 

Pathogen detection 518 

Detection of microbes leveraged the open-source IDseq pipeline22 which incorporates 519 

subtractive alignment of the human genome (NCBI GRC h38) using STAR36, quality and 520 

complexity filtering, and subsequent removal of cloning vectors and phiX phage using 521 

Bowtie222. The identities of the remaining microbial reads are determined by querying the NCBI 522 

nucleotide (NT) database using GSNAP-L22,41. After background correction (see below), 523 

retained non-viral taxonomic alignments in each sample were aggregated at the genus level, 524 

and sorted in descending order by abundance measured in reads per million (rpM), 525 

independently for each sample. A previously validated rules based model (RBM)14 was then 526 

utilized to identify disproportionately abundant bacteria and fungi in each sample, and flag them 527 

as pathogens. The RBM, originally developed to identify pathogens from respiratory mNGS 528 

data, detects outlier organisms within a sample by identifying the greatest gap in abundance 529 

between the top 15 sequentially ranked microbes in each sample. All microbes present in a 530 

reference index of established pathogens above this gap are then called by the RBM.  531 

We adapted the original RBM specifically for sepsis pathogen detection, in which outlier 532 

organisms are sometimes present in low abundance, by incorporating a sepsis (as opposed to 533 

respiratory) pathogen reference index (Supplementary Data 18) and requiring that the species 534 

called by the RBM both be present in the reference index and detected at an abundance of > 1 535 

rpM. Given the potential for respiratory viruses to cause sepsis, the RBM also identified human 536 

pathogenic respiratory viruses derived from a reference list of LRTI pathogens14, present in the 537 

plasma RNA-seq data at an abundance of > 1 rpM. Sensitivity and specificity were calculated 538 

based on detection of reference index sepsis pathogens in each of the sepsis adjudication 539 
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groups. 540 

The reference index (Supplementary Data 18) was established a. priori and no data 541 

from the enrolled patients were used to inform the distinction between pathogens and 542 

commensals. The index consisted of the most prevalent bloodstream infection pathogens 543 

reported by both the National Healthcare Safety Network (NHSN)42 and a recent multicenter 544 

surveillance study of healthcare-associated infections43. These studies reported multiple species 545 

of Bacteriodes, Candida, Citrobacter, Enterobacter, Enterococcus, Klebsiella, Lactobacillus, 546 

Morganella, Prevotella, Proteus, Serratia, Stenotrophomonas and Streptococcus as common 547 

sepsis pathogens, and thus the reference index contains all species within these genera, 548 

yielding > 1000 total species detectable by the model based on current NCBI taxonomy.  549 

Identification and mitigation of environmental contaminants 550 

 Negative control samples consisting of only double-distilled water (n=24) were 551 

processed alongside plasma DNA samples, which were sequenced in a single batch. Negative 552 

control samples enabled estimation of the number of background reads expected for each 553 

taxon44. A previously developed negative binomial model44 was employed to identify taxa with 554 

NT sequencing alignments present at an abundance significantly greater compared to negative 555 

water controls. This was done by modeling the number of background reads as a negative 556 

binomial distribution, with mean and dispersion fitted on the negative controls. For each taxon, 557 

we estimated the mean parameter of the negative binomial by averaging the read counts across 558 

all negative controls. We estimated a single dispersion parameter across all taxa, using the 559 

functions glm.nb() and theta.md() from the R package MASS45. Taxa that achieved an adjusted 560 

P value <0.01 (Benjamini & Hochberg multiple test correction) were carried forward to the 561 

above-described RBM for pathogen detection.   562 
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Microbial mass calculations 563 

 Microbial mass was calculated based on the ratio of microbial reads in each sample to 564 

total reads aligning to the External RNA Controls Consortium (ERCC) RNA standards spiked 565 

into each sample46. The following equation was utilized for this calculation: [ERCC input 566 

mass]/[microbial input mass] = [ERCC reads]/[microbial reads], where the ERCC input mass 567 

was 25pg. 568 

Host transcriptional classifiers for sepsis and viral infection diagnosis 569 

To build classifiers that differentiated patients with sepsis (SepsisBSI, Sepsisnon-BSI) from 570 

those with non-infectious critical illness (No-Sepsis), and distinguished viral from non-viral 571 

sepsis, we built a Support Vector Machine (SVM)-based classifier47 with the scikit-learn48 572 

(v0.23.2) library in Python (v3.8.3). We tested several machine learning approaches (bagged 573 

SVM, random forest and gradient boosted trees) and selected a bSVM classifier with a linear 574 

kernel based on best performance (Supplementary Table 2). Each classifier used a 575 

bootstrapped set of samples and a random subset of features. 576 

We evaluated samples with ≥ 50,000 plasma gene counts and genes with more than 577 

20% non-zero counts in that sample subset. Only differentially expressed genes, identified using 578 

DESeq2 (v1.28.1) in the training set, were considered as potential predictors and included in 579 

machine learning models, with FDR thresholds of 0.1 (whole blood), 0.2 (plasma, viral) and 0.3 580 

(plasma, sepsis) chosen based on cross-validation. Age and sex were included as covariates in 581 

the models. We used Z-score-scaled transformed (variance stabilizing transformation) gene 582 

counts. 75% of the data was selected to train the model, and the rest was used as a held-out 583 

set to test the final model. The training set was subsequently randomly split ten times for cross-584 

validation, using 75% of each as intermediate training sets, and the remaining 25% as their 585 

associated testing sets. 586 
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On each one of those intermediate training sets, we carried out feature selection and 587 

parameters optimization using nested 5-fold cross-validations. We optimized three parameters: 588 

the regularization parameter, the maximum number of features considered for each classifier, 589 

and the total number of classifiers to use for bagging. For each parameters optimization fold, a 590 

recursive feature elimination (RFE) strategy was adopted, dropping 10% of the remaining least 591 

important features at each iteration. A bSVM classifier with default parameters was built at each 592 

iteration. We defined feature importance as the average squared weight across all estimators. 593 

To maximize interpretability, we restricted the maximum number of predictors to 100 genes. 594 

We estimated model performances using the Area Under the Receiver Operating 595 

Characteristic Curve (AUC) values. To obtain a single set of features, we fitted a model, using 596 

the aforementioned strategy, to the initial training set. This model was then tested on the held-597 

out set to obtain a final performance value and a single set of predictors. 598 

Comparison of plasma nucleic acid mNGS against clinician-ordered diagnostic testing 599 

Clinical microbiological testing was carried out based on decisions from the primary 600 

medical team during the patient’s hospital admission at the UCSF and ZSFG clinical 601 

microbiology laboratories  Tests utilized included bacterial culture from blood, lower respiratory 602 

tract and urine which were carried out according to previously described protocols14. Clinical 603 

testing for viral respiratory pathogens was performed from nasopharyngeal swabs and/or 604 

bronchioalveolar lavage using the Luminex XTag multiplex viral PCR assay. Polymicrobial blood 605 

cultures with ≥ 3 bacteria (n=2) were excluded from pathogen concordance given their unclear 606 

clinical significance and potential that some organisms reflected contamination.  607 

Integrated host + microbe sepsis diagnosis and rule-out model 608 

We developed a simple integrated host + microbe model that returned a sepsis diagnosis based 609 

on either host criteria [host sepsis classifier probability > 0.5] or microbial criteria: 610 

[(pathogen detected by RBM) AND (microbial mass > 20 pg)] OR [host viral classifier 611 
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probability > 0.9]. Combined metrics (Supplementary Data 16) including sepsis assignment 612 

based on this model are depicted in Figure 5. Sensitivity was calculated in the (SepsisBSI) and 613 

(Sepsisnon-BSI) groups, and specificity in the (No-Sepsis) group. 614 

 615 

Clinical variable models for sepsis diagnosis  616 

 We tested the ability of clinical variables (Supplementary Table 3a) available at the 617 

time of initial patient assessment to predict sepsis using three machine learning methods. These 618 

included SVM using the e1071 package49, random forest using the randomForest package50 619 

and regularized logistic regression using the glmnet51 package in R version 4.2.052. Specifically, 620 

we built models to classify Sepsis (SepsisBSI and Sepsisnon-BSI) versus No-Sepsis using 34 621 

clinical variables that would be available at the time of ED evaluation. The data were split into 622 

training (75%) and test (25%) sets and model performance (AUC) was evaluated on the test set. 623 

This was repeated for a total of 10 randomized splits with the AUC computed at each iteration. 624 

AUC was also computed for the qSOFA score (systolic blood pressure < 100 mmHg, respiratory 625 

rate > 22 breaths/minute, Glasgow Coma Scale < 13). Results are tabulated in (Supplementary 626 

Table 3b). 627 

Statistics and reproducibility  628 

 Statistical tests utilized for each analysis are described in the figure legends and in 629 

further detail in each respective methods section. The number of patient samples analyzed for 630 

each comparison are indicated in the figure legends. Data were generated from single 631 

sequencing runs without technical replicates. 632 

Data availability 633 

 Source data are provided with this paper. The processed genecount data are available 634 

from the National Center for Biotechnology Information Gene Expression Omnibus database 635 

under accession code GSE189403. The raw sequencing data are protected due to data privacy 636 
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restrictions from the IRB protocol governing patient enrollment, which protects the release of 637 

raw genetic sequencing data from those patients enrolled under a waiver of consent. To honor 638 

this, researchers who wish to obtain raw fastq files for the purposes of independently generating 639 

genecounts can contact the corresponding author (chaz.langelier@ucsf.edu) and request to be 640 

added to the IRB protocol. The raw fastq files with microbial sequencing reads are available 641 

from the Sequence Read Archive under BioProject ID: PRJNA783060. 642 

 643 

Code availability 644 

Code for the differential expression, classifier development and RBM can be found at: 645 

(https://github.com/lucile-n/plasma_classifiers). 646 

 647 
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Supplementary Materials 

 

Supplementary Table 1a.  Summary of clinical and demographic features of patients evaluated 
in whole blood gene expression analyses (n=221). These include patients with microbiologically 
confirmed sepsis (SepsisBSI  and Sepsisnon-BSI) and those with non-infectious critical illnesses 
(No-Sepsis). Source data are tabulated in (Supplementary Data 16). 
 

Whole Blood  SepsisBSI 
(n=60) 

Sepsisnon-BSI 
(n=69) 

No-Sepsis 
(n=92) 

Sepsis 
vs No-Sepsis 

P value* 
Age  

(median, Q1-Q3/%)  63.5 (50.8-73.3) 68 (58-80) 65.5 (54-74.5) 0.51 

Gender (median, %) 
Male 41 (68.3%) 40 (58%) 53 (57.6%) 

0.49 Female 19 (31.7%) 28 (40.6%) 39 (42.4%) 
Transgender 0 (0%) 1 (1.4%) 0 (0%) 

Race (n, %) 

Caucasian 20 (33.3%) 29 (42%) 37 (40.2%) 

0.63 

Asian 17 (28.3%) 21 (30.4%) 24 (26.1%) 
African 

American 10 (16.7%) 11 (15.9%) 17 (18.5%) 

Other 12 (20%) 5 (7.2%) 14 (15.2%) 
Unknown 0 (0%) 3 (4.3%) 0 (0%) 

Native American 1 (1.7%) 0 (0%) 0 (0%) 

Ethnicity (n, %) 
Non-LatinX 51 (85%) 60 (87%) 79 (85.9%) 

0.76 LatinX 9 (15%) 6 (8.7%) 12 (13%) 
NA 0 (0%) 3 (4.3%) 1 (1.1%) 

Temp Max 
(median, Q1-Q3%)  38.1  

(37.1-38.9) 
37.6  

(37-38.4) 
37.3  

(36.1-37.9) < 0.001 

WBC Max 
(median, Q1-Q3%)  15.5  

(10.1-23.8) 
13.9  

(9.5-19.2) 
13.15  

(9.5-18.9) 0.24 

APACHEIII 
(median, Q1-Q3%)  69 (53-85) 50 (46-66) 64 (50-78) 0.17 

SIRS 

4 39 (65%) 26 (37.7%) 27 (29.3%) 

0.01 3 16 (26.7%) 30 (43.5%) 42 (45.7%) 
2 5 (8.3%) 12 (17.4%) 22 (23.9%) 
1 0 (0%) 0 (0.0%) 1 (1.1%) 

Bacterial infection‡  60 (100.0%) 50 (72.5%) 0 (0.0%) < 0.001 

Viral +/- Bacterial infection‡  3 (5.0%) 21 (30.4%) 0 (0.0%) < 0.001 

28-day mortality (n, %)  23 (38.3%) 15 (21.7%) 32 (34.8%) 0.49 

Intubated (n, %)  47 (78.3%) 59 (85.5%) 86 (93.5%) 0.02 

Vasopressors (n, %)  54 (90%) 51 (73.9%) 59 (64.1%) < 0.01 

Immunocompromised# (n, %)  7 (11.7%) 6 (8.7%) 6 (6.5%) 0.49 

Antibiotics+ (n, %)  59 (98.3%) 66 (95.7%) 73 (79.3%) < 0.001 

*SepsisBSI + Sepsisnon-BSI vs No-Sepsis P value calculated by Mann-Whitney (continuous) or chi-squared (categorical) 
‡Based on clinical microbiology testing  
#Immunocompromise was defined as: history of solid organ transplantation, bone marrow transplantation, HIV/AIDS with 

CD4 < 200, leukemia or other hematologic malignancy, autoimmune inflammatory disease, or primary immunodeficiency. 
+Antibiotics administered on or before the first day of study enrollment.  
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Supplementary Table 1b. Summary of clinical and demographic features of patients with plasma 
RNA-seq data, evaluated in all analyses (n=138).  All sepsis adjudication groups represented. 
Source data are tabulated in (Supplementary Data 17). 

 

Plasma  

SepsisBSI 
(n=42) 

Median/n  
(Q1-Q3/%) 

Sepsisnon-BSI 
(n=31) 

Median/n 
(Q1-Q3/%) 

No-Sepsis 
(n=37) 

Median/n  
 (Q1-Q3/%) 

P value* 
SepsisBSI+non-BSI  

v No-Sepsis  

Sepsissuspected 
(n=19) 

Median/n  
(Q1-Q3/%) 

Indeterm 
(n=9) 

Median/n  
(Q1-Q3/%) 

Overall  
P value† 

Age  
(median, Q1-Q3/%)  63.5 (51.25-

72) 69 (58-78.5) 66 (55-79) 0.45 69 (55-80) 72 (63-80) 0.12 

Gender 
(median, %) 

Male 28 (66.7%) 17 (54.8%) 21 (56.8%) 
0.77 

9 (47.4%) 3 (33.3%) 
0.24 Female 14 (33.3%) 14 (45.2%) 16 (43.2%) 9 (47.4%) 6 (66.7%) 

Transgender 0 (0%) 0 (0%) 0 (0%) 1 (5.3%) 0 (0%) 

Race (n, %) 

Caucasian 13 (31%) 12 (38.7%) 14 (37.8%) 

0.86 

4 (21.1%) 7 (77.8%) 

0.50 

Asian 12 (28.6%) 10 (32.3%) 13 (35.1%) 9 (47.4%) 1 (11.1%) 
African 

American 8 (19%) 6 (19.4%) 7 (18.9%) 3 (15.8%) 1 (11.1%) 

Other 8 (19%) 2 (6.5%) 3 (8.1%) 3 (15.8%) 0 (0%) 
Native 

American 1 (2.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Unknown 0 (0%) 1 (3.2%) 0 (0%) 0 (0%) 0 (0%) 

Ethnicity (n, %) 
Non-LatinX 36 (85.7%) 28 (90.3%) 35 (94.6%) 

0.48 
16 (84.2%) 8 (88.9%) 

0.62 LatinX 6 (14.3%) 2 (6.5%) 2 (5.4%) 3 (15.8%) 1 (11.1%) 
NA 0 (0%) 1 (3.2%) 0 (0%) 0 (0%) 0 (0%) 

Temp Max  
(median, Q1-Q3/%)  38.05  

(37.1-38.9) 
37.8  

(37.1-38.5) 
37.1  

(36.1-38) < 0.01 37  
(36.6-38.2) 

35.8  
(34.9-37.2) < 0.001 

WBC Max 
(median, Q1-Q3/%)  16.05  

(6.5-26.6) 
17.4  

(11.2-22.8) 
13  

(9.9-20.6) 0.40 19.3  
(12.8-26.1) 

15.3  
(9.7-19.7) 0.60 

APACHEIII 
(median, Q1-Q3/%)  72.5 (52-85) 54 (46-69) 72 (57-81) 0.20 70 (61-89) 72 (65-93) 0.04 

SIRS 

4 28 (66.7%) 13 (41.9%) 15 (40.5%) 

0.19 

12 (63.2%) 5 (55.6%) 

0.52 3 11 (26.2%) 15 (48.4%) 15 (40.5%) 5 (26.3%) 3 (33.3%) 
2 3 (7.1%) 3 (9.7%) 6 (16.2%) 2 (10.5%) 1 (11.1%) 
1 0 (0%) 0 (0%) 1 (2.7%) 0 (0%) 0 (0%) 

Bacterial infection‡  42 (100.0%) 24 (77.4%) 0 (0.0%) < 0.001 0 (0.0%) 0 (0.0%) 1.00 

Viral +/- Bacterial infection‡  2 (4.8%) 11 (35.5%) 0 (0.0%) < 0.001 0 (0.0%) 0 (0.0%) 1.00 

28-day mortality (n, %)  20 (47.6%) 8 (25.8%) 18 (48.6%) 0.41 11 (57.9%) 7 (77.8%) 0.04 

Intubated (n, %)  32 (76.2%) 28 (90.3%) 35 (94.6%) 0.13 18 (94.7%) 9 (100%) 0.05 

Vasopressors (n, %)  40 (95.2%) 23 (74.2%) 31 (83.8%) 0.95 18 (94.7%) 8 (88.9%) 0.08 

Immunocompromised# (n, %)  6 (14.3%) 5 (16.1%) 4 (10.8%) 0.75 5 (26.3%) 2 (22.2%) 0.63 

Antibiotics+ (n, %)  41 (97.6%) 31 (100.0%) 31 (83.8%) < 0.01 19 (100.0%) 8 (88.9%) 0.02 
*Mann-Whitney (continuous) /chi-squared (categorical)  †Kruskal-Wallis (continuous) / chi-squared (categorical) 
‡Based on clinical microbiology testing 
#Immunocompromise was defined as: history of solid organ transplantation, bone marrow transplantation, HIV/AIDS with  CD4 < 200, leukemia or other 

hematologic malignancy, autoimmune inflammatory disease, or primary immunodeficiency. 
+Antibiotics administered on or before the first day of study enrollment.  
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Supplementary Table 2. Comparison of machine learning models for host-based sepsis 
classification. Area under the receiver operator characteristic curve (AUC) for three different 
machine learning models assessed for classifier construction. The AUC for cross-validation in 
the training set (standard deviation in parentheses) is listed first, and the AUC for the first 
validation split is listed second, after the vertical bar. The bagged support vector machine 
(bSVM) model performed best overall. 
 

Classifier Bagged Support 
Vector Machine 

Random 
Forest 

Gradient 
Boosted Tree 

Whole blood - sepsis 0.81 (0.05) | 0.82 0.80 (0.06) | 0.86 0.79 (0.05) | 0.84 
Plasma - sepsis 0.97 (0.03) | 0.77 0.76 (0.05) | 0.79 0.70 (0.09) | 0.82 

Whole blood - viral 0.90 (0.07) | 0.79 0.83 (0.08) | 0.75 0.78 (0.07) | 0.69  
Plasma - viral 0.94 (0.09) | 0.96 0.77 (0.09) | 0.81     0.72 (0.19) | 0.60 

 

 
Supplementary Table 3a. Clinical variables used for classifier construction. Fever: > 38C, 
anemia: hemoglobin < 7, thrombocytopenia: platelets < 50, acute renal failure: creatinine > 2.0. 
 
Anemia  Temp Max Creatinine Max 
Hyperkalemia Fever  Creatinine Min 
Hypokalemia Temp Min Acute Renal Failure  
Hypernatremia WBC Max Platelets Min 
Hyponatremia WBC Min Thrombocytopenia  
Hypercalcemia HR Max Requirement for Intubation 
Hypocalcemia HR Min Glasgow Coma Scale 
Hyperthyroid RR Max Immunocompromise 
Hypothyroid RR Min Chest Pain 
Adrenal Insufficiency SIRS total Volume Overload 
Hyperglycemia SBP Min Creatinine Max 
Hypoglycemia SBP Max Creatinine Min 

 
 
 
Supplementary Table 3b. Average classifier AUC over 10 iterations of training and test from 
different machine learning classifiers to distinguish Sepsis from No-Sepsis patients using clinical 
features alone. qSOFA score positive for sepsis if systolic blood pressure < 100 mmHg, 
respiratory rate > 22 breaths/minute and Glasgow Coma Scale < 13. 
 
Method AUC, mean (std) 
Support vector machine 0.57 (0.04) 
Random forest 0.62 (0.04) 
Regularized logistic regression 0.57 (0.07) 
qSOFA score 0.48 (0.02) 
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Supplementary Figures 
 

 
 
 
Supplementary Figure 1. Overlap of significant genes in the differential expression analyses 

between the Sepsis and No-Sepsis groups for whole blood and plasma samples. Scatter plot of 

-log10(adjusted p-value) for individual genes from the differential expression analyses 

comparing patients with microbiologically confirmed sepsis (SepsisBSI + Sepsisnon-BSI) versus 

those without evidence of infection (No-sepsis), from whole blood (x-axis) and plasma (y-axis). 

P-values derive from Benjamini-Hochberg adjustment. Dashed gray lines indicate the threshold 

of adjusted p-value < 0.1. Selected, significant, differentially expressed genes highlighted in 

blue.   
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Supplementary Figure 2.  Plasma host gene expression differentiates patients with sepsis 

from those with non-infectious critical illnesses. a) Heatmap of top 50 differentially expressed 

genes from whole blood transcriptomics comparing patients with microbiologically confirmed 

sepsis (SepsisBSI + Sepsisnon-BSI) versus those without evidence of infection (No-sepsis).  

b) Gene set enrichment analysis of the differentially expressed genes. All gene sets included. 
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Supplementary Data Files 

 

Supplementary Data 1. Differentially expressed genes (adjusted P value < 0.1) between 

patients with microbiologically confirmed (SepsisBSI  and Sepsisnon-BSI) and those with non-

infectious critical illnesses (No-Sepsis), from whole blood RNA-seq. 

 

Supplementary Data 2. Gene set enrichment analysis of differentially expressed genes between 

patients with microbiologically confirmed sepsis (SepsisBSI  and Sepsisnon-BSI) and those with 

non-infectious critical illnesses (No-Sepsis). Data from whole blood RNA-seq. The top 10 

positively and negatively enriched pathways by P value are included in table. 

 

Supplementary Data 3. Differentially expressed genes (adjusted P value < 0.1) between 

patients with sepsis due to bloodstream infections (SepsisBSI) versus peripheral infections 

(Sepsisnon-BSI). Data from whole blood RNA-seq. 

 

Supplementary Data 4. Gene set enrichment analysis of differentially expressed genes between 

patients with sepsis due to bloodstream infections (SepsisBSI) versus peripheral infections 

(Sepsisnon-BSI). Data from a) whole blood RNA-seq and b) plasma RNA-seq. The top 10 

positively and negatively enriched pathways by P value are included in table. 

 

Supplementary Data 5. a) Area under the receiver operating characteristic curve (AUC) values 

for 10 independent training set models for a whole blood gene expression support vector 

machine classifier to distinguish patients with microbiologically confirmed (SepsisBSI  and 

Sepsisnon-BSI) from those with non-infectious critical illnesses (No-Sepsis). b) Composite list 

of all genes selected by each classifier model. 
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Supplementary Data 6. Differentially expressed genes (adjusted P value < 0.1) between 

patients with microbiologically confirmed (SepsisBSI  and Sepsisnon-BSI) and those with non-

infectious critical illnesses (No-Sepsis), from plasma RNA-seq. 

 

Supplementary Data 7. a) AUC values for 10 independent training set models for a plasma gene 

expression support vector machine classifier to distinguish patients with microbiologically 

confirmed (SepsisBSI  and Sepsisnon-BSI) from those with non-infectious critical illnesses (No-

Sepsis). b) Composite list of all genes selected by each classifier model. 

 

Supplementary Data 8. Mass (pg) of microbial DNA in each sample, calculated based on 

spiked-in 25 pg ERCC positive controls. 

 

Supplementary Data 9. Sepsis pathogens detected by standard of care clinical microbiology 

versus plasma mNGS, using the rules-based model.  

 

Supplementary Data 10. Differentially expressed genes (adjusted P value < 0.1) between 

patients with microbiologically confirmed viral sepsis and those with non-viral sepsis 

(SepsisBSI  and Sepsisnon-BSI groups), from whole blood RNA-seq. 

 

Supplementary Data 11. Differentially expressed genes (adjusted P value < 0.1) between 

patients with microbiologically confirmed viral sepsis and those with non-viral sepsis 

(SepsisBSI  and Sepsisnon-BSI groups), from plasma RNA-seq. 

 

Supplementary Data 12. Gene set enrichment analysis of differentially expressed genes 

between patients with viral versus non-viral causes of sepsis amongst the SepsisBSI  and 

Sepsisnon-BSI patients. a) Data from whole blood RNA-seq. b) Data from plasma RNA-seq. 
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Supplementary Data 13. a) AUC values for 10 independent training set models for a whole 

blood gene expression support vector machine classifier to distinguish patients with 

microbiologically confirmed viral versus non-viral sepsis (SepsisBSI  and Sepsisnon-BSI), from 

whole blood RNA-seq. b) Composite list of all genes selected by each classifier model. 

 

Supplementary Data 14. a) AUC values for 10 independent training set models for a plasma 

gene expression support vector machine classifier to distinguish patients with 

microbiologically confirmed viral versus non-viral sepsis (SepsisBSI  and Sepsisnon-BSI), from 

plasma RNA-seq. b) Composite list of all genes selected by each classifier model. 

 

Supplementary Data 15. Complete integrated host-microbe mNGS dataset.  This includes: per-

sample classifier predictions for all patients with plasma sequencing data (n=138), including 

the sepsis diagnostic classifier and the viral sepsis classifier; pathogens detected by clinical 

diagnostics and by mNGS; and microbial mass per sample. 

 

Supplementary Data 16. Clinical and demographic features of patients evaluated in whole blood 

gene expression analyses only (n=221). These include patients with microbiologically 

confirmed sepsis (SepsisBSI  and Sepsisnon-BSI) and those with (No-Sepsis). 

 

Supplementary Data 17. Clinical and demographic features of patients with plasma RNA-seq 

data, evaluated in all analyses (n=138).  All sepsis adjudication groups represented. 

 

Supplementary Data 18. Reference index of established sepsis pathogens derived from the top 

20 most prevalent sepsis pathogens reported by both the US CDC/ National Healthcare 

Safety Network1 and a point prevalence survey of healthcare-associated infections2.  
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