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Abstract  

Background: Alterations in innate immunity are pathologically associated with and genetically 

implicated in Alzheimer’s disease (AD). In the whole exome sequence (WES) dataset generated 

by the Alzheimer’s Disease Sequencing Project (ADSP), only the previously identified p.R47H 
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variant in the innate immunity gene, TREM2, shows study-wide association with risk of AD. 

Using a novel approach, we searched the ADSP WES data to identify additional immune 

pathway genes with deleterious variants that, like TREM2.pR47H, show strong association with 

AD.  

Methods: Using polygenic risk scores (PRS) to analyze association with AD, we evaluated 

deleterious variants (CADD Phred-scaled score > 20) with a minor allele count of 20 or more in 

228 genes comprising an immune co-expression network containing TREM2 (CENTREM2). A 

significant polygenic component composed of deleterious stop-gain and non-synonymous 

variants was identified, and false discovery rates were determined for the variants in this 

component. In genes harboring a significant variant, PRS for all variants in the genes were then 

analyzed.  

Results: The PRS for the 182 deleterious variants in CENTREM2 showed significant association 

with AD that was driven by 142 deleterious variants (136 non-synonymous, 6 stop-gain). In the 

142 variant polygenic component, four variants had significant AD risk association: 

TREM2.pR47H, two deleterious stop-gain variants (FCGR1A.pR92X, and LILRB1.pY331X) in 

novel AD genes and 1 non-synonymous variant (ATP8B4.pG395S). Remarkably, PRS for the 36 

additional variants in these four genes also showed significant association with AD. The PRS for 

all 40 variants in the 4 genes, showed significant, replicable association with AD and 3 

additional variants in this polygenic component had significant false discovery rates: 

ATP8B4.pR1059Q, LILRB1.pP7P, and LILRB1.pY327Y.  

Conclusions: Here, we identify 3 immune pathway genes (ATP8B4, LILRB1, and FCGR1A) 

with a variant that associates with AD. Like TREM2.pR47H, each of the variants has a minor 

allele frequency less than 1% and is a deleterious, protein altering variant with a strong effect 
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that increases or decreases (LILRB1.pY331X) risk of AD. Additional variants in these genes also 

alter risk of AD. The variants identified here are ideally suited for studies aimed at understanding 

how the innate immune system may be modulated to alter risk of AD. 

 

Background 

Aggregation and accumulation of the amyloid β protein (Aβ) is thought to trigger a slow 

insidious and complex neurodegenerative cascade [1, 2]. Yet in humans, amyloid deposition, 

precedes clinical dementia by many years. Indeed, cognitively normal individuals with cerebral 

amyloid deposition can be identified by amyloid ligand positron emission tomography [3] or by a 

low Aβ42/Aβ40 ratio in cerebrospinal fluid or plasma [4-6]. Thus, in principle, the long 

prodromal period in AD offers a window of therapeutic opportunity wherein therapy to slow or 

halt progression to dementia might be instituted in cognitively normal subjects with cerebral 

amyloid deposition. There are still gaps in our understanding about how and when the innate  

immune system is altered during the progression of AD, but genetic studies clearly demonstrate 

that altered innate immune function can modulate risk for AD. Experimental and pathological 

data suggest that the innate immune system may regulate amyloid deposition, toxicity of the 

amyloid deposits,  tau pathology and neurodegeneration  [7, 8].  

It is well-established that heterozygous missense variants in triggering receptor expressed on 

myeloid cells 2 (TREM2) strongly increase risk of AD in populations of European [9-16] and 

African American ancestry [17, 18]. In the human brain, TREM2 is selectively expressed in 

microglial cells [19], and TREM2 expression is increased both in the brains of AD patients [20-

23] and in mouse models of amyloid and tau deposition [24-28]. Recent studies of mouse models 

indicate that TREM2 plays an important role in regulating the response of the immune system to 
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Aβ and tau pathologies [24, 25, 27-29]. Notably, these studies suggest that AD-linked TREM2 

variants are partial loss of function, and that this partial loss of function confers risk for AD. In 

contrast regulatory variants that increase TREM2 expression may decrease AD risk [30]. We 

previously reported weighted gene co-expression network analysis (WGCNA) of human brains 

transcriptomes that identified association of a TREM2-containing co-expression network 

(CENTREM2) with AD [31].  A WGCNA of brain expression measures from amyloid-bearing 

mice reported that TREM2 is a hub gene in an AD co-expression network activated by amyloid 

[19]. In another study, TYROBP, the signaling partner of TREM2, was found to be a key 

regulator in a human immune gene regulatory network relevant to AD pathology [32]. Thus, in 

principle, therapies which effectively target TREM2 and other genes in its co-expression network 

might halt or slow progression to dementia in cognitively normal subjects with amyloid 

deposition by modulating the immune response that occurs when amyloid is deposited. In an 

effort to identify novel AD genes co-expressed with TREM2, we employed a novel approach 

using polygenic risk scores (PRS) to explore 228 genes in a TREM2-containing co-expression 

network (CENTREM2).  

 
Methods 
 
Study Design:  This is a cross-sectional case-control study to identify novel immune genes with 

deleterious variants that show strong association with AD. AD patients and controls were 

retrospectively selected from non-Hispanic White subjects from the ADSP Umbrella Study 

NG00067.v7. DNA was sequenced at three large scale sequencing analysis centers; data from the 

Broad Institute, the largest cohort, were used as a discovery dataset (N=4,174, AD=2668, 

Control=1506) to construct PRS, and data from Washington University (N=3299, AD=1703, 
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Control=1596) and/or Baylor University (N=2273, AD=1188, Control=1085) were used as test 

datasets. Subject demographics are shown in Additional File 1. 

WES: Whole exome sequencing (WES) data and corresponding clinical information for 20,503 

subjects in the seventh release of the from ADSP Umbrella Study (NG00067.v7) were obtained 

from the National Institute of Aging Genetics of Alzheimer’s Disease Data Storage Service after 

approval. Using PLINK v2.00a3LM [33], 8,152,281 variants obtained from 10,291 non-Hispanic 

White subjects were extracted from project level VCF files generated by Variant Calling Pipeline 

and data management tool [34] developed by the Genome Center for Alzheimer’s Disease.  

Quality control: Bi-allelic variants passing GATK [35] VQSR filter, having a genotyping rate ≥ 

98%, a minor allele count ≥ 20, and a Hardy-Weinberg p-value > 5x10-8 in controls were 

retained. Samples with a minimum call rate of 95% and those passing sex check with an 

inbreeding coefficient of the X-chromosome for males>0.7 and females <0.3 were retained. 

Participants with a heterozygosity rate beyond 6 standard deviations (sd) from the mean were 

excluded. Subsequently, samples were evaluated for relatedness using KING [36] implemented 

via PLINK (v2.00a3LM), and retaining only one sample from each pair or family of 1st, 2nd or 3rd 

degree relatives. Principal component analysis was performed on samples after resolving 

relatedness to evaluate population substructure and exclude population outliers using Eigenstrat 

[37, 38]. Eigenstrat was set to remove outliers up to 6 standard deviations (sd) for the top 10 

principal components (PCs) over 6 iterations, while refitting PCs after each iteration of outlier 

removal. In summary, 35 samples with a call rate less than 95%, 11 with discordant sex, 43 with 

heterozygosity beyond 6 sd, 151 relateds and 305 population outliers were excluded. A total of 

151,571 variants and 9,746 participants passed filters and QC. Variants were annotated using 
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ANNOVAR [39]. Precomputed Combined Annotation Dependent Depletion (CADD) Phred-

scaled scores (v1.6) [40, 41] were obtained from https://cadd.gs.washington.edu/download. 

Genome-Wide Association Study (GWAS): To evaluate the association of individual genetic 

variants with AD in all qualifying participants (N=9,746), we performed logistic regression in 

PLINK (v1.9) using an additive model while adjusting for sex, APOE ε2 and ε4 dose, sequencing 

centers and the first three PCs accounting for population substructure. Since the ADSP cohort 

was enriched for older controls (Additional File 1), we did not include age as a covariate in the 

regression model as correcting for age when individuals with AD are younger than controls leads 

to the model incorrectly inferring the age effect on AD risk, resulting in loss of statistical power 

[42]. Variants in the APOE region [43] (chr19: 44,495,939-45,296,742; GRCh38) were excluded 

from this analysis. 

Polygenic Risk Score (PRS) analysis: We estimated the cumulative weighted burden for a set 

of variants equivalent to the strategy used for polygenic risk scores. However, instead of 

applying the traditional PRS strategy which estimates risk across the entire genome, we focused 

on deleterious variants in genes and sets of genes within CENTREM2. To construct PRS, individual 

variant beta coefficients were estimated in participants sequenced at the Broad Institute 

(discovery; N=4,174). These beta coefficients were then utilized to construct PRS for test sets 

that included participants sequenced at WashU in St. Louis (N=3,299) and/or at Baylor 

University (N=2,273). Beta estimates for variants in the discovery cohort were calculated using 

logistic regression in PLINK (v1.9) while adjusting for sex, APOE ε2 and ε4 dose and the first 

three PCs. Using the clump function in PLINK (v1.9), variants were pruned to reduce linkage 

disequilibrium (r2 < 0.2). These pruned betas were then used to construct PRS in the test set 

using R (v4.0.3) and tested for association with AD using a logistic regression, while adjusting 
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for sex, APOE ε2 and ε4 dose and the first three PCs. The predictive value of the PRS to discern 

AD cases from cognitively normal controls was evaluated using the area under the receiver 

operating characteristic curve calculated using the ‘pROC’ package in R v4.0.3. 

Expression data: Weighted gene co-expression network analysis (WGCNA) was performed 

using R package WGCNA [44] to identify co-expressed genes in an RNA sequencing (RNAseq) 

dataset. The cohort, generation of RNAseq data and quality control steps have been described 

previously [45, 46]. Briefly, RNA was isolated from temporal cortex tissue of 

neuropathologically diagnosed AD patients and controls. RNA libraries were generated using the 

TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA) and sequenced on an Illumina 

HiSeq2000 (101bp PE) multiplexing 3 samples per lane. Raw reads were aligned to GRCh37 and 

were counted for each gene through the MAP-RSeq pipeline [47]. Gene read counts were 

normalized using conditional quantile normalization [48]. After QC, 80 AD and 76 control 

samples were retained for analysis. To account for covariates, expression residuals were obtained 

using multiple linear regression implemented in R, where gene expression was the dependent 

variable, and sex, age at death, flow cell and RNA integrity number were the independent 

variables. As previously described, co-expression analysis was performed for 13,273 TCX 

RNAseq transcripts (13,211 unique genes), which were expressed above background levels in 

both this RNAseq dataset and in an independent cohort [46]. Co-expression networks based on 

residuals were obtained using WGCNA function blockwiseConsensusModules (args: 

networkType="signed", TOMType="signed", power=12). For genes in each co-expression 

network, enriched gene ontology terms were identified by function GOenrichmentAnalysis. 

Eigengenes that represent each co-expression network were obtained from function 
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moduleEigengenes. One module was identified to contain TREM2 [31] and thus genes in this 

module (CENTREM2) were selected for further study.  

 
Results 

Single variant analysis. When the 131,028 autosomal variants which passed quality control 

(QC) and had a minor allele count of twenty or more were tested for association with AD in the 

9,746 participants (Additional File 1) that passed QC (see Methods), only TREM2.pR47H 

reached genome-wide significance (1.28x10-8). 

PRS analysis of all CENTREM2 variants. Of the 9,746 post-QC samples, 4,174 (43%) were 

sequenced at the Broad Institute, 3,299 (34%) at WashU in St. Louis, and 2,273 (23%) at Baylor 

University (Additional File 1). To evaluate variants in CENTREM2 for association with AD, we 

performed PRS analysis utilizing Broad participants for discovery and the combined WashU and 

Baylor set for testing, as fully described in Methods. The PRS for the 1,334 independent variants 

(r2
≤0.2) located in the 228 genes of CENTREM2 showed significant (p = 0.015) association with 

AD (Fig. 1). Q-Q plots of the ADSP p-values for the 1,334 variants in CENTREM2 and for the 

remaining 85,383 independent variants with a minor allele count of twenty or more are shown in 

Fig. 2A demonstrating higher than expected number of significant variants for former.  

Deleterious CENTREM2 variants show significant association with AD. Reasoning that variants 

judged to be highly deleterious by CADD Phred-scaled scores (CPS) were most likely to have 

critical impacts on gene function and influence risk of AD, we performed a prioritized analysis 

of variants in CENTREM2 focusing initially on the 182 variants with CPS>20 (Fig. 1). PRS 

analysis (Table 1) showed that these variants were significantly (p = 2.53x10-3) associated with 

AD, whereas the remaining 1,152 CENTREM2 variants showed only suggestive association (p = 

0.15). We then analyzed the 182 variants with CPS>20 after stratification by exonic function 
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(Fig. 1, Table 1). Among the 6 subsets, the PRS for stop-gain (p = 1.4x10-3) and non-

synonymous (p = 1.3x10-3) variants showed significant association with AD. The PRS for 142 

combined stop-gain and non-synonymous variants further improved the association with AD (p = 

9.2x10-5). The other subsets showed no evidence of association (Table 1). Note that none of the 

synonymous variants in CENTREM2 had a CPS over 20. To adjust for multiple testing of 5 subsets, 

false discovery rates (FDR) were determined. Both stop-gain (Q = 3.6x10-3) and non-

synonymous (Q = 3.6x10-3) variants had significant FDR-adjusted p-values (Q-values) for PRS 

associations.  

We further restricted the original GWAS to the 142 deleterious, stop-gain and non-synonymous 

variants identified by our PRS strategy, and using p-values determined from all participants, we 

calculated the false discovery rate (Q) with respect to this set (Fig. 3). Well annotated results for 

these 142 variants are shown in Additional File 2. As expected, TREM2.pR47H showed highly 

significant association with AD (Q = 1.8x10-6) with an effect size comparable to APOE rs429358 

(Fig. 3). Deleterious variants in three additional genes (ATP8B4, FCGR1A, and LILRB1) also 

showed significant association, including the non-synonymous variant, ATP8B4.pG395S (Q = 

1.3x10-3), and two stop-gain variants, FCGR1A.pR92X (Q = 9.4x10-3) and LILRB1.Y331X (Q = 

0.02). Among the 142 deleterious stop-gain and non-synonymous variants, which had p-values 

ranging from 1.28x10-8 – 0.995, there were 11 additional non-synonymous variants with 

nominally significant P-values (p < 0.05). These variants had false discovery rates ranging from 

0.15 to 0.45, and 10 were in genes other than TREM2, ATP8B4, FCGR1A, and LILRB1. Thus, it 

is highly likely that additional CENTREM2 genes harbor deleterious non-synonymous variants that 

associate with AD. 
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PRS for TREM2, ATP8B4, FCGR1A, and LILRB1 show significant association with AD. 

Using Broad dataset for discovery, the PRS for the 4 significant, deleterious variants (Fig. 1) 

showed highly significant association with AD (p = 2.60x10-11) in the test dataset comprising 

combined WashU plus Baylor participants. Remarkably, the PRS for the 36 remaining variants 

in TREM2, ATP8B4, FCGR1A, and ATP8B4 (Fig. 1) also showed significant association 

(p=7.87x10-4).  

When all variants in each gene with a significant deleterious variant were analyzed, the PRS for 

TREM2, ATP8B4, FCGR1A, and ATP8B4 each showed significant association with AD (Table 

2). Q-Q plots of the ADSP p-values for the 40 variants in these 4 genes compared to all other 

variants in CENTREM2 are shown in Fig. 2B demonstrating higher than expected number of 

observed significant variants.   

When tested in the WashU and Baylor datasets individually, as well as in the combined datasets, 

the PRS for all 40 variants in the four genes (Table 3) showed significant association in WashU 

[p = 5.40x10-8, β (SE) = 0.53 (0.10)], which replicated in Baylor [p = 6.87x10-5, β (SE) = 0.48 

(0.12)], and became highly significant in the combined dataset [p = 8.12x10-12, β (SE) = 0.52 

(0.08)]. We then analyzed the receiver operator characteristics (ROC) curve to determine the 

improvement in AUC (ΔAUC) for models that included PRS, sex, APOE ε2, APOE ε4 and the 

first three principal components as compared to models without PRS. This ROC analysis showed 

that the PRS for all 40 variants improved the area under the curve in the combined WashU plus 

Baylor test dataset by 0.75% (Table 3). After adjustment for all 40 variants in TREM2, ATP8B4, 

FCGR1A, and LILRB1, which had ADSP p-values ranging from 1.28x10-8 to 0.961, 7 variants 

had significant false discovery rates (Q < 0.05), the four deleterious variants identified above and 
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three additional variants (Fig. 1, 4). Well annotated results for these 40 variants are shown in 

Additional File 3. 

Importantly, the PRS for all 36 variants in the 3 novel genes, (ATP8B4, FCGR1A, and LILRB1; 

Table 3) also showed significant association in the WashU dataset [p = 1.45x10-5, β (SE) = 0.48 

(0.11)], which replicated in Baylor [p = 2.53x10-3, β (SE) = 0.43 (0.14)] and became highly 

significant in the combined dataset [p = 9.89x10-8, β (SE) = 0.46 (0.09)]. The PRS for these 36 

variants accounted for 0.59% of the area under the ROC curve (Table 3) in the combined WashU 

plus Baylor test participants. These findings demonstrate that CENTREM2 harbors AD risk variants 

in not only TREM2 but also three novel immune pathway genes.  

Discussion 

In this study, we show that the PRS for the 142 deleterious (CPS>20) non-synonymous and stop-

gain variants in CENTREM2 is significantly associated with AD (p = 9.20x10-5) and that 4 variants 

in this polygenic component are also individually significant after FDR adjustment. Each of 

these variants is a deleterious, protein-altering variant with a MAF of 0.1 - 1.0%. All four 

variants reside in genes that, in the brain, are selectively expressed in microglial cells [49, 50], 

and have strong effects on risk of AD comparable to those of the well-known APOE alleles (Fig. 

4). The strong association of TREM2.pR47H with AD is well-established [9-16]. One study, 

posted on medRxiv, assessing gene-based burden of rare damaging variants in exome sequencing 

data has reported that exonic variants in ATP8B4 associate with AD, an association that was 

driven mainly by the same ATP8B4.pG395S variant described here [51]. The stop-gain variants 

FCGR1A.pR92X and LILRB1pY331X have not previously been reported to associate with AD.  

The PRS for all 40 variants in TREM2, ATP8B4, FCGR1A, and LILRB1 showed significant, 

replicable association with AD (Table 3), as did the PRS for all 36 variants in ATP8B4, 
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FCGR1A, and LILRB1, the 3 novel genes identified here. After adjustment for the 40 variants in 

TREM2, ATP8B4, FCGR1A, and LILRB1, 7 variants had significant association after adjusting 

for multiple testing (FDR) – the four identified above, one additional variant in ATP8B4, and two 

additional variants in LILRB1 (Fig. 1, 4). The additional ATP8B4 variant is a non-synonymous 

variant, ATP8B4.pR1059Q, with a CPS of 14.4 and an OR of 0.42 (0.24, 0.72) showing 

association with decreased risk of AD with an effect size comparable to that of the protective 

APOE ε2 allele (Fig. 4). The additional LILRB1 variants are synonymous variants, which are 

associated with increased risk of AD. Many genes have variants in intronic and flanking regions 

that alter gene expression or splicing. Among the many synonymous exonic variants, some will 

be linked to flanking or intronic variants with functional effects. Thus, the synonymous variants 

in LILRB1 may well show significant association with increased risk of AD through linkage to 

nearby functional variants. 

ATP8B4 encodes a protein that is a component of a P4-ATPase flippase complex, which 

catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to 

the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution 

of phospholipids [52]. Phospholipid translocation seems also to be implicated in vesicle 

formation and in uptake of lipid signaling molecules [53].  

The stop-gain variants in FCGR1A and LILRB1 will almost certainly cause a loss of function. 

FCGR1A is a high affinity receptor for the Fc region of immunoglobulin gamma that functions in 

both innate and adaptive immunity [54]. Just as signaling downstream of TREM2 is mediated by 

TYROBP which contains an immunoreceptor tyrosine-based activation motif (ITAM), ligand 

binding to FCGR1A signals through the ITAM containing FCGER protein. This suggests that the 

biological action of TREM2 variants and a stop gain variant in FCGR1A may be very similar.  A 
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previous study identified FCGR1A.pR92X in an apparently healthy family of individuals who 

lacked phagocyte expression of the IgG receptor (CD64) and were unable to support mouse anti-

CD3-induced induced T cell mitogenesis. The premature introduction of a stop codon was 

associated with a decrease in abundance of FcyRIa mRNA in individuals homozygous for the 

mutation [55]. Thus, it appears that appropriate activation of FCGR1A can reduce risk of AD. 

LILRB1 belongs to the subfamily B class of LIR receptors. It is expressed on immune cells 

where it is known to bind to MHC class I molecules on antigen presenting cells and transduces a 

negative signal though immunoreceptor tyrosine-based inhibition motif (ITIM) that suppresses 

immune responses [56, 57]. LILRB1 on natural killer cells may also have a prominent role in 

inflammation following an immune response [58]. The stop-gain variant in LILRB1, which 

strongly decreases risk of AD, will likely impair the effect of ligands that modulate the immune 

system by binding to LILRB1. Thus, it appears that activation of LILRB1 can increase risk of 

AD. An important implication of this is that well-designed, appropriately targeted LILRB1 

inhibitors might have a strong beneficial effect on AD pathogenesis.  

In AD, the concept that neuroinflammation was harmful and that proinflammatory stimuli would 

increase risk for AD dominated discussion of the role of the innate immune systems in AD for 

many years and served as the rationale for several clinical trials [59]. However, this concept has 

been challenged by both genetic and modeling data as well as results from failed clinical studies 

of anti-inflammatory agents in AD (reviewed in [8]). Notably, the directionality of risk 

associated with variants in immune genes identified in this study is entirely consistent with risk 

associated with TREM2 and PLCG2 variants [60-63]. Indeed, our current data and previous data 

suggest that increased activity (or increased expression) of immune activating proteins will 

decrease risk for AD as will loss of function (or decreased expression) of immune suppressing 
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proteins, and conversely that increased activity (or increased expression) of immune inhibiting 

proteins will confer increased risk for AD as will loss of function (or decreased expression) of 

immune activating proteins. Of course, biology rarely works in completely dichotomous fashion 

and immune signaling pathways are often tightly regulated with the overall impact of a variant 

on a given signaling pathway likely to be contextually dependent. Thus, experimental data will 

be needed to understand how these newly identified variants impact AD-relevant phenotypes and 

innate immune signaling pathways.  

Virtually all genes encode proteins that are pleiotropic. For this reason, virtually every 

deleterious variant that associates with AD will have multiple effects, only some of which play 

an important role in altering risk of AD. In this study, we identify a set of variants in TREM2 and 

in 3 novel immune pathway genes with powerful effects that both increase and decrease risk of 

AD. Concerted studies of these powerful variants should be pursued, as they have the potential to 

identify novel therapeutic targets within the immune system in the same way that study of APOE 

variants and the APP, PSEN1, and PSEN2 mutations that cause early onset familial AD 

identified Aβ, more specifically Aβ42 as a therapeutic target for AD. 

The work described here was undertaken as part of a multi-site study aimed at identifying novel 

therapeutic targets for AD. Because the innate immune system has an important role in AD, our 

role was to search in innate immune genes for novel genetic variants associated with AD. When 

we analyzed the deleterious variants in all 19 co-expression modules identified by Allen et al 

[46], PRS for CENTREM2 was the most significantly associated with AD risk (p =2.5x10-3, Q = 

0.034). Thus, there was a strong functional and statistical rationale for focusing on deleterious 

variants in CENTREM2 genes. This focus enabled us to obtain strong evidence that multiple 

variants in TREM2, ATP8B4, FCGR1A, and LILRB1 show strong association with AD. It is 
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nevertheless important that follow up studies be performed both to confirm the results reported 

here and to narrow the 95% CIs thereby better defining effect size.  

Conclusions: Our study demonstrates the practical utility of combining information on the genes 

in a co-expression network with genetic risk association data in order to perform a functionally 

focused analyses of deleterious variants in the genes of a candidate disease pathway. Using this 

approach, we identify three novel immune pathway genes (ATP8B4, LILRB1, and FCGR1A) 

with a variant that shows highly significant (P < 0.001, Q < 0.01) association with AD. Like 

TREM2.pR47H, each of these variants has a minor allele frequency less than 1% and is a 

deleterious, protein altering variant with a strong effect that increases or decreases 

(LILRB1.pY331X) risk of AD. Additional variants in these genes also alter risk of AD. The 

variants identified here are ideally suited for studies aimed at understanding how the immune 

system may be modulated to alter risk of AD. 
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Tables 

Table 1. PRS analysis of deleterious variants in CENTREM2.  

CPS ExF nV P Q β (SE) 
All All 1334 1.5x10-2 - 0.04 (0.02) 

CPS>20 
All 

182 2.5 x10-3 - 0.15 (0.05) 
Other 1152 1.5 x10-1 - 0.03 (0.02) 

CPS>20 

INDELs 6 6.3 x10-1 0.63 0.16 (0.34) 
non-exonic 5 2.4 x10-1 0.30 -0.60 (0.52) 

unknown 29 8.3 x10-2 0.14 -0.25 (0.15) 

nonsynonymous SNV 136 1.3 x10-3 3.6x10-3 0.18 (0.05) 
stop-gain 6 1.4 x10-3 3.6x10-3 0.70 (0.22) 
nsyn + sg 142 9.2 x10-5 - 0.21 (0.05) 

Other 40 9.8 x10-2 - -0.22 (0.13) 
Using Broad subjects for discovery (N=4174), the PRS for CENTREM2 variants stratified by 

CADD Phred-scaled scores (CPS) and exonic function (ExF) were tested in combined WashU 

and Baylor subjects (N=5572). The PRS for the 182 deleterious variants in CENTREM2 with CPS 

over 20 showed significant association with AD, whereas the remaining 1153 variants showed 

only suggestive association. Stratified analysis of the 182 deleterious variants by ExF showed 

that the association was driven by 136 non-synonymous (nsyn) and 6 stop-gain (sg) variants. The 

number of independent variants (nV; r2<0.2) in each set along with p-value, false discovery rate 

(Q), beta and standard errors (se) for association with AD are shown. 
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Table 2. PRS analysis of variants in individual TREM2, ATP8B4, LILRB1, and FCGR1A 

genes.  

Gene nV P β (SE) 
TREM2 4 9.18x10-6 0.69 (0.15) 
ATP8B4 18 1.86x10-4 0.48 (0.13) 
LILRB1 15 2.44x10-3 0.37 (0.12) 

FCGR1A 3 3.15x10-3 1.14 (0.39) 
Using Broad subjects for discovery (N=4174), the PRS for variants in each gene were tested in 

combined WashU and Baylor subjects (N=5572). The number of independent variants (nV; 

r2<0.2) in each gene along with p-value, beta and standard errors (se) for association with AD are 

shown.  

 

Table 3. PRS analysis of combined variants from TREM2, ATP8B4, LILRB1, and FCGR1A 

genes.  

Genes nV Test Set P β (SE) ΔAUC 

TREM2, ATP8B4, LILRB1, 
FCGR1A 

40 
WashU 5.40x10-8 0.53 (0.10) 0.84% 
Baylor 6.87x10-5 0.48 (0.12) 0.71% 

Washu+Baylor 8.12 x10-12 0.52 (0.08) 0.75% 

ATP8B4, LILRB1, FCGR1A 36 
WashU 1.45 x10-5 0.48 (0.11) 0.68% 
Baylor 2.35 x10-3 0.43 (0.14) 0.58% 

Washu+Baylor 9.89 x10-8 0.46 (0.09) 0.59% 
Using Broad subjects for discovery (N=4174), the PRS for the combined set of 40 variants from 

TREM2, ATP8B4, LILRB1, and FCGR1A or the set of 36 variants from the 3 novel AD genes 

(ATP8B4, LILRB1, and FCGR1A) was tested in WashU (N=3299), Baylor (N=2273), and 

combined WashU plus Baylor subjects (N=5572). The number of independent variants (nV; 

r2<0.2) in each set along with p-value, beta, standard errors (se). Improvement in AUC (ΔAUC) is 

shown for the model that included PRS, sex, APOE ε2, APOE ε 4 and the first three principal 

components as compared to the same model without PRS.   
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Figure Legends 

Figure 1. Analytic flow diagram. 
 

Variants in the genes of the co-expression network containing TREM2 (CENTREM2) were 

analyzed in prioritized, sequential steps. PRS analysis was performed using Broad (N=4174) for 

discovery and the combined WashU plus Baylor (N=5572) as test. The PRS for the 1334 

independent variants (r2 < 0.2) with a minor allele count of 20 or more in CENTREM showed 

significant association with AD.  The PRS for the 182 deleterious variants in CENTREM2 (CADD 

Phred-scaled scores over 20) showed significant association with AD, whereas the remaining 

1152 variants showed only suggestive association. Stratified analysis of the 182 deleterious 

variants by exonic function showed that association was driven by 136 non-synonymous (nsyn) 

and 6 stop-gain (sg) variants. False discovery rates (Q) determined after adjustment for 142 

deleterious stop-gain and non-synonymous variants showed that TREM2.pR47H, 

ATP8B4.pG395S, FCGR1A.pR92X, and LILRB1.Y331X had significant Q-values. The PRS for 

these 4 variants showed significant association with AD, as did the 36 remaining variants in 

TREM2, ATP8B4, FCGR1A, and LILRB1. The PRS for entire set of 40 variants in the 4 genes 

showed highly significant, replicable association (Table 3). After adjustment for all 40 variants 

in TREM2, ATP8B4, FCGR1A, and LILRB1, which had ADSP p-values ranging from 1.3E-08 to 

0.96, 7 variants had significant false discovery rates (Q < 0.05), the four deleterious variants 

identified above and three additional variants. 

Figure 2. Q-Q plots for ADSP WES variants with minor allele counts (MAC) of 20 or more. 

Q-Q plots showing p-values from logistic regression adjusting for appropriate covariates for 

independent variants (r2
≤0.2) with minor allele count 20 or more in the ADSP (N=9746) dataset. 

The solid red line shows the p-value distribution expected on the null hypothesis of no 
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association with AD. A. ADSP p-values for the 1,334 independent variants located in the 228 

genes of CENTREM2 (light blue symbols) and the p-values for all remaining independent variants 

in the ADSP WES dataset (n=85,383; orange symbols) are shown. B. ADSP p-values for the 40 

variants in the top 4 genes (TREM2, ATP8B4, FCGR1A, LILRB1) of CENTREM2 (blue symbols) 

and the p-values for all other variants in CENTREM2 (n=1,294; orange symbols) are shown.   

Figure 3. Forest plot of deleterious non-synonymous and stop-gain variants in CENTREM2.  

Annotated results are shown for the 15 variants with ADSP p-values of 0.05 or less. Using all 

qualifying participants in the ADSP, p-values were obtained for deleterious variants in CENTREM2 

by logistic regression while adjusting for sex, APOE ε2, APOE ε4 and the first 3 principal 

components. After adjustment for the 142 deleterious non-synonymous (nsyn) and stop-gain (sg) 

variants, which had ADSP p-values ranging from 1.3E-08 to 0.99, 4 variants had significant false 

discovery rates (Q< 0.05). 

Figure 4. Forest plot of variants from TREM2, ATP8B4, LILRB1, and FCGR1A genes. 

Annotated results are shown for the 12 variants in TREM2, ATP8B4, FCGR1A, and LILRB1 with 

ADSP P-values of 0.05 or less. Using all qualifying participants in the ADSP, p-values were 

obtained for all variants in the four genes by logistic regression while adjusting for sex, APOE 

ε2, APOE ε4 and the first 3 principal components. After adjustment for all 40 variants in these 4 

genes, which had ADSP P-values ranging from 1.3E-08 to 0.96, 7 variants had significant false 

discovery rates (Q< 0.05).  
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Additional files  

Additional file 1. Sample demographics by AD cases and cognitively normal controls. Total 

number of participants, number and percentage of females, age and standard deviation (sd), and 

the number and percentage of APOE ε4 positives is shown for each subset. File Format: .xlsx 

Additional File 2. Annotated results are shown for the 142 deleterious non-synonymous and 

stop-gain variants in CENTREM2. Using all qualifying participants in the ADSP, p-values were 

obtained for deleterious variants in CENTREM2 by logistic regression while adjusting for sex, 

APOE ε2, APOE ε4 and the first 3 principal components. After adjustment for the 142 variants in 

this polygenic component, which had ADSP p-values ranging from 1.28x10-8 to 0.995, 4 variants 

had significant false discovery rates (Q< 0.05).  File Format: .xlsx 

Additional File 3. Annotated results for all independent variants (r2<0.2) in TREM2, 

ATP8B4, FCGR1A, and LILRB1. Using all qualifying participants in the ADSP, p-values were 

obtained for all variants in the four genes by logistic regression while adjusting for sex, APOE 

ε2, APOE ε4 and the first 3 principal components. After adjustment for all 40 variants in these 4 

genes, which had ADSP p-values ranging from 1.3x10-8 to 0.96, 7 variants had significant false 

discovery rates (Q< 0.05). File Format: .xlsx 
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Variants in CENTREM2
n=1334

p-value=0.015

CADD PHRED≤20
n = 1152

p-value = 0.15

Non-exonic
n = 5

p-value = 2.4E-01

CADD PHRED>20
n = 182

p-value = 2.5E-03

Stop-gain
n = 6

p-value = 1.43E-03

Non-synonymous SNV
n = 136

p-value = 1.26E-03

INDELs
n = 6

p-value = 6.3E-01

Unknown
n = 29

p-value = 8.3e-02

Stop-gain + non-synonymous SNV
n =142

p-value = 9.2E-05

4 variants with FDR < 0.05
Gene rsID AAC ExF CPS MAF P Q OR (CI)

TREM2 rs75932628 R47H nsyn 26.1 0.62% 1.30E-08 1.80E-06 4.80 (2.79, 8.23)
ATP8B4 rs138799625 G395S nsyn 25.0 0.90% 1.80E-05 1.30E-03 2.15 (1.52, 3.06)

FCGR1A rs74315310 R92X sg 27.4 0.69% 2.00E-04 9.40E-03 2.19 (1.45, 3.32)

LILRB1 rs200461258 Y331X sg 35.0 0.14% 6.60E-04 0.02 0.17 (0.06, 0.47)

All variants in TREM2, ATP8B4, FCGR1A & LILRB1
n = 40

p-value = 8.12E-12

All other 36 variants 
p-value = 7.87E-04

Top 4 variants
p-value = 2.86E-11

Gene rsID AAC ExF CPS MAF P Q OR (CI)
TREM2 rs75932628 R47H nsyn 26.1 0.62% 1.28E-08 5.12E-07 4.8 (2.79, 8.23)
ATP8B4 rs138799625 G395S nsyn 25.0 0.90% 1.83E-05 3.65E-04 2.15 (1.52, 3.06)
FCGR1A rs74315310 R92X sg 27.4 0.69% 1.99E-04 2.65E-03 2.20 (1.45, 3.32)
LILRB1 rs200461258 Y331X sg 35.0 0.14% 6.57E-04 6.57E-03 0.17 (0.06, 0.47)
ATP8B4 rs146911077 R1059Q nsyn 14.4 0.33% 1.64E-03 0.01 0.42 (0.24, 0.72)
LILRB1 rs1386879329 P7P syn 3.9 0.25% 5.72E-03 0.04 2.66 (1.33, 5.32)
LILRB1 rs141840935 Y327Y syn 0.1 2.06% 7.72E-03 0.04 1.34 (1.08, 1.67)

7 variants with FDR < 0.05
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Gene

APOE

APOE

TREM2

ATP8B4

FCGR1A

LILRB1

CSF1R

LAT2

C3

RHBDF2

PYGL

TREM2

PTGS1

SLC2A9

NCKAP1L

STAB1

CPVL

rsID

rs429358

rs7412

rs75932628

rs138799625

rs74315310

rs200461258

rs56048668

rs144269935

rs2230210

rs140433374

rs946616

rs142232675

rs5789

rs73225891

rs2270581

rs139838594

rs147771477

AAC

C156R

R202C

R47H

G395S

R92X

Y331X

V32G

I39M

S1619R

A314T

V222I

D87N

L237M

D252H

S352L

R1171C

R464Q

ExF

nsyn

nsyn

nsyn

nsyn

sg

sg

nsyn

nsyn

nsyn

nsyn

nsyn

nsyn

nsyn

nsyn

nsyn

nsyn

nsyn

CPS

16.65

26

26.1

25

27.4

35

24

25.3

22.1

24.1

21.7

21.8

22.7

22.5

21.6

23.5

25.9

MAF

16.4%

7.42%

0.62%

0.90%

0.69%

0.14%

0.65%

1.85%

0.24%

0.13%

6.47%

0.16%

2.74%

2.71%

6.21%

0.35%

0.47%

P

2.9e−186

2.0e−44

1.3e−08

1.8e−05

2.0e−04

6.6e−04

5.8e−03

6.3e−03

0.01

0.01

0.03

0.03

0.03

0.03

0.03

0.05

0.05

Q

1.8e−06

1.3e−03

9.4e−03

0.02

0.15

0.15

0.24

0.24

0.38

0.38

0.38

0.38

0.38

0.45

0.45

OR (CI)

4.52 (4.09, 5.01)

0.36 (0.31, 0.42)

4.8 (2.79, 8.23)

2.15 (1.52, 3.06)

2.19 (1.45, 3.32)

0.17 (0.06, 0.47)

0.58 (0.4, 0.86)

1.38 (1.1, 1.74)

0.44 (0.23, 0.83)

0.32 (0.13, 0.79)

0.87 (0.77, 0.99)

2.64 (1.08, 6.48)

1.23 (1.02, 1.48)

0.82 (0.68, 0.99)

0.87 (0.77, 0.99)

0.59 (0.35, 0.99)

1.59 (1, 2.53)

0.062 0.125 0.250 0.500 1.00 2.00 4.00 8.00

OR
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Gene

APOE

APOE

TREM2

ATP8B4

FCGR1A

LILRB1

ATP8B4

LILRB1

LILRB1

TREM2

ATP8B4

TREM2

LILRB1

ATP8B4

rsID

rs429358

rs7412

rs75932628

rs138799625

rs74315310

rs200461258

rs146911077

rs1386879329

rs141840935

rs143332484

rs72733094

rs142232675

rs272423

rs74012834

AAC

C156R

R202C

R47H

G395S

R92X

Y331X

R1059Q

P7P

Y327Y

R62H

I598I

D87N

S347S

C874R

ExF

nsyn

nsyn

nsyn

nsyn

sg

sg

nsyn

syn

syn

nsyn

syn

nsyn

syn

nsyn

CPS

16.65

26

26.1

25

27.4

35

14.35

3.886

0.104

9.763

0.465

21.8

8.546

MAF

16.4%

7.42%

0.62%

0.90%

0.69%

0.14%

0.33%

0.25%

2.06%

1.14%

1.05%

0.16%

32.52%

0.45%

P

2.9e−186

2.0e−44

1.3e−08

1.8e−05

2.0e−04

6.6e−04

1.6e−03

5.7e−03

7.7e−03

0.01

0.02

0.03

0.05

0.05

Q

5.1e−07

3.7e−04

2.7e−03

6.6e−03

0.01

0.04

0.04

0.05

0.08

0.13

0.16

0.16

OR (CI)

4.52 (4.09, 5.01)

0.36 (0.31, 0.42)

4.8 (2.79, 8.23)

2.15 (1.52, 3.06)

2.19 (1.45, 3.32)

0.17 (0.06, 0.47)

0.42 (0.24, 0.72)

2.66 (1.33, 5.32)

1.34 (1.08, 1.67)

1.48 (1.1, 1.99)

1.44 (1.06, 1.95)

2.64 (1.08, 6.48)

0.94 (0.88, 1)

1.59 (1, 2.52)

0.062 0.125 0.250 0.500 1.00 2.00 4.00 8.00

OR
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