
Poor performance of daily nasal rapid antigen tests   p.1 

Extreme differences in SARS-CoV-2 Omicron viral loads among specimen types 
drives poor performance of nasal rapid antigen tests for detecting presumably 
pre-infectious and infectious individuals, predicting improved performance of 
combination specimen antigen tests 

Alexander Viloria Winnett1§, Reid Akana1§, Natasha Shelby1§, Hannah Davich1, Saharai Caldera1, Taikun Yamada2,3, John 
Raymond B. Reyna2, Anna E. Romano1, Alyssa M. Carter1, Mi Kyung Kim1, Matt Thomson1, Colten Tognazzini4, Matthew 
Feaster4, Ying-Ying Goh4, Yap Ching Chew2,3, Rustem F. Ismagilov1* 

 1 California Institute of Technology, Pasadena, CA 
 2 Pangea Laboratory LLC, Tustin, CA 

3 Zymo Research Corp., Irvine, CA 
4 Pasadena Public Health Department, Pasadena, CA 
 
§These authors contributed equally to this report 
*Corresponding author: rustem.admin@caltech.edu 

 

ABSTRACT 

Background. To limit viral transmission, COVID-19 testing strategies must evolve as new SARS-CoV-2 variants (and new 
respiratory viruses) emerge to ensure that the specimen types and test analytical sensitivities being used will reliably detect 
individuals during the pre-infectious and infectious periods. Our accompanying work demonstrated that there are extreme 
differences in viral loads among paired saliva (SA), anterior-nares swab (ANS) and oropharyngeal swab (OPS) specimens 
collected from the same person and timepoint. We hypothesized that these extreme differences may prevent low-analytical-
sensitivity assays (such as antigen rapid diagnostic tests, Ag-RDTs) performed on a single specimen type from reliably 
detecting pre-infectious and infectious individuals. 

Methods. We conducted a longitudinal COVID-19 household-transmission study in which 228 participants collected SA, 
ANS, and OPS specimens for viral-load quantification by RT-qPCR, and performed an ANS Ag-RDT (Quidel QuickVue 
At-Home OTC COVID-19 Test) daily. We evaluated the performance of the Ag-RDT (n=2215 tests) to detect infected 
individuals (positive results in any specimen type by RT-qPCR) and individuals with presumed infectious viral loads (at or 
above thresholds of 104, 105, 106, or 107 copies/mL). 

Results. Overall, the daily Ag-RDT detected 44% (358/811) timepoints from infected individuals. From 17 participants 
who enrolled early in the course of infection, we found that daily Ag-RDT performance was higher at timepoints when 
symptoms were reported, but symptoms only weakly correlated with SARS-CoV-2 viral loads, so ANS Ag-RDT clinical 
sensitivity remained below 50%. The three specimen types exhibited asynchronous presumably-infectious periods 
(regardless of the infectious viral-load threshold chosen) and the rise in ANS viral loads was delayed relative to SA or OPS 
for nearly all individuals, which resulted in the daily ANS Ag-RDT detecting only 3% in the pre-infectious period and 63% 
in the infectious period. We evaluated a computationally-contrived combined AN–OP swab based on viral loads from ANS 
and OPS specimens collected at the same timepoint; when tested with similar analytical sensitivity as the Ag-RDT, this 
combined swab was predicted to have significantly better performance, detecting up to 82% of infectious individuals. 

Conclusion. Daily ANS rapid antigen testing missed virtually all pre-infectious individuals, and more than one third of 
presumed infectious individuals due to low-analytical-sensitivity of the assay, a delayed rise in ANS viral loads, and 
asynchronous infectious viral loads in SA or OPS. When high-analytical-sensitivity assays are not available and low-
analytical-sensitivity tests such as Ag-RDTs must be used for SARS-CoV-2 detection, an AN–OP combination swab is 
predicted to be most effective for detection of pre-infectious and infectious individuals. More generally, low-analytical-
sensitivity tests are likely to perform more robustly using oral-nasal combination specimen types to detect new SASR-CoV-
2 variants and emergent upper respiratory viruses. 
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INTRODUCTION 

Earliest detection of SARS-CoV-2 infections is critical for reducing transmission, minimizing spread of new variants, and 
initiating treatments sooner for better patient outcomes. Antigen rapid diagnostic tests (Ag-RDTs) with nasal swabs are 
increasingly used for SARS-CoV-2 screening and diagnosis globally.1-4 In the U.S., media and public-health figures 
advocate for the use of Ag-RDTs and a large government campaign5 is providing 1 billion of these tests free for at-home 
use. Indeed, Ag-RDTs are a powerful tool given the low cost (compared with molecular tests), speed, and portability—all 
of which improve accessibility in remote or lower-resourced settings and at-home use.6 However, Ag-RDTs and some rapid 
molecular tests have lower analytical sensitivity than most gold-standard reverse-transcription quantitative PCR (RT-qPCR) 
tests7 and require high viral loads to reliably yield positive results.8,9 Further, Ag-RDTs are frequently used in unintended 
ways. For example, although many Ag-RDTs are not authorized for asymptomatic use and/or have poor clinical sensitivity 
in asymptomatic populations9,10 they continue to be used widely for test-to-enter and serial-screening purposes. 

One view of rapid antigen testing is that these tests (and other diagnostics with low analytical sensitivity) can still prevent 
or mitigate SARS-CoV-2 outbreaks if they are used frequently.10,11 This view is based on the assumption that viral loads 
rise quickly from infectious levels to those detectable by low-analytical-sensitivity assays, making high-frequency rapid 
antigen testing with immediate results more effective than a high-analytical-sensitivity test with delayed results. However, 
the data do not support this view; instead, numerous longitudinal assessments of viral loads counter this assumption, 
showing that several days can pass between when viral loads reach potentially infectious viral loads and when they reach 
the limits of detection (LODs) of low-analytical-sensitivity assays.12-17 Several studies have recovered replication-competent 
(infectious) virus from clinical specimens with viral loads between 104 to 107 copies/mL.11-20 

In our recent large household transmission study with frequent (daily) sampling of saliva (SA), anterior-nares swabs (ANS) 
and oropharyngeal swabs (OPS),17 two major findings emerged that have implications for the ability of Ag-RDTs with nasal 
swabs to detect individuals infected with the Omicron variant, particularly in the earliest days of infection. First, we observed 
a delay in the rise of ANS viral loads relative to those in specimens from the oral cavity; this finding is consistent with 
previous reports by us21 and others22,23 for pre-Omicron SARS-CoV-2 variants. Second, we found that viral loads differed 
significantly (by more than 9 orders of magnitude) among different specimen types within the same person at the same 
timepoint. Individuals often had high and presumably infectious viral loads in one specimen type (e.g., OPS), yet had 
undetectable or very low viral loads in another type (e.g., ANS).17 

Here, we tested whether these observed differences in viral loads in different specimen types and delays in the rise in ANS 
viral loads would result in poor performance of an ANS Ag-RDT to detect SARS-CoV-2 Omicron infections in the 
presumed pre-infectious and infectious periods. 

Investigations of the performance of Ag-RDTs for detecting the pre-infectious and infectious periods are challenging to 
undertake because assessing for the presence of replication-competent virus in clinical specimens complicated.24,25 Viral 
culture is difficult, costly, and restricted to specialized laboratories, so investigations of infectious virus are rarely done. 
Instead, high viral loads (above 104 to 107 copies/mL) can be used as a surrogate to infer infectiousness.11-20 Although several 
studies have evaluated the performance of Ag-RDTs, only a few studies have investigated the clinical sensitivity of Ag-
RDTs relative to periods of known infectiousness26-28, and none considered infectious virus in specimen types other than 
the one tested by the Ag-RDT. Further, all participants in these research studies had already received a positive COVID-19 
test result prior to beginning sampling, and most studies used a nasal-swab test as a determiner of initial positivity, which 
inherently selects individuals later in the infection with detectable viral loads in the nose. 

In this investigation, we performed a community-based study to evaluate the ability of a daily ANS Ag-RDT to detect the 
pre-infectious and infectious periods of SARS-CoV-2 infection. Participants collected paired saliva, anterior-nares swab, 
and oropharyngeal swab specimen for SARS-CoV-2 testing and viral-load quantification by a high-analytical-sensitivity 
RT-qPCR tests, as described in our related paper.24 At each daily timepoint, participants also performed an at-home Ag-
RDT (the Quidel QuickVue OTC COVID-19 Test). 
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METHODS 

Study Participants 

Complete details of the participants and study inclusion/exclusion criteria can be found in the accompanying paper.24 
Briefly, this case-ascertained study was conducted in the greater Los Angeles County area between November 2021 and 
March 2022 under Caltech IRB #20-1026. All participants provided written informed consent or verbal assent with written 
parental permissions (for minors). Children ages 8-17 years old additionally provided written assent. 

We enrolled 228 participants, of which 90 were determined by RT-qPCR to be infected with SARS-CoV-2 during 
enrollment (Fig 1, Fig 2). For analyses oriented to early infection (Fig 3, 4, 5), we analyzed data from 17 participants who 
were initially negative in at least one test (either RT-qPCR or Ag-RDTs) upon enrollment (Fig 1A, Table S1). 

Sample Collection, RT-qPCR Testing, and Variant Sequencing 

Complete details of sampling can be found in our accompanying paper.24 Briefly, each day, participants completed an online 
symptom survey, then self-collected saliva, then anterior-nares swab, then posterior oropharyngeal (throat) swab specimens 
for RT-qPCR testing. Extraction and RT-qPCR was performed at Pangea Laboratories using the FDA-authorized Quick 
SARS-CoV-2 RT-qPCR Kit.29 This assay has a reported LOD of 250 copies/mL of sample, which we also verified prior to 
study initiation.24 Details of the quantification of viral load were described previously.24 

Viral sequencing and variant determination were also performed at Pangea; full methods previously described.24 Extraction, 
RT-qPCR, and sequencing operators and supervisors at Pangea Laboratory were blinded to which participant a sample 
originated from, as well as the infection status and antigen test results of all participants. 

Viral loads, RNase P cycle threshold (Ct) values, and demographic information for 14 of these 17 participants are also 
reported in a companion manuscript.24 

Antigen Testing for SARS-CoV-2 

Immediately after packaging specimens to be delivered to Pangea for RT-qPCR analysis, participants followed 
manufacturer’s instructions to take an at-home Ag-RDT, the FDA-authorized Quidel QuickVue At-Home OTC COVID-19 
Test,30-32 which uses a self-collected anterior-nares swab and has a reported LOD of 1.91x104 TCID50/mL. This test is 
authorized for use with symptomatic persons, or asymptomatic persons if tested twice in a 24-48-hour period. This test was 
selected because it is authorized and in use globally, and its performance has been the subject of several cross-sectional 
evaluations.2,33-35 

Participants interpreted and reported their own antigen test results (positive, negative, or invalid), and photographed their 
test strips immediately. In the event of an invalid result, study coordinators called or text-messaged participants to request 
they immediately take an additional test; invalid results were replaced with subsequent valid results, when applicable. 
Participants recorded their test results and uploaded photos of the test strips to a secure REDCap server immediately after 
testing. All photographs were inspected by at least two study coordinators blinded to RT-qPCR results. Results as reported 
by the participants were analyzed and reported here. A discussion of the discrepancies between participant- and study-
coordinator-interpreted test results (56 of 2,153 Ag-RDT results) can be found in the Supplemental Information. 

The antigen test manufacturer reports that the Quidel QuickVue At-Home OTC COVID-19 Test has an LOD with >95% 
positivity at 1.91x104 TCID50 / mL of commercial heat-inactivated SARS-CoV-2 particles.31 Conversion of TCID50/mL 
to viral load in copies/mL is not provided in the FDA documentation for this test, and the manufacturer was unable to 
provide this value nor a lot number or certificate of analysis for the heat-inactivated particles. Thus, we were unable to 
convert this LOD value from TCID50/mL to copies/mL. 
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Figure 1. The study cohort is composed of the 17 individuals who were enrolled before or at the incidence of SARS-CoV-2 infection. (A) 
Participant recruitment, eligibility, and enrollment, and the cohort selection for the 17 participants enrolled early in the course of acute SARS-CoV-2 
infection. (B) Demographics of the 17-participant cohort. Additional detailed information on each participant can be found in Table S1. RT-qPCR, 
antigen testing, and symptom data for these participants are shown in Fig 3. 

  

Male 8 47.1%

Female 9 52.9%

6‐11 2 11.8%

12‐17 2 11.8%

18‐29 3 17.6%

30‐39 3 17.6%

40‐49 5 29.4%

50‐59 2 11.8%

White 13 76.5%

Asian or Pacific Islander 2 11.8%

Multiple Races 2 11.8%

Hispanic 3 17.6%

Non‐Hispanic 14 82.4%

Current 0 0.0%

Former 2 11.8%

Never 15 88.2%

Vitamins/Supplements 7 41.2%

Acetaminophen/NSAIDs 4 23.5%

Allergy medications/Antihistamines 3 17.6%

Antibiotics/Antivirals 1 5.9%

Asthma  1 5.9%

Anxiety or Depression 3 17.6%

Diabetes 1 5.9%

Overweight/Obesity 7 41.2%

GI condition 2 11.8%

Partially Vaccinated 1 5.9%

Completed Vaccination 5 29.4%

Fully vaccinated and boosted 11 64.7%

No SARS‐CoV‐2 vaccines reported 0 0.0%

Medical Comorbidities

SARS‐CoV‐2 Vaccination Status

Sex*

Active Medications and Supplements

Age

Race

Ethnicity

Tobacco Smoker or Vape User History

*Participants were asked to report both sex at birth and current 

gender identity; all  participants in this cohort responded cis‐gender 

identities to sex at birth
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Analysis of Overall Antigen Test Performance 

The 228 participants enrolled in the study collected specimens at 2,215 timepoints. A composite RT-qPCR result was 
generated for each of the timepoints: the participant was considered infected if any of the specimen types yielded a positive 
result by RT-qPCR, a participant was considered uninfected if all specimen types resulted negative by RT-qPCR, and 
inconclusive if at least one specimen type resulted inconclusive while the other specimen types resulted negative by RT-
qPCR. A total of 2,188 timepoints specimens had valid, composite RT-qPCR results, 847 of which were considered infected. 
Of these 2,188 timepoints, 63 did not have associated Ag-RDT results reported by the participant. Three positive Ag-RDT 
antigen test results (from different participants) originated from a specific lot (#152000) of antigen test strips that 
consistently produced pink false-positive test lines even when only blank test buffer was applied during our in-house 
laboratory testing (see Supplementary Information). These three results were excluded. Of note, Ag-RDT strip lot numbers 
were not collected for all timepoints; thus, some additional false-positive Ag-RDT results may have originated from this lot 
but not been excluded from analyses. An additional seven timepoints had invalid Ag-RDT results. A total of 2,118 
timepoints had valid, paired ANS Ag-RDT and composite RT-qPCR results (Fig 2A-C,H, Table S2). 

Statistical Analyses 

A continuous infectious period was defined for each participant (Fig 3, Fig 5) as the first specimen collection timepoint 
where at least one specimen type had a viral load above an infectious viral-load threshold, until the last timepoint where at 
least one specimen type had a viral load above the infectious viral-load threshold. Analyses were performed separately for 
infectious viral-load thresholds of 104, 105, 106, and 107 copies/mL (thresholds based on literature11-20). For certain analyses 
(Fig 4, Fig 5), the continuous infectious periods were defined for each participant either using all three specimen types or a 
single specimen type. Statistical significance between lengths of continuous infectious periods calculated using all specimen 
types or just ANS specimens were calculated using an upper-tailed related-sample t-test (Fig 4E). A two-stage Benjamini–
Hochberg procedure was used to correct P-values for each comparison using a different infectious viral-load threshold. 

Positive and negative percent agreement (Fig 2A-C) was calculated as the number of specimens with observed concordant 
results over the total number of specimens with positive or negative results, respectively, by a reference test (single specimen 
type RT-qPCR). Clinical sensitivity (Fig 2H, 5, 6) was calculated as the number of specimens with either observed or 
predicted positive results (based on viral loads above a specified assay LOD) over the total number of infected or infectious 
timepoints included. Individuals were considered infected at any timepoint where at least one specimen type collected had 
a positive result by RT-qPCR. Individuals were considered infectious based on criteria described above. Confidence 
intervals were calculated as described in the Clinical Laboratory Standards Institute EP12-A2 User Protocol for Evaluation 
of Qualitative Test Performance.36 Participants collected ANS, SA, and OPS specimens for viral-load quantification and 
performed a rapid ANS Ag-RDT at each timepoint; these measurements were considered paired. Differences in the inferred 
or observed clinical sensitivity from these paired data were tested for statistical significance (Fig 6I) using the McNemar 
Exact Test37 performed using the statsmodels package in Python v3.8.8, with a Benjamini–Yekutieli procedure to correct 
P-values. 

We also predicted the performance of computationally-contrived combination specimen types (SA-ANS, SA-OPS, AN–OP 
combination swab, or SA-ANS-OPS). These combination specimen types were defined as having the highest viral load of 
any specimen type included in the combination collected by a participant at a timepoint. The performance of these 
combination specimen types was inferred and compared as described above. 

 

RESULTS 

Antigen Rapid Diagnostic Test (Ag-RDT) Exhibits <50% Observed Clinical Sensitivity to Detect Infected Individuals Across 
the Course of the Infection 

From 2,218 timepoints with valid, paired ANS RT-qPCR and ANS Ag-RDT results, we observed a positive percent 
agreement (PPA) of 47% (347) Ag-RDT positive results of 731 ANS RT-qPCR positive results (Fig 2A). This PPA is lower 
than the 83.5% (95% CI 74.9-89.6%) reported by the manufacturer, from a study of 91 individuals with ANS specimens 
positive by a comparator RT-PCR assay.31 Although positive RT-qPCR and negative Ag-RDT results were expected for 
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timepoints with low ANS viral loads, the Ag-RDT resulted negative for more than half of RT-qPCR positive ANS specimens 
with viral loads above 104 copies/mL (Fig 2D) . Relatedly, we observed that when the 680 ANS specimens with quantifiable 
viral loads were ordered by viral load, 95% PPA with Ag-RDT was observed with viral loads above 7.6x106 copies/mL 
(Fig 2G) suggesting this value as an estimate for the approximate LOD of the assay. The reported LOD of the Ag-RDT 
assay is 1.91x104 TCID50/mL31; without lot information for the reported LOD validation, conversion to copies/mL is not 
possible. However, an approximate 1000-fold difference between RNA viral load and viral titer is reasonably expected.38 

 

Figure 2. Comparison of Anterior-Nares Swab Antigen Rapid Diagnostic Test (Ag-RDT) Results to RT-qPCR Results and Viral Loads. A 2x2 
matrix of observed concordance between Ag-RDT results and RT-qPCR results for (A) 2107 ANS specimens, (B) 2114 SA specimens and (C) 2108 
OPS specimens. PPA, positive percent agreement; NPA, negative percent agreement. CI indicates 95% confidence interval. Distribution of viral loads 
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from (D) 731 RT-qPCR positive ANS specimens, (E) 568 RT-qPCR positive SA specimens and (F) 604 RT-qPCR positive OPS specimens, with either 
positive or negative Ag-RDT results. Solid horizontal black lines indicate medians. Dashed black line in (D) indicates a viral load of 7.6x106 copies/mL, 
above which at least 95% of positive RT-qPCR ANS specimens resulted Ag-RDT positive. (G) 681 ANS specimens with quantifiable SARS-CoV-2 
viral loads are ordered by viral load and colored by Ag-RDT results (green for positive antigen test result, black for antigen negative). Inset shows 
higher resolution for results with viral loads immediately above and below 7.6x106 copies/mL (black dashed line), above which at least 95% of ANS 
specimen resulted Ag-RDT positive. (H) A 2x2 matrix of observed concordance between Ag-RDT results, and infected status, based on composite RT-
qPCR results from all three specimen types, at 2118 timepoints. (I) Distribution of the highest viral load among SA, ANS, and OPS specimens collected 
by a participant at 812 composite RT-qPCR positive (‘Infected’) timepoints, with either positive or negative Ag-RDT results. Magenta shading in D, 
E, F, and I indicates infectious viral loads (above 104, 105, 106 or 107 copies/mL). ANS, anterior-nares swab; SA, saliva; OPS, oropharyngeal swab; 
Ag-RDT, antigen rapid diagnostic test. Detailed tabulation including inconclusive and invalid results shown in Table S2. 

 

We observed a negative percent agreement (NPA) of 97% (1,343) antigen negative results of 1,385 ANS RT-qPCR negative 
results. This is slightly lower than the NPA of 99.2% (95% CI 97.2-99.8%) observed by the Ag-RDT manufacturer.31 This 
decrease may be due to inclusion of an antigen test lot we found to consistently yield false-positive results (see 
Supplementary Information). 

There is an important distinction between PPA and clinical sensitivity. We calculated the PPA to compare positive results 
by the Ag-RDT versus positive results by a reference test (RT-qPCR performed on a single specimen type). In contrast, we 
calculated clinical sensitivity of the Ag-RDT to detect an infected person (infected defined as RT-qPCR positive result in 
any specimen type at a given timepoint). Importantly, we find that PPA against ANS RT-qPCR results was significantly 
higher than an overall observed clinical sensitivity of 44% to detect infected individuals (Fig 2H, upper-tailed McNemar 
Exact Test, P<0.001). This demonstrates that comparisons of single specimen types can overestimate the clinical sensitivity 
of a test (Fig 2A-C). Further, more than half of timepoints with potentially infectious viral loads (>104 copies/mL in any 
specimen type) were missed by the ANS Ag-RDT (Fig 2E,F,I). 

Of the 90 infected participants (Fig 1), 71 (79%) had a positive Ag-RDT result at least once during enrollment. We next 
sought to investigate how daily Ag-RDT results aligned with detection of infected and presumably infectious individuals 
longitudinally from the early stage of acute SARS-CoV-2 infection. 

 

Analysis of Longitudinal Viral-Load Timecourses and Antigen Test Performance 

Of the 90 SARS-CoV-2 infected participants in this study, we identified 17 participants who enrolled and began specimen 
collection early in the course of the infection (negative in at least one of the four tests performed [SA, ANS, or OPS RT-
qPCR, or ANS Ag-RDT] in their first set of samples upon enrollment, followed by quantifiable virus in all three specimen 
types by RT-qPCR, Fig 1). We compiled each participant’s daily viral-load measurements and human RNase P Ct values 
for each specimen type (SA, ANS, OPS),24 self-reported symptoms, and ANS rapid antigen test results (Fig 3). We 
additionally plotted the presumed infectiousness of an individual at each timepoint based on viral loads in any specimen 
type exceeding the noted thresholds of 104 to 107 copies/mL (Fig 3). 
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Figure 3. Individual viral-load timecourse measurements from participants enrolled at or before the period of acute SARS-CoV-2 infection. 
Each panel (A-Q) represents a single participant throughout the course of enrollment, with observed ANS rapid antigen testing results, presumed 
infectious period (magenta) based on viral loads at or above each infectious viral-load threshold 104 to 107 copies/mL in any specimen type, SARS-
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CoV-2 viral loads (left y-axis) and human RNase P Ct values (right y-axis) by RT-qPCR in each specimen type, and symptoms reported at each sample 
collection timepoint. INC indicates inconclusive, NQ indicates that viral load was detected but it was below the LOD of the test (250 copies/mL). ND 
indicates not detected for RT-qPCR measurements. AN, anterior-nares. OP, oropharyngeal. A single invalid antigen test is indicated with a “?” symbol. 

 

All participants reported at least one COVID-19-like symptom at some point during their infection with symptom onset 
within 3 days of first detectable viral load, as determined by RT-qPCR. In this cohort, the sensitivity of antigen testing when 
the participant was symptomatic was significantly higher than when the participant was asymptomatic (Fig S1A), but in 
both groups the observed clinical sensitivity was low (<50%). Surprisingly, several participants reported zero symptoms on 
the day of their peak viral loads (Fig 3C, 3L, 3N), all of which were >108 copies/mL. Overall, we found only a weak 
relationship between viral load and symptoms (Fig S1B-E). Importantly, individuals had infectious viral loads in at least 
30% of timepoints at which no symptoms were reported (Fig S1F). 

All but two participants (Fig 3D and 3F) reached presumed infectious viral loads at least 1 day prior to daily rapid antigen 
testing yielding positive results. In six participants, the delay between first infectious specimen and antigen positivity was 
1-2 days; in five participants, the delay was 3 days; for one participant (Fig 3C) the delay was 5 days and for another 
participant (Fig 3A) the delay was 8 days. Further, two participants (Fig 3B and 3E) had presumably infectious viral loads 
for several consecutive days, but never received a positive Ag-RDT result during enrollment. The first participant (Fig 3B) 
had high viral loads in OPS specimens for 8 days while ANS specimens remained at low levels (rising just above 104 
copies/mL only one day). Even very high-analytical-sensitivity RT-qPCR assays using ANS would not have reliably 
detected this participant’s infection because ANS specimens had low viral loads with inconsistently positive results 
throughout enrollment. In the second participant (Fig 3E) nasal viral loads exceeded 106 copies/mL on three days, but never 
yielded a positive Ag-RDT result, likely because these viral loads were too close to the Ag-RDT’s estimated LOD for 
reliable detection. 

In another participant (Fig 3D), we observed consistent false-positive Ag-RDTs; even when ANS was negative by RT-
qPCR and an iHealth rapid antigen test taken outside of the study on the final day of sampling. This participant continued 
to test positive by Ag-RDT even >30 days after his first detectable viral load, and when viral load was undetectable by RT-
qPCR in all three specimen types. These antigen test strips were not from the lot that yielded consistently false-positive 
results. Several other participants (not in this cohort) exhibited a similar phenomenon of continuous false positives, some 
of which we were able to track to a specific test lot (see Supplemental Information). 

Period of Presumed Infectiousness as a Factor of Infectious Viral-Load Threshold 
 
 It has been proposed that Ag-RDTs may detect presumed infectious individuals due to higher viral loads in these 
individuals. To assess this, individuals were presumed to be infectious based on viral loads exceeding infectious viral-load 
thresholds (IVLTs) of either 104, 105, 106 or 107 copies/mL. For each IVLT, the presence of specimens with infectious viral 
loads was plotted relative to the first RT-qPCR positive in any specimen type and positive paired Ag-RDT results were 
overlaid (Fig 4A-D). As the IVLT increased, the length of the total infectious period for each participant typically decreased. 

All 17 individuals had presumed infectious viral loads (>104 copies/mL) in ANS specimens in at least one timepoint, and 
all but one individual (Fig 4A[N]) additionally exhibited presumed infectious viral loads in OPS and/or SA (Fig 4A-D). If 
the infectious periods in OPS and SA overlapped perfectly with the infectious period in ANS, then infectious viral loads in 
other specimen types would not affect the performance of the Ag-RDT to detect infectious individuals. However, we found 
that the presumed infectious periods for different specimen types are often asynchronous (Fig 4A-D). Moreover, positive 
antigen tests only overlapped with 60% of timepoints with infectious viral loads above 104 copies/mL and 80% of timepoints 
with infectious viral loads above 107copies/mL. 
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Figure 4. Periods of Presumed Infectiousness as a Factor of Infectious Viral-Load Threshold (IVLT). (A-D) Days from first RT-qPCR positive 
that each participant (A-Q; see Fig 3) had presumably infectious viral loads (with IVLTs of 104 to 107 copies/mL) in each specimen type (green bars, 
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ANS; orange bars, OPS; black bars, saliva), all positive Ag-RDT tests (green triangles) and the final date of study enrollment (gray lines). The 
timecourse for participant D (who experienced a series of false-positive antigen tests) is truncated, indicated by a * (see Supplementary Methods). (E) 
Average length of the infectious period when considering only presumably infectious loads in ANS (green) or when considering all specimen types 
(purple). Error bars are S.D. P-values were obtained by performing related-sample t-tests for each IVLT. P-values were adjusted using two-stage 
Benjamini–Hochberg correction to account for multiple hypotheses being tested. 

 

Given that the infectious periods for different specimen types were often asynchronous (Fig 4A-D), considering 
infectiousness in all three specimen types yielded a significantly longer infectious period than if only ANS viral loads were 
considered (Fig 4E, Fig S2) across all infectious viral load thresholds. We also found that the infectious period in ANS and 
OPS together was longer than any other combination of two specimen types, and similar to that of all three specimen types 
(Fig S2). These results suggest that testing only single specimen types (such as ANS) may fail to detect individuals with 
infectious viral loads in untested specimen types. 

 

Inferred Clinical Sensitivity in the Presumed Infectious Period Depends on Specimen Type, Infectious Viral-Load Threshold 
(IVLT) and Assay Analytical Sensitivity 

We next hypothesized that the discrepancy in the length of the infectious period would decrease the clinical sensitivity of 
an ANS Ag-RDT in identifying potentially infectious individuals. To illustrate this point, we compared the inferred clinical 
sensitivity to detect individuals with infectious viral loads in only the tested specimen type (Fig 5A-C) or in any specimen 
type (Fig 5D-F). 

First, this analysis demonstrates that setting an IVLT at or above the LOD of an assay will artificially inflate inferred clinical 
sensitivity of that assay in detecting infectious individuals. We highlight three instances (red boxes in Fig 5A-C) where 
inferred clinical sensitivities increase by up to 84% as a result of assay LOD being just slightly greater than or equal to the 
defined IVLT. Perfect performance is observed in the lower-right triangular matrix (Fig 5A-C) because the assay LOD is 
equal to or less than the IVLT; in these cases, only specimens with viral loads above the LOD (and therefore likely 
detectable) would be considered infectious by definition. Generally, clinical sensitivity increases as the infectious threshold 
increases, whereas inferred clinical sensitivity decreases as test LOD increases. This analysis shows that defining an 
infectious threshold that is similar to the assay LOD (or worse, using an assay’s LOD to define the infectious threshold), 
can grossly overestimate the inferred clinical sensitivity of the assay in detecting infectious individuals. 

Second, the inferred clinical sensitivity when considering only the tested specimen type (Fig 5A-C) decreases substantially 
in nearly all combinations of IVLT and LOD when all viral loads in all three specimen types are considered (Fig 5D-F); in 
many cases, inferred clinical sensitivity decreases by more than half. This demonstrates a serious implication of assuming 
an individual may only be infectious in one specimen type. Further, when infectiousness in any specimen type is considered, 
no single specimen type achieved a clinical sensitivity above 85% in detecting infectious individuals, regardless of selected 
test LOD or infectious threshold. This analysis clearly demonstrates that clinical sensitivity to detect presumed infectious 
individuals will be grossly overestimated for all combinations of IVLT/assay LOD when the viral loads in untested specimen 
types aren’t considered. 
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Figure 5. Effects of Assay LOD, Infectious Viral-Load Threshold (IVLT), and Inclusion of Multiple Specimen Types on Inferred Clinical 
Sensitivity to Detect Presumed Infectious Individuals. (A-C) Heatmaps visualizing the inferred clinical sensitivity for each specimen type, (A) saliva 
(SA), (B) anterior-nares swab (ANS), and (C) oropharyngeal swab (OPS), tested with assays of varying LOD to detect individuals presumed infectious 
only if the viral load in the tested specimen type was at or above a given IVLT. Red boxes to highlight an important interaction between assay 
LOD/IVLT that is elaborated in the text. (D-F) Heatmaps visualizing the inferred clinical sensitivity for each specimen type, (D) SA, (E) ANS, (F) 
OPS, tested with assays of varying LOD to detect individuals presumed to be infectious if the viral load in any specimen type was at or above a given 
IVLT. Heatmaps for contrived combination specimen types are shown in Figure S7. 

 

Performance of Daily Rapid Antigen Tests to Detect the Pre-Infectious and Infectious Periods 

We next wished to investigate the performance of a daily rapid antigen test to detect the pre-infectious and infectious periods. 
We separately analyzed IVLTs of 104 to 107 copies/mL and plotted the observed clinical sensitivity of the Ag-RDT alongside 
the inferred clinical sensitivity of ANS specimens tested by an assay with a similar LOD of 106 copies/mL. 

We found strong agreement between the inferred clinical sensitivity of ANS specimens tested with an assay with LOD of 
106 copies/mL and the observed clinical sensitivity of the Ag-RDT in both the pre-infectious and infectious periods and 
across all four infectious thresholds (Fig 6A-D;I). This analysis supports that the performance of a given specimen type and 
assay analytical sensitivity can successfully be predicted using observed quantitative viral loads. 

In the pre-infectious period, we observed that all low-analytical-sensitivity ANS tests (inferred by viral loads and observed 
Ag-RDT) failed to detect infections across all four infectious viral load thresholds. ANS rapid antigen testing was positive 
in, at most, 1 of 34 timepoints in the pre-infectious period of infection (Fig 6C,D). 
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Increasing the IVLT increased the pre-infectious period and decreased the infectious period, and therefore also increases 
the observed and inferred clinical sensitivity of these low-analytical-sensitivity assays to detect infectious individuals (Fig 
6A-D). However, even at the highest IVLT (107 copies/mL), we observed that ANS Ag-RDTs detected only 63% of 
presumed infectious individuals (95% CI 54-71%, Fig 6D). Overall, ANS Ag-RDTs had poor detection of both pre-infectious 
and infectious individuals. 

 

 

Figure 6. Observed and Inferred Performance of Daily Antigen Rapid Diagnostic Tests (Ag-RDTs) to Detect Presumed Infectious Individuals. 
Individuals were presumed infectious for the period between first specimen (of any type) with a viral load above the IVLT (104, 105, 106, or 107 
copies/mL) until all specimen types were below the IVLT; specimens collected prior to this period were considered pre-infectious, and after this period, 
post-infectious. (A-D) Observed clinical sensitivity of the ANS rapid antigen test (fluorescent green), and the inferred clinical sensitivity of an ANS 
test with an LOD of 106 copies/mL (green), for each stage of infection. (E-H) Plots show the observed clinical sensitivity for detection of presumed 
infectious individuals by the ANS Ag-RDT (fluorescent green) and the inferred clinical sensitivity for ANS (green), OPS (orange), SA (black), and an 
AN–OP combination swab specimen type (yellow). Inferred clinical sensitivity was based on measured viral loads in the given specimen type at or 
above an LOD of 106 (bottom points, darker shades) and an LOD of 103 copies/mL (top points, lighter shades). (I) Comparison of clinical sensitivities 
using McNemar Exact Test, for given comparisons across specimen types or LODs. ANS Ag-RDT vs ANS with LOD 106 copies/mL was tested using 
a two-tailed McNemar Exact Test; all other combinations use a one-tailed McNemar Exact Test. P-values were adjusted using a Benjamini–Yekutieli 
correction to account for multiple hypotheses being tested. (J) For the pre-infectious period defined by each IVLT, plots show the clinical sensitivity 
inferred based on measured viral loads for ANS (green), OPS (orange), SA (black), and computationally-contrived AN–OP combination swab specimen 
type (yellow) tested by an assay with LODs of 106 (bottom points, darker shades) or 103 copies/mL (top points, lighter shades). SA, saliva; ANS, 
anterior-nares swab; OPS, oropharyngeal swab; AN–OP, anterior-nares–oropharyngeal combination swab; LOD, limit of detection. 

 

Ag-RDTs Using AN–OP Combination Swab Inferred to Significantly Improve Detection in Infectious Period 

We next evaluated the clinical sensitivity of different specimen types tested with either high- or low-analytical-sensitivity 
assays to detect individuals during the infectious period. No single specimen type (SA, ANS, nor OPS) achieved 95% 
inferred clinical sensitivity with either a high- (LOD of 103 copies/mL) or low-analytical-sensitivity (LOD of 106 copies/mL) 
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assay, for any IVLT (Fig 6E-H). However, high-analytical-sensitivity testing yielded significantly higher inferred clinical 
sensitivity over low-analytical-sensitivity testing for all specimen types, at all IVLTs (Fig 6I). 

We had observed that considering infectious viral loads in multiple specimen types yielded significantly longer infectious 
periods (Fig 4), that individuals most frequently achieve infectious viral loads in ANS or OPS first (Fig S3-6), and a 
combination of ANS and OPS captured the longest duration of any two-specimen-type combination (Fig S2). This led us 
to propose that a specimen type that combined AN and OP sampling on a single swab might exhibit improved performance. 
We created a computationally-contrived AN–OP combination swab specimen containing the higher viral load of either 
specimen type collected by a participant at a given timepoint. This AN–OP combination swab specimen was predicted to 
perform significantly better than any single specimen type, including the observed performance of rapid ANS Ag-RDT. The 
AN–OP combination swab’s performance was predicted to be superior when using either a high-analytical-sensitivity assay 
(LOD of 103 copies/mL) or a low-analytical-sensitivity (LOD of 106 copies/mL) assays, across all IVLTs (Fig 6E-I). The 
combination AN–OP swab specimen type also had improved performance over all other possible two-specimen combination 
specimen types, and other assay LODs (Fig S7). 

 

DISCUSSION 

Our results revealed several important findings relevant to the use of Ag-RDTs and, by extension, other tests with low and 
moderate analytical sensitivity such as some nucleic acid amplification tests (NAATs) that forgo nucleic acid extraction and 
purification. 

First, our community-based testing of the Ag-RDT showed low clinical sensitivity for detecting infected persons at any 
stage of infection. Overall, the observed clinical sensitivity of the Ag-RDT in our participant population was only 44%. 
This performance is consistent with what we24 (and others39) have predicted based on the estimated analytical sensitivity of 
the assay and measured ANS viral loads, suggesting user error did not substantially affect performance. This is, however, 
lower than the manufacturer-reported sensitivity of 83.5%,31 observed under a different study design: PPA was calculated 
relative to an ANS RT-PCR reference test, as opposed to our calculation of clinical sensitivity to detect infected status based 
on composite RT-qPCR results from multiple specimen types. Additionally, data from the manufacturer indicates that nearly 
all (84 of 91) reference test positive specimens originated from individuals after symptom onset, whereas our design includes 
both symptomatic and asymptomatic timepoints. 

Many Ag-RDTs are recommended or validated for use only by symptomatic individuals, but in practice these tests are also 
often used for asymptomatic test-to-enter or serial-screening purposes. Although we found that Ag-RDT performance was 
significantly better at symptomatic timepoints than asymptomatic timepoints, the observed clinical sensitivity to detect 
infected persons even at symptomatic timepoints was low (<50%). Further, we found that individuals had infectious viral 
loads in at least one third of asymptomatic timepoints, and multiple participants had no symptoms on the day of peak viral 
load (sometimes >108 copies/mL). 

Second, the ANS Ag-RDT only detected 3% of the presumed pre-infectious timepoints and 63% of the presumed infectious 
timepoints. Missing almost all of the pre-infectious period and much of the infectious period can be attributed to ANS viral 
loads sometimes rising to the LOD of the Ag-RDT after SA and OPS have achieved infectious viral loads (9 of 17 
participants). Importantly, the total period of presumed infectiousness is significantly longer when one accounts for the viral 
loads in multiple specimen types, and not just in ANS. Studies that have assessed the period of infectiousness by viral 
culture of only one specimen type may have underestimated the total infectious period.12,26,40,41 Evidence for recommended 
isolation periods should consider multiple specimen types,40 particularly if negative Ag-RDT results are used to release 
individuals from isolation. Moreover, studies evaluating low-analytical-sensitivity testing relative to infectiousness in only 
one specimen type will likely overestimate the performance of that test to detect the full infectious period.42,43 Several 
outbreak models16,20 have simulated the performance of low-analytical-sensitivity tests; test performance will be 
overestimated if infectiousness in only the specimen type used for testing is considered. Further, the simulated performance 
of tests with high LODs (such as low-analytical-sensitivity Ag-RDTs) will be drastically different depending on the IVLT 
used in outbreak models: if the IVLT is at or above the LOD of the simulated test, artificially high or even perfect 
performance will be calculated simply as a result of the chosen parameters. 
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We do not believe that the poor performance of the Ag-RDT in our study is due to a particular artifact of the study 
implementation for two reasons. First, our results are generally consistent with a previous study of pre-Omicron variant 
infections: the performance of an ANS Ag-RDT to detect individuals positive by nasopharyngeal swab (NPS) RT-qPCR 
was <50% in the first days of infection, and rose to a maximum of 77% three days after symptom onset.42 Although, our 
study is not directly comparable because that study assessed only one reference specimen type (NPS). Second, observed 
ANS Ag-RDT performance was in excellent agreement with the performance predicted based on ANS viral loads measured 
by RT-qPCR, which used a separate ANS swab and sample tube. 

Only assays with the highest analytical sensitivity performed well for detecting the pre-infectious and infectious periods, 
because they were able to capture low viral loads in the tested specimen type while individuals had infectious viral loads in 
untested specimen types. For example, in one individual (Fig 3A), ANS viral loads were absent or below 103 copies/mL for 
5 days, causing a delay of 8 days between the first RT-qPCR positive in any specimen type to first positive ANS antigen 
result. During this time, the individual had infectious viral loads in multiple SA and OPS specimens. The delayed rise in 
ANS viral loads relative to saliva is consistent with what has been observed for prior variants,21 as well as for the Omicron 
variant,28 but this work is the first analysis that takes into account the viral loads in all three major specimen types to analyze 
the entirety of the presumed infectious period. We see that when only a single specimen type is sampled (e.g., the nasal 
cavity in the case of Ag-RDTs), even daily testing can fail to detect pre-infectious and infectious individuals. 

Third, for low-analytical-sensitivity assays, the use of combination specimen types can significantly improve the 
performance. High-analytical-sensitivity assays can capture instances of low viral loads in the tested specimen type while 
another, untested specimen type has high, infectious viral loads. This is not the case for low-analytical-sensitivity tests, so 
the impact of combination specimen types is more pronounced. Our data suggest that for infection with the Omicron variant, 
an AN–OP combination swab specimen type would be significantly more effective than single specimen types for detecting 
all periods of infection, including the earliest days of infection, at an LOD similar to that of the daily ANS Ag-RDT we 
evaluated (106 copies/mL). The significantly better performance of this AN–OP combination swab specimen type over 
individual specimen types was robust to IVLTs from 104 to 107 copies/mL. Many countries already have authorized and 
implemented the use of combination specimen types, including for Ag-RDTs,4 yet this is not the case in the U.S., with most 
Ag-RDTs using nasal swabs. 

We acknowledge several limitations of our study. First, we only used a single Ag-RDT, the Quidel QuickVue At-Home 
OTC COVID-19 Test. Although other Ag-RDTs have slightly different LODs,33-35 the concordance we observed between 
the inferred clinical sensitivity based on ANS viral loads and the observed clinical sensitivity of the Ag-RDT supports that 
these findings are generalizable, driven by the extreme differences in viral loads among specimen types, and that the 
performance of other Ag-RDTs can be inferred from viral-load data. Second, we make inferences about the value of a 
combination AN–OP swab for improved detection (including using assays with a similar LOD to the Ag-RDT used here) 
based on viral-load measurements, but we did not directly test a combination swab in this study population. Finally, this 
study was performed in the context of one SARS-CoV-2 variant and in one geographical area. As new variants (and 
respiratory viruses) emerge, it will be critical to re-evaluate viral-load timecourses in different specimen types to ensure 
specimen types and assay LODs are judiciously chosen to effectively detect the pre-infectious and infectious periods. In the 
absence of studies informing on these factors, combination oral-nasal swabs are likely the most robust approach to detect 
infections in the pre-infectious and infectious periods.  
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Supplementary Analyses 

Discordance in Participant Interpretation of Antigen Test Results 

In 2.5% of antigen tests (56 of 2,153 tests), a pink (positive) test line was visible to two study coordinators in photographs 
uploaded, but the result was reported as negative by the participant. In most cases the pink lines were faint and may have 
been overlooked by the participants. It is also possible that in some cases the test was photographed late; per the 
manufacturer’s guidance, the test result is only valid at the 10-min mark. One participant with a dark pink line was queried 
and reported poor close-range vision; this participant had a housemate help with all further interpretations. In one case from 
one participant, an invalid result was reported, but a blue control line was visible to two study coordinators. In this 
manuscript, we used the participants’ interpretations in all analyses. Although 2.5% of all rapid antigen test results had 
discordant interpretations, 14% (33 of 228) participants had a discordant interpretation; this discordance underlines that user 
error can affect sensitivity of these at-home tests in real-world settings. 

Faulty Antigen Test Lot 

In mid-January 2022 we observed that two asymptomatic participants had consecutive positive antigen test results, but 
negative results by RT-qPCR in all three specimen types tested. Further investigation revealed that the most recently taken 
false positives from these two participants were from the same antigen strip lot (Quidel QuickVue At-Home OTC COVID-
19 Test #152000). A third participant (Fig 3D) also had a single false-positive test from this lot the same week. This lot was 
immediately pulled from circulation in the study, and reported to the manufacturer and to the FDA (via a MedWatch 
Voluntary Report). 

To investigate the issue further in the laboratory, blank antigen test buffer and commercial nasal fluid from healthy human 
donors were applied to antigen test strips from this lot. Only this lot, not several other lots tested, consistently yielded faint 
but visible pink test lines. Full details of this follow-up investigation are in preparation. 

Following an IRB amendment, participants began photographing the antigen test strip lot number visible when they reported 
their Ag-RDT results. Known test results from this faulty lot were marked as invalid and excluded from analysis (Fig 2). In 
one of the 17 participants enrolled during the early period of infection (Fig 3D), the antigen test result from this lot is noted 
with a “?” on his plot, and the datapoint was excluded from subsequent analyses (Fig 4,6).We emphasize that because we 
were not recording antigen test lot numbers from the beginning of the study, we do not know the extent of the results prior 
to mid-January that were from lot #152000. 
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Table S1. Demographic and Medical Information for the Participants Shown in Fig 3. SARS-CoV-2 variant was determined by ANS swab in all 
cases except individual (B) who had low ANS viral loads so viral load was sequenced from a throat swab. The variant for participant (I) is inferred 
from the household index case. 

 
* Months from vaccine date are given relative to enrollment date 
# Vaccine abbreviations: [P], Pfizer-BioNTech COVID-19 Vaccine (COMIRNATY); [M], Moderna COVID-19 Vaccine (Spikevax); [JJ], Johnson & Johnson 
NQ, not quantifiable; viral load was below the test LOD (250 SARS-CoV-2 RNA copies/mL) 
** Participants were asked to report both sex at birth and current gender identity; all participants in this cohort responded cis-gender identities to sex at birth 

Saliva 

PCR

Throat 

PCR

Nasal 

PCR

Nasal 

antigen

1st 

dose

2nd 

dose

3rd 

dose

(A) neg neg neg neg 9 [M] 8 [M] <2 [M] n/a n/a male 40‐49 White
not 

Hispanic

Omicron 

BA.1.1

(B) neg neg neg neg 11 [JJ] 3 [P] none
PPI, vitamin/ 

supplement

obesity, GI 

condition, 

anxiety or 

depression

female 30‐39 White
not 

Hispanic

Omicron 

BA.1.1

(C)  inc neg neg neg <1 [P] none none acetaminophen n/a male 6‐11
Multiple 

Races

not 

Hispanic

Omicron 

BA.1.1

(D) neg neg neg neg 10 [M] 9 [M] 2 [M] none obesity male 30‐39

Asian or 

Pacific 

Islander

not 

Hispanic

Omicron 

BA.1.1 

(E) neg neg neg neg >11 [P] <10 [P] <3 [P]

allergy medication; 

acetaminophen, 

antihistamine, 

dextromethorphan, 

phenylephrine HCI, 

doxylamine

obesity female 30‐39 White Hispanic
Omicron 

BA.1 

(F) neg neg neg neg 10 [P] 9 [P] none
vitamin/ 

supplement
n/a female 18‐29 White

not 

Hispanic

Omicron 

BA.1.1

(G)  neg neg neg neg <2 [P] <1 [P] none
vitamin/ 

supplement
n/a male 6‐11 White

not 

Hispanic

Omicron 

BA.1.1

(H) neg neg neg neg 10 [M] 9 [M] 2 [M]
vitamin/ 

supplement
n/a female 40‐49 White

not 

Hispanic

Omicron 

BA.1.1

(I) neg neg neg neg 10 [P] 9 [P] none

antibiotic, 

vitamin/ 

supplement

obesity male 18‐29 White Hispanic

Omicron 

BA.1.1 (index 

case)

(J) pos pos inc neg 9 [M] 8 [M] <2 [M]
vitamin/ 

supplement

anxiety or 

depression
female 40‐49 White

not 

Hispanic

Omicron 

BA.1.1

(K) pos pos inc neg 9.5 [M] 8.5 [M] 0.5 [P] NSAID n/a male 40‐49 White
not 

Hispanic

Omicron 

BA.1.1

(L) pos pos pos neg 11 [P] 10 [P] 2 [P]

allergy medication, 

diabetes 

medication, 

cholesterol 

medication

diabetes, 

high blood 

pressure, 

obesity, 

asthma, 

sleep 

apnea, GI 

condition

female 50‐59
Multiple 

Races

not 

Hispanic

Omicron 

BA.1.1

(M) pos pos neg neg 10 [M] 9 [M] 2 [M] SSRI

oveweight, 

anxiety or 

depression

male 50‐59 White
not 

Hispanic

Omicron 

BA.1.1

(N) pos neg pos neg 5 [P] 4[P] none none n/a female 12‐17 White
not 

Hispanic

Omicron 

BA.1.1

(O) pos pos pos neg 10 [P] 9 [P] 1 [P]
vitamin/ 

supplement

anxiety or 

depression
female 40‐49 White

not 

Hispanic

Omicron 

BA.1.1

(P) pos pos pos neg 13 [P] 12 [P] 3.5 [P] none n/a male 18‐29 Asian
not 

Hispanic

Omicron 

BA.1.1

(Q) pos pos pos neg 9[P] 8[P] <0.5 [P]

acetaminophen, 

antihistamine, 

dextromethorphan, 

phenylephrine HCI, 

doxylamine

obesity female 12‐17 White Hispanic
Omicron 

BA.1

Fig 3 

panel

Medical 

conditions
Ethnicity

SARS‐CoV‐2 

Variant

Status on enrollment Months since vaccine

Active Medications Gender
Age range 

(in years)
Race
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Table S2. Breakdown of Specimens Included in Overall ANS Ag-RDT vs. RT-qPCR Analysis Shown in Fig 2. NR, No Result; INV, Invalid; 
POS, positive;, NEG, negative; ANS, anterior-nares swab; SA, saliva;, OPS, oropharyngeal swab; COMPOSITE, composite RT-qPCR result. Ag-
RDT, antigen rapid diagnostic test. 

    ANS ANS Ag-RDT Result SA ANS Ag-RDT Result OPS ANS Ag-RDT Result COMPOSITE ANS Ag-RDT Result 

    NR INV POS NEG NR INV POS NEG NR INV POS NEG 
 

NR INV POS NEG

R
T

-q
P

C
R

 R
es

u
lt

 

Not Submitted 0 0 0 0 0 1 0 0 0 1 5 0 0 3 2 0 0 0 0 0 

Invalid 10 0 0 1 9 7 0 0 3 4 3 0 0 1 2 0 0 0 0 0 

Inconclusive 29 0 0 4 24 23 0 0 6 17 32 0 0 6 23 27 0 0 2 25 

Positive 764 0 1 347 384 596 0 0 329 239 630 0 0 334 270 846 33 1 357 455 

Negative 1412 0 6 41 1335 1588 0 7 55 1491 1545 0 7 49 1455 1342 30 6 34 1272 

  Timepoints 2215 0 7 393 1752 2215 0 7 393 1752 2215 0 7 393 1752 2215 63 7 393 1752 

  Results 2215 0 7 393 1752 2214 0 7 393 1751 2210 0 7 390 1750 2215 63 7 393 1752 

  Valid Results 2176 2107 2184 2114 2175 2108 2188 
2145

  
Valid Paired Results 2107 2114 2108 2118 

 

 

Figure S1. Relationship Between Symptoms and Viral Load (A) The observed clinical sensitivity of the rapid antigen test to detect infection is 
plotted for timepoints when the cohort of 17 participants enrolled early in the course of the infection either reported at least one symptom (Symptomatic) 
or did not report any symptoms (Not Symptomatic). An upper-tailed Fished exact test was performed to determine whether Ag-RDTperformance at 
symptomatic timepoints was higher than timepoints when participants experienced no symptoms. The total number of symptoms reported at each 
timepoint for the cohort of 17 participants enrolled early in the course of the infection was considered the Symptom Score. For timepoints where at 
least once specimen type collected had a quantifiable viral load, the symptom score was plotted against the (B) highest viral load in all specimen types, 
the (C) viral load in SA specimens (D) ANS specimens and (E) OPS specimens. The text on each plot provides the Pearson correlation R squared 
value, and black lines indicate the line of best fit from linear regression. (F) For each symptomatic or asymptomatic timepoint, viral loads in any 
specimen type above the given IVLTs were considered infectious (magenta) and those below were considered not infectious (grey). The percent of 
infectious and not infectious timepoints, for either symptomatic or not symptomatic timepoints is shown as a horizontal stacked bar graph. SA, saliva; 
ANS, anterior-nares swab; OPS, oropharyngeal swab; ND, SARS-CoV-2 not detected by RT-qPCR; INC, inconclusive result by RT-qPCR; NQ, 
positive result by RT-qPCR, but viral load below quantifiable. 
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Figure S2. Duration of presumed infectious periods for observed and computationally-contrived specimen types. The duration of the infectious 
period is plotted using an IVLT of (A) 104, (B) 105, (C) 106, and (D) 107 copies/mL, for each single or combination of specimen types. Each point 
represents a single participant. The location of the point on the x axis indicates the duration of the presumed infectious period, calculated from the first 
presumed infectious specimen to the first non-infectious specimen following infectiousness. Dashed red lines indicate median duration of the presumed 
infectious period for each specimen type. 
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Figure S3. Analysis of Timing of Peak Viral Loads and First and Last Presumed Infectious Samples for Each Specimen Type and Participant, 
Using a Range of IVLTs. Specimen types of first (A-D) and last (E-H) presumed infectious samples for all individuals using IVLTs of 104 (A,E), 105 
(B,F), 106 (C,G) and 107 (D,H) copies/mL. (SA: black, ANS: green, OPS: orange). 

 

Figure S4. Timing of First, Peak and Last Positive Specimens for Each Individual Determined by RT-qPCR. Timeline for each participant 
showing time of the first presumed infectious sample (magenta circle) in any specimen type, using IVLTs of 104 (A), 105 (B), 106 (C) and 107  (D) 

copies/mL. Each plot shows the timing of each participant’s peak viral load (triangles) in each specimen type relative to the time of the first RT-qPCR 
positive sample. Timing of the last RT-qPCR positive sample for each participant is shown by the blue bars. The timecourse for participant D (who 
experienced a series of false-positive antigen tests) is truncated, indicated by a * (see Supplementary Information). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.13.22277513doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.13.22277513
http://creativecommons.org/licenses/by/4.0/


Poor performance of daily nasal rapid antigen tests   p.26 

 

Figure S5. Effects of Test LOD and Infectious Viral-Load Threshold (IVLT) on Inferred Clinical Sensitivity of Contrived Specimen 
Combinations. Clinical sensitivities of assays with varying LOD and IVLT for single specimen types (A-F) and contrived combination specimen types 
(G-I). Samples were deemed infectious if its own viral load surpassed the IVLT (A-C), or if the viral load any sample collected from the same individual 
at the same timepoint surpassed the IVLT (D-I). Contrived combination specimens (G-I) were calculated by taking the max viral load over the two 
specified specimen types. 
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