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Abstract

Influenza circulation declined during the COVID-19 pandemic. The timing and extent of 
decline and its association with interventions against COVID-19 were described for some 
regions. Here, we provide a global analysis of the influenza decline between March 2020 
and September 2021 and investigate its potential drivers. We computed influenza change 
by country and trimester relative to the 2014-2019 period using the number of samples in 
the FluNet database. We used random forests to determine important predictors in a list 
of 20 covariates including demography, weather, pandemic preparedness, COVID-19 
incidence, and COVID-19 pandemic response. With a regression tree we then classified 
observations according to these predictors. We found that influenza circulation 
decreased globally, with COVID-19 incidence and pandemic preparedness being the two 
most important predictors of this decrease. The regression tree showed interpretable 
groups of observations by country and trimester: Europe and North America clustered 
together in spring 2020, with limited influenza decline despite strong COVID-19 
restrictions; in the period afterwards countries of temperate regions, with high pandemic 
preparedness, high COVID-19 incidence and stringent social restrictions grouped 
together having strong influenza decline. Conversely, countries in the tropics, with 
altogether low pandemic preparedness, low reported COVID-19 incidence and low 
strength of COVID-19 response showed low influenza decline overall. A final group 
singled out four “zero-Covid” countries, with the lowest residual influenza levels. The 
spatiotemporal decline of influenza during the COVID-19 pandemic was global, yet 
heterogeneous. The sociodemographic context and stage of the COVID-19 pandemic 
showed non-linear associations with this decline. Zero-Covid countries maintained the 
lowest levels of reduction with strict border controls and despite close-to-normal social 
activity. These results suggest that the resurgence of influenza could take equally 
diverse paths. It also emphasises the importance of influenza reseeding in driving 
countries’ seasonal influenza epidemics.

Funding Municipality of Paris, EU Framework Programme for Research and Innovation Horizon
2020.
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Introduction

Starting with the global spread of SARS-CoV-2, observations of a sharp decline in influenza 
circulation were reported. In spring 2020, the flu season was shortened in some northern-
hemisphere and tropical countries [1,2]. During the following 18 months, influenza incidence 
showed an all-time low in New Zealand [3], Australia [4], the United States [5–7] and the WHO 
European Region [8]. The circulation was still low in 2021. 
                       
The measures adopted in response to the COVID-19 pandemic are likely to have hindered 
influenza transmission at the same time, since the routes of transmission are identical. Indeed, 
influenza decline, as well as that of other transmissible diseases, coincided with non-
pharmaceutical interventions against COVID-19 [2,6,7] [9,10]. 

Understanding how this decline occurred may help interpret the current influenza trends and 
anticipate future viral circulation. While the issue has been described for specific countries or 
regions [2–5,7,8,11–13], little work has been done at the global scale [14,15] [16]. 

Here we provide a global quantitative analysis of the influenza reduction based on the Global 
Influenza Surveillance and Response System FluNet database [16,17]. We considered the 
period between March 2020 and September 2021 and estimated influenza reduction by country 
and trimester relative to a pre-pandemic period (2014-2019). We identified geographical, 
demographical, health preparedness and COVID-19 status characteristics predictive of 
influenza decline using random forests and clustered observations with similar decline in time 
and space using a regression tree. 

Methods

Overview of the methods

We used data from the FluNet influenza repository [16,17] to quantify the global influenza 
change during the COVID-19 pandemic (March 2020 to September 2021) compared to the pre-
pandemic period (December 2014 to December 2019). We mapped influenza decline by country
and trimester. We then used random forests to identify the most significant predictors of decline 
and a regression tree to classify countries-trimesters based on these predictors. Potential 
predictors included a wide range of covariates, among them country factors (geographical, 
meteorological, demographic and health preparedness factors) and variables associated with 
the COVID-19 pandemic assembled from sources detailed below. 

Influenza data and definition of influenza reduction

The FluNet influenza repository [16,17] provides weekly counts of influenza specimens by 
country. For our analysis we considered records from 2014 to 2021. To account for influenza 
seasonality, we defined 13 weeks-long “influenza trimesters” beginning on the first Monday 
following December 11, March 12, June 11 and September 11. These dates were chosen so 
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that the middle of the December 11 trimester coincided with the peak of a typical influenza 
circulation in the northern hemisphere. As the trimesters correspond approximately to the 
astronomical seasons, we refer to these as winter, spring, summer and autumn respectively. 
Data from FluNet was aggregated by country and trimester. The 20 trimesters from winter 2014-
15 (Dec 2014-Mar 2015) to autumn 2019 (Sep 2019-Dec 2019) defined the reference “pre-
pandemic” period, the six trimesters from spring 2020 to summer 2021 the “pandemic” period. 
The winter 2020 trimester (from Dec 2019 to Mar 2020) was excluded as it overlapped the 
period of COVID-19 emergence. We also discarded trimesters having less than 10 processed 
influenza specimens per week on average and those typically unaffected by influenza epidemics
(i.e. having less than 5% of the annual positive cases on average during the pre-pandemic 
period, essentially “summer” in the northern hemisphere and “winter” in the southern 
hemisphere).
For the “pandemic” trimesters, we computed the percentage of influenza positive cases as the 
ratio of positive to positive plus negative samples during the trimester (adding 0.5 to avoid 
division by zero issues). We computed the “log relative influenza level” as the base-10 logarithm
of the ratio between the percentage of positive cases during a trimester and the average 
percentage of positive cases in the corresponding pre-pandemic trimesters [7,13]. 

Variables for prediction of influenza reduction 

We collected the covariates described in Table 1 from public sources and IATA. Additional 
details on computation are provided in the supplementary material. 

Variable Description Source
Min, 
max

age Median age of the country population [18], [19]
15.1, 
48.2

longitude
Population-weighted average of longitude for cities with more than 300K 
inhabitants by country or country capital longitude, from -180 (W) to 180 (E)

[20]
-100.7, 
174.4

latitude
Population-weighted average of latitude for cities with more than 300K 
inhabitants by country or country capital latitude, from -90 (S) to 90 (N)

[20]
-38.7, 
60.4

T Average temperature (in Celsius degrees) over the country and trimester [21]
-8.8, 
37.8

RH Average relative humidity over the country and trimester [21]
17.3, 
93.5

IDVI
Infectious Disease Vulnerability Index (IDVI), country level indicator of the 
vulnerability to health emergencies from 0 (most vulnerable) to 1 (less 
vulnerable)

[22] 0.15, 1

COVID-19 daily 
cases

Average daily reported cases of COVID-19 per million inhabitants [23] 0, 553.5

workplace 
presence 
reduction

Median percentage of reduction of daily presence in workplaces. Reduction 
from the first 5 weeks in 2020 in the same location.

[24]
-22.5%,
69.0%

reduction of 
international 
flights

Average percentage of reduction in the inbound and outbound air 
passengers of the country for each trimester with respect to the same 
trimester of 2019

[25]
-16.8%,
100%

nb days of school 
closure

Number of days over the trimester where policies related to schools and 
universities closure were implemented

[26] 0, 91
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nb days of 
workplace closure

Number of days over the trimester where policies related to workplaces 
closure were implemented

[26] 0, 91

nb days of public 
event restrictions 

Number of days over the trimester where policies related to event 
restrictions were implemented

[26] 0, 91

nb days of 
gathering 
restrictions

Number of days over the trimester where policies related to social gathering 
restrictions were implemented

[26] 0, 91

nb days of public 
transport 
restrictions

Number of days over the trimester where policies related to public transport 
restrictions were implemented

[26] 0, 91

nb days of stay at
home 
requirements

Number of days with "shelter-in-place" and otherwise confine to the home 
orders

[26] 0, 91

nb days of 
international 
travel restrictions

Number of days with airport screening, quarantine of arrival passengers or 
restrictions of international travels

[26] 0, 91

nb days of facial 
covering 
requirements

Number of days with policies on the use of facial coverings outside the home [26] 0, 91

nb days of testing
implementation

Number of days with government policy on who has access to testing for 
current infection (PCR tests)

[26] 0, 91

nb days of 
contact tracing 
implementation

Number of days with government policy on contact tracing after a positive 
diagnosis

[26] 0, 91

nb days of elderly
shielding

Number of days with policies to protect older adults (as defined locally) in 
long-term care facilities and/or community and home-based settings

[26] 0, 91

Table 1. Definition, computation and source of the variables used as predictors of influenza change.

Clustering and regression tree analysis

We used the VSURF algorithm based on random forests (RFs) to select the covariates that 
were highly predictive of influenza reduction [27]. Importance is defined as the increase in 
prediction-error when the variable of interest is randomly reshuffled across observations. We 
discarded variables with close to zero importance in a univariable analysis. Then, we carried out
a forward selection of predictors, including variables in their order of importance one at a time. 
Following Breiman’s rule [28], we retained the model with the least variables having prediction 
error less than the minimum prediction error plus one standard deviation.

Using the variables selected above, we fit a regression tree in order to obtain an interpretable 
model [28]. The details of the approach are provided in the supplementary material. 

Analyses were performed with R version 4.2 and packages vsurf [27] and rpart [29].

Robustness and sensitivity analyses

The details of the robustness checks and the sensitivity analysis are reported in the 
supplementary material. In summary, we checked the robustness of the regression analysis to 
stochastic fluctuations in the dataset and to criteria for including the FluNet records in the 
analysis; we explored alternative definitions for covariates: COVID-19 daily deaths instead of 
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COVID-19 daily cases; Oxford COVID-19 Government Response Tracker stringency index 
instead of governmental response [26]; alternative Google mobility reports instead of presence 
in workplaces. We also explored separate inclusion of age and IDVI as these were highly 
correlated (ρSpearman=0.87, pval<0.01).  

Results

Decline of influenza in space and time

One hundred sixty-six (166) countries contributed data to FluNet between December 2014 and 
September 2021. Figure 1A shows the time course of the reports. In the pre-pandemic period, 
the percentage of positive tests varied seasonally between 4% and 33%, with major peaks 
during seasonal epidemics in northern countries and lower peaks for southern countries. The 
global number of tests for influenza remained within the range of historical levels throughout the 
whole COVID-19 pandemic period, but the percentage of influenza positive tests dropped 
sharply, to a minimum level of 0.04% during the months of July and August 2020.

One hundred twelve countries remained for analysis during the pandemic, contributing 376 
trimester-country observations (Table S1). The percentage of influenza positive tests varied 
across countries and trimesters over five orders of magnitude compared to only two orders of 
magnitude over the pre-pandemic period (Figure 1B). For 135 out of the 376 observations, the 
percentage of positive influenza tests was more than 100 times smaller than expected. The 
reduction of influenza positivity could be dramatic, as shown by the 0 positive tests out of 26114
processed tests reported in Japan during Spring 2021, compared to the average 75% expected 
in the pre-pandemic period. An increase in the percentage of positive tests was seen in 22 
observations: This was for example the case for Haiti during Winter 2020-21, where the 
percentage of positive tests was 15% compared to an expected 2.2% before the pandemic. 

5

112
113
114
115

116

117

118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.15.22277497doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.15.22277497
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1. Change in influenza circulation during the COVID-19 pandemic relative to the pre-pandemic period. 
A Weekly counts of processed and positive tests of influenza reported to FluNet for all 166 countries included in the 
database from Jan 2017 to Jan 2022. The green shaded area indicates the COVID-19 pandemic period considered in
the study. The six blocks indicate the trimesters. The week in which COVID-19 was declared a pandemic by WHO is 
reported as reference. B  Percentage of positive tests for the pre-pandemic and COVID-19 pandemic periods (Dec 
2014 - Dec 2019 and Mar 2020 - Sep 21, respectively), for all 376 countries and trimesters satisfying the filtering 
criteria on the FluNet data. For each country-trimester, the x coordinate is the average percentage of positive tests of 
the five years included in the pre-pandemic period. The size of the dots is proportional to the number of samples 
found in FluNet for the pandemic period. Dots’ colour indicates the log relative influenza level.

The spatial variation of the influenza decline is mapped in Figure 2 over the 6 pandemic 
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trimesters. For the majority of countries, the decline remained limited during Spring 2020, with 
46 out of 65 countries reporting less than 90% reduction from the pre-pandemic period (i.e. log 
relative influenza level > -1). The decline became more pronounced in the subsequent 
trimesters, especially in North America, Europe, Mexico and Japan during the winter 2020-21 
and spring 2021. The decline was strong also in the majority of Southern-hemisphere countries 
during both summer 2020 and summer 2021. Conversely, a number of countries in South Asia 
(e.g. Bangladesh, Afghanistan), Africa (e.g. Mali, Senegal, Nigeria, Kenya, Zambia) and Central 
America (e.g. Honduras, Haiti) showed limited influenza reduction throughout the whole COVID-
19 pandemic period (log relative influenza levels > -1). The levels of reduction changed over 
the period. Interestingly, the log relative influenza level was as low as -2.4 during summer 2020
in China but increased again starting autumn 2020. A similar increasing trend was observed 
also in a few other countries, e.g. in Kenya and Nigeria.

Figure 2: Influenza decline during the first 18 months of COVID-19 pandemic by countries and trimesters. 
Maps of the log relative influenza level for the 6 trimesters considered in the analysis. The grey colour indicates 
countries-trimesters not included in the analysis.

Clustering and regression tree analysis 

The analysis was carried out on 93 countries, totalling 330 country-trimester observations. 
Among the 20 covariates tested, 11 were selected as predictors of the log relative influenza 
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level (Figure 3). Sociodemographic, preparedness, geographical, weather and COVID-19 
management aspects contributed all to explaining the changes, though COVID-19 daily cases 
and IDVI were the most important.

Figure  3:  Importance of  covariates  predicting influenza decline  in random forest  analysis. Importance of
covariates as predictors of the log relative influenza level. In green the 11 covariates selected as significant to build
the  model  with  the  minimum prediction  error  following  the  Breiman’s  rule.  Black  segments  show the  standard
deviations of the importance.

The full regression tree built from the data accounted for 69% of the variance of the log relative 

influenza level (R2=0.69) (Figure S3, Table S2). To interpret the relationships between the 

selected variables and the country-trimesters, we focus here on the first four splits based on 
IDVI, COVID-19 daily cases, longitude, and workplace mobility reduction (Figure 4A). The five 
groups identified by these splits (labelled 1 to 5, Figure 4A) showed a gradient in average log 
relative influenza level ranging from -2.3 (reduction by 99.5%) to -0.7 (reduction by 80%). How 
the observations in each group rank with respect to the whole dataset is shown in Figure 4B. 
Group 1 included 109 countries-trimesters with high influenza decline, corresponding to the 
lower quartile of the whole dataset distribution. This group was characterised by high IDVI 
(median value corresponding to the 71th pc. of the whole dataset), high COVID-19 daily cases 
(83rd pc.), old population (70th pc.), low temperatures (25th pc.). Median reduction of workplace
presence and median number of days with school closure were close to the whole-population 
median but were higher than other groups, except for group 4 discussed below. Population 
gathering restrictions were especially high (82nd pc.). The corresponding countries-trimesters 
included countries in Europe and North America during the 2020-21 influenza season, countries
in temperate South America, and high-IDVI countries in Central America and Tropical Asia 
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(Table S2 in the supplementary material). 
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Figure 4: Regression tree analysis of influenza decline and characteristics of the identified subgroups. A 
Regression tree obtained with the variables selected in Figure 3. We report here the first four splits, which partition 
the observations in five groups. The full tree is reported in Figure S4 of the supplementary material. For each node 
the average log relative influenza level and the number of observations are reported (the former is also indicated with 
a colour scale). B. Characteristics of each group. For each variable  the colour of the circle indicates the percentile of 
the whole dataset distribution the median of the group corresponds to. The percentile value is also indicated inside 
the circle. The size of the circle increases with the number of observations of the group.

Group 2 was the smallest and clustered observations with the largest influenza decline (median 
log relative influenza level corresponding to the least 8% of all data points). It gathered all 
observations from Australia, Japan, New Zealand and South Korea. These country-trimesters 
showed low COVID-19 daily cases (29th pc.), high IDVI (91st pc) and high reduction of 
international flights (88th pc.). Reduction of workplace presence, and number of days of school 
closure and gathering restrictions were comparatively low (23rd, 23rd, 13rd, pcs., respectively). 

Group 3 corresponded to 45 observations with intermediary log relative influenza level. 
Covariates were also close to the median of all data points. Singapore from autumn 2020 to 
autumn 2021 is part of this group (larger tree in Figure S4). Covariates of these observations 
are close to the second group - e.g. high influenza reduction, low COVID-19 daily cases, high 
reduction of international flights. Other observations of group 3 (e.g. Southeast Asia countries, 
such as Malaysia, Vietnam, Indonesia and Thailand) were similar to Singapore, but had lower 
population’s age and IDVI. They showed, however, a more limited influenza decline. 

Group 4 had 39 observations corresponding to Europe and North America during the spring 
2020 trimester. At this period, influenza decline was limited (median log relative influenza level 
corresponding to the 68th pc. of all data points), but there were already a strong response to the
COVID-19 pandemic as quantified e.g. by the reduction in the workplace presence (87th pc.) 
and number of days of school closure (83rd pc.). 

Finally, group 5 included 123 country-trimesters with the lowest decrease in influenza relative to 
the pre-pandemic period (log relative influenza level 76th pc.). In this group, there was a low 
number of COVID-19 cases (27th pc.), young population (19th pc.), low IDVI (19th pc.) and high
temperatures (70th pc.). The response to the COVID-19 pandemic was mild, with limited 
reduction of international flights (28th pc.), as well as workplace presence reduction (34th pc.) 
and number of days of school closure (43rd pc.) small compared to the whole population. This 
group was largely formed by tropical countries, e.g. in Africa, South and Southeast Asia, Central
America and the Caribbean (Table S2 of the supplementary material).

Robustness and sensitivity analyses

Variable selection and tree structure were robust to stochastic fluctuations. The five-group 
classification was robust to small perturbations in the data set, as was the selection of predictive
variables. In some cases, for example with different inclusion criteria for FluNet data, 
observations in Group 1 and Group 2 tended to cluster together. More details are reported in the
supplementary material. 
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The systematic analysis of influenza circulation across all continents and climatic regions shows
that the influenza decline was global during the spread of the COVID-19 pandemic. This 
decrease was heterogeneous across countries and trimesters between March 2020 and 
September 2021. Demographic, socio-economic, weather and COVID-19 characteristics 
explained a large part of this heterogeneity.

Influenza circulation is characterised by marked seasonal epidemics in temperate countries but 
a more complex annual pattern in the tropics [30]. Surveillance may be reinforced in epidemic 
times. Using the log relative influenza level allowed adjusting for such changes. We found that 
influenza declined nearly everywhere and remained low compared to the pre-pandemic period 
during the 18 first months of the COVID-19 pandemic. Importantly, the global number of 
influenza tests remained roughly the same in the pre-pandemic and pandemic period, ruling out 
change in surveillance as the likely explanation. The largest reduction was in summer 2020, and
a progressive increase was seen again till September 2021. Temperate countries had the 
largest reduction, while it was limited in the tropics [11,14,31,32]. 

Influenza circulation could a priori change during the COVID-19 pandemic because of 
governmental measures, self-adopted behavioural changes and direct interaction with SARS-
CoV-2. We indeed found that reduction of international flights, presence at workplaces, school 
attendance and mass gatherings explained part of the reduction, although the impact was non-
linear. Initial strong restrictions against COVID-19 had to be relaxed in some low-resource 
countries [11,33,34] allowing renewed influenza circulation. Conversely, countries where a 
strong response against the COVID-19 pandemic could be maintained saw little influenza 
circulation, except in spring 2020 where strong local restrictions in Europe and the USA [5] likely
occurred after the end of the influenza season. For the rest of the time, temperate countries in 
Europe, North America and South America that adopted a COVID-19 response centred over 
local restrictions by reducing workplace presence, school attendance and gatherings had large 
reduction in influenza circulation, irrespective of the reduction of international flights. This was 
very different in four “zero-Covid” nations (Australia, New Zealand, Japan and South Korea) 
where influenza dropped though local restrictions were limited [35], suggesting a key role for 
border controls in preventing seeding from abroad. Reducing international flights by 94-97% 
however did not prevent influenza introduction in Vietnam from neighbouring Cambodia [11] 
likely due to the difficulty of controlling land borders. 

Limitation of gatherings or public events, imposed international travel restrictions and school 
closure were previously found to be the main drivers in suppressing influenza [12,13]. Actual 
behaviour, i.e. volume of flights rather than imposed international travel restrictions; or 
percentage presence at the workplace rather than mandatory reduction was however more 
predictive of influenza reduction than governmental restrictions. Behavioural proxies may indeed
capture adhesion to restrictions that depended on place and stage of the pandemic [36–38]. 

Reduction of influenza could also stem from direct viral interference with SARS-CoV-2, for 
example through competition for cellular resources or interferon production [39,40]. Infection 
rates with influenza reportedly changed according to SARS-CoV2 status and vice versa [40]. In 
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this respect, we found high influenza decline with high COVID-19 incidence in group 1, and low 
influenza decline with low COVID-19 incidence in group 5, but also low levels for both in zero-
COVID countries. Under-reporting of COVID-19 cases may be an alternative explanation to low 
COVID-19 reporting in the low-income countries of group 5 [33,34,41]. 

The characterisation of influenza decline in space and time may come of use to analyse its 
resurgence over time. Loss of exposure to the influenza virus may lead to more severe waves 
or out of season waves [6,7] and may increase the susceptible pool, especially in children. 
Already, influenza circulation was typically late in Europe as of spring 2022 [42]. Other 
epidemiological changes could occur regarding the exposed population and the seeding from 
the tropics [30] as global air transportation resumes. Deciding on the composition of the vaccine
may also prove more difficult due to the change in the evolutionary dynamics of circulating 
strains [31]. 

Our study is affected by limitations. We assumed that influenza surveillance was not 
substantially altered during the pandemic period. The number of samples in the FluNet 
databases indeed did not change substantially over time, as many countries maintained 
influenza surveillance or quickly resumed it after initial disruption [3,4]. Influenza positivity rate 
may have been affected by changes in surveillance protocols due to the COVID-19 pandemic. 
We did not account for influenza vaccination, due to limited information at the global scale. 
Vaccination rates are highly heterogeneous among countries [43]. While targeted 
recommendations increased coverage in the elderly during the last 2 seasons in 9 northern 
hemisphere countries and Australia [43], the efficacy of the influenza vaccine during the study 
period remains unknown. Those circulating in Southeast Asia during autumn 2020 were not 
included in the recommendations for the 2020–21 Northern Hemisphere season [11]. Last, we 
relied on the FluNet database, which integrates worldwide influenza records aggregating 
countries with highly diverse influenza surveillance quality and coverage. Results from the 
sensitivity analysis showed that the reported results were similar in varying exclusion criteria.
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