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Key Points 27 

 Genetically predicted higher educational attainment is the strongest protective 28 

factor for both GrimAgeAccel and PhenoAgeAccel, independent of causal 29 

lifestyle and cardiometabolic risk factors. 30 

 Smoking is the leading causal lifestyle risk factor for GrimAgeAccel or 31 

PhenoAgeAccel, followed by alcohol intake and daytime napping. Adiposity 32 

traits are the leading causal cardiometabolic risk factors for GrimAgeAccel and 33 

PhenoAgeAccel, followed by type 2 diabetes, triglycerides, and C-reactive 34 

protein. 35 

 This study provides novel quantitative evidence on modifiable causal risk factors 36 

for accelerated epigenetic ageing, indicating underlying contributors to the ageing 37 

process and promising intervention targets to promote healthy longevity.  38 
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Abstract 39 

Background: GrimAge acceleration (GrimAgeAccel) and PhenoAge acceleration 40 

(PhenoAgeAccel) are DNA methylation-based markers of accelerated biological 41 

ageing, standing out in predicting mortality and age-related cardiometabolic 42 

morbidities. Causal risk factors for GrimAgeAccel and PhenoAgeAccel are unclear. 43 

Objective: To evaluate causal associations of 18 common modifiable socioeconomic, 44 

lifestyle, and cardiometabolic factors with GrimAgeAccel and PhenoAgeAccel. 45 

Methods: We performed two-sample univariable and multivariable Mendelian 46 

randomization (MR), using summary-level data for GrimAgeAccel and 47 

PhenoAgeAccel derived from a genome-wide association study of 34,710 European 48 

participants. We used the inverse-variance weighted method as the main analysis, 49 

supplemented by three sensitivity analyses. 50 

Results: Eleven and eight factors were causally associated with GrimAgeAccel and 51 

PhenoAgeAccel, respectively. Smoking initiation was the strongest risk factor (β 52 

[SE]: 1.299 [0.107] years) for GrimAgeAccel, followed by higher alcohol intake, 53 

higher waist circumference, daytime napping, higher body fat percentage, higher 54 

BMI, higher C-reactive protein, higher triglycerides, childhood obesity, and type 2 55 

diabetes; whereas education was the strongest protective factor (β [SE] per 1-SD 56 

increase in years of schooling: -1.143 [0.121] years). Higher waist circumference (β 57 

[SE]: 0.850 [0.269] years) and education (β [SE]: -0.718 [0.151] years) were the 58 

leading causal risk and protective factors for PhenoAgeAccel, respectively. Sensitivity 59 

analyses strengthened the robustness of these causal associations, and the 60 

multivariable MR analyses demonstrated independent direct effects of the strongest 61 

risk and protective factors on GrimAgeAccel and PhenoAgeAccel, respectively. 62 

Conclusion: Our findings provide novel quantitative evidence on modifiable causal 63 
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risk factors for epigenetic ageing, and hint at underlying contributors and intervention 64 

targets to the ageing process. 65 

 66 

Keywords: Epigenetic ageing; Education; Lifestyle behaviors; Cardiometabolic 67 

traits; Mendelian randomization.  68 
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Introduction 69 

Ageing involves the gradual accumulation of a decline in multiple biological 70 

functions over time, leading to increased risks of developing age-related diseases and 71 

mortality [1,2]. Although chronological ageing is uniform and unchangeable, the rate 72 

of biological ageing is variable and modifiable depending on individual genetics, 73 

environmental exposures, and health-related behaviors [3]. Of several potential types 74 

of biological age predictors (e.g., epigenetic clock, leukocyte telomere length, and 75 

transcriptomic predictors), the epigenetic clock that composed of DNA methylation at 76 

multiple cytosine-phosphate-guanine (CpG) sites is currently the best one, as it 77 

correlates well with age and predicts mortality across populations [4]. The epigenetic 78 

age acceleration is the difference between chronological age and epigenetic age, and 79 

represents accelerated biological ageing [5]. The second-generation epigenetic age 80 

acceleration indicators, namely GrimAge acceleration (GrimAgeAccel) and 81 

PhenoAge acceleration (PhenoAgeAccel), have been evolved to incorporate ageing-82 

related traits, and stand out in terms of predicting mortality and age-related 83 

cardiometabolic morbidities [6-9]. 84 

Limited observational evidence has suggested that certain socioeconomic, 85 

lifestyle behaviors, and cardiometabolic traits may be related to GrimAgeAccel and 86 

PhenoAgeAccel [6,7,10,11]. Whether and to what extent modifiable risk factors 87 

influence GrimAgeAccel and PhenoAgeAccel, if causally established, could shed 88 

light on potential contributors to the ageing process and elucidate promising targets 89 

for preventing age-related diseases and improving healthy longevity [12,13]. Thus far, 90 

such causal evidence is scarce. 91 

To fill this knowledge gap, we applied Mendelian randomization (MR) to 92 

evaluate the causal associations of 18 common modifiable socioeconomic, lifestyle 93 
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and cardiometabolic factors with GrimAgeAccel and PhenoAgeAccel. The MR 94 

method uses genetic variants as instrumental variables (IVs) to infer causality among 95 

correlated traits. Since genetic variants are randomly allocated at conception, the MR 96 

study is less susceptible to confounding and reverse causality than conventional 97 

observational studies [14]. We conducted both univariable and multivariable MR 98 

analyses to discern if modifiable factors have independent direct causal effects on 99 

GrimAgeAccel and PhenoAgeAccel. 100 

 101 

Methods 102 

Study design 103 

This MR study design is presented in Figure 1. We performed two-sample 104 

univariable and multivariable MR strictly following the STROBE-MR guidelines 105 

(Supplementary Table 1) [15]. To obtain unbiased estimates of the causal effects, 106 

the MR analysis should adhere to three fundamental assumptions [16]: first, the IVs 107 

are truly associated with the exposures; second, the IVs are independent of 108 

confounders of the relationship between exposures and outcomes (GrimAgeAccel and 109 

PhenoAgeAccel); third, the IVs influence the outcomes only through the exposures, 110 

but not any direct or indirect pathways. All data used in this MR study are publicly 111 

available. Ethical approval and informed consent had been obtained in all original 112 

studies. 113 

 114 

Selection rationale and data sources of genetic instruments 115 

We selected 18 common modifiable factors, including educational attainment, 116 

lifestyle behaviors (smoking initiation, alcohol intake, coffee consumption, daytime 117 

napping, sleep duration, and moderate-to vigorous physical activity [MVPA]), and 118 
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cardiometabolic traits (body mass index [BMI], waist circumference, body fat 119 

percentage [BF%], childhood obesity, type 2 diabetes, low-density lipoprotein [LDL] 120 

cholesterol, high-density lipoprotein [HDL] cholesterol, triglycerides, systolic blood 121 

pressure [SBP], diastolic blood pressure [DBP], and C-reactive protein [CRP]). 122 

Definitions of the 18 modifiable factors are shown in Supplementary Table 2. 123 

We extracted genetic variants for each of the modifiable factors from the largest 124 

available genome-wide association studies (GWASs) of European ancestry [17-29], 125 

ensuring minimum sample overlap with the genetic variants for GrimAgeAccel and 126 

PhenoAgeAccel (Supplementary Table 3). We included single nucleotide 127 

polymorphisms (SNPs) robustly associated with the 18 modifiable factors at the 128 

genome-wide significance (P <5×10−8). To select independent genetic variants, a 129 

stringent condition (linkage disequilibrium threshold of r2 <0.01) was set to minimize 130 

the influence of linkage disequilibrium which may bias the results of randomized 131 

allele allocation. Where SNPs for the exposures were not available in the GWAS 132 

summary statistics of GrimAgeAccel or PhenoAgeAccel, we used proxies of SNPs 133 

with r2 >0.8 as substitutes, by using the LDproxy search on the online platform 134 

LDlink (https://ldlink.nci.nih.gov/) [30]. 135 

 136 

Data source for epigenetic age acceleration 137 

The genetic associations with GrimAgeAccel and PhenoAgeAccel were extracted 138 

from a recent GWAS meta-analysis (summary statistics available at 139 

https://datashare.is.ed.ac.uk/handle/10283/3645), which included 34,710 European 140 

participants from 28 cohorts [31]. GrimAgeAccel and PhenoAgeAccel are two-141 

generation epigenetic age acceleration indicators, expressing the biological ageing 142 

rate in years, of which GrimAgeAccel is more strongly associated with mortality than 143 
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PhenoAgeAccel [11]. Detailed definitions of GrimAgeAccel and PhenoAgeAccel and 144 

data preparation in GWAS are shown in Supplementary Table 2. 145 

 146 

Statistical analyses 147 

In the main analysis, we used the inverse-variance weighted (IVW) method to 148 

determine MR causal estimates (β coefficients with standard errors [SEs]) for 149 

associations of each modifiable factor with GrimAgeAccel and PhenoAgeAccel. The 150 

IVW combined the Wald ratio estimates of every single SNP in the set of IVs into one 151 

causal estimate using the random-effects meta-analysis approach [32]. To evaluate the 152 

robustness of the IVW estimates under different assumptions and to detect possible 153 

pleiotropy, we performed three sensitivity analyses, including the MR weighted 154 

median, the MR Egger, and the MR pleiotropy residual sum and outlier (MR-155 

PRESSO) methods. The weighted median method selected the median MR estimate 156 

as the causal estimate, and provided a consistent causal estimate if over 50% of the 157 

weight in the analysis was derived from valid IVs [33]. The MR Egger method which 158 

allowed the intercept to be freely estimated as an indicator of pleiotropy was used to 159 

identify and adjust for the potential directional pleiotropic bias, but has limited 160 

precision [34]. The MR-PRESSO method was applied to detect and correct for any 161 

outlier SNP reflecting likely horizontal pleiotropic biases for MR causal estimates 162 

[35]. We evaluated the heterogeneity for the IVW estimates using the Cochran’s Q 163 

test [36], and identified the horizontal pleiotropy based on the p-value for the intercept 164 

in the MR-Egger model [34]. A false discovery rate (FDR) method was used to 165 

correct results for multiple testing, and FDR q-values were provided. In this study, 166 

strong causal evidence was defined as an association supported by the main analysis 167 

(FDR q-value <0.05) and at least one sensitivity analysis. Suggestive causal evidence 168 
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was defined as a suggest association with P <0.05 and FDR q value ≥0.05 in the main 169 

analysis. Null causal evidence was defined as no statistically significant association 170 

revealed from the main analysis (P ≥0.05). 171 

We further conducted multivariable MR (MVMR) analyses to assess whether the 172 

causal effects of the strongest protective factor and the strongest risk factor on 173 

GrimAgeAccel and PhenoAgeAccel were independent of other exposure factors [37]. 174 

Taking into account the effect size and significance of causal associations, we 175 

selected exposure factors with β coefficients >0.5 and P <0.05 in the main analysis as 176 

covariates in the adjustment models. 177 

The two-sample MR analyses were conducted with the R packages 178 

‘TwoSampleMR’ and ‘MRPRESSO’ in R software (version 4.0.3). FDR q-values were 179 

estimated using the R package ‘fdrtool’. 180 

 181 

Results 182 

MR results for associations between 18 modifiable factors and GrimAgeAccel 183 

Ten out of the 18 risk factors showed strong associations with increased 184 

GrimAgeAccel after FDR adjustment for multiple comparisons (Table 1). Smoking 185 

initiation was the strongest risk factor (β [SE]: 1.299 [0.107] years) for 186 

GrimAgeAccel, followed by higher alcohol intake (β [SE] per 1-SD increase: 0.899 187 

[0.361] years), higher waist circumference (β [SE] per 1-SD increase: 0.815 [0.184] 188 

years), daytime napping (β [SE]: 0.805 [0.355] years), higher BF% (β [SE] per 1-SD 189 

increase: 0.748 [0.120] years), higher BMI (β [SE] per 1-SD increase: 0.592 [0.079] 190 

years), higher CRP (β [SE] per 1-SD increase: 0.345 [0.073] years), higher 191 

triglycerides (β [SE] per 1-SD increase: 0.249 [0.091] years), childhood obesity (β 192 

[SE]: 0.200 [0.075] years), and type 2 diabetes (β [SE]: 0.095 [0.041] years; Figure 193 
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2a). By contrast, educational attainment in years of schooling was the only one 194 

protective factor associated with decreased GrimAgeAccel (β [SE] per 1-SD increase: 195 

-1.143 [0.121] years). There was little evidence to support a causal association of 196 

other modifiable factors with GrimAgeAccel. 197 

Associations of the above 11 modifiable factors with GrimAgeAccel were robust 198 

across sensitivity analyses with consistent effect directions and P <0.05 in at least one 199 

sensitivity analysis. The MR-Egger intercept tests indicated potential pleiotropy for 200 

CRP (Pintercept <0.05; Supplementary Table 4). Cochran’s Q-test showed possible 201 

heterogeneity for educational attainment, alcohol intake, BMI, BF%, type 2 diabetes, 202 

LDL cholesterol, HDL cholesterol, and CRP (Ph <0.05; Supplementary Table 4). 203 

However, with the exclusion of outlying SNPs, the MR-PRESSO analysis showed 204 

consistent results with the IVW analysis (Table 1). 205 

 206 

MR results for associations between 18 modifiable factors and PhenoAgeAccel 207 

Eight modifiable factors showed strong associations with PhenoAgeAccel after FDR 208 

adjustment for multiple comparisons (Table 2). Higher waist circumference was the 209 

strongest risk factor (β [SE] per 1-SD increase: 0.850 [0.269] years) for 210 

PhenoAgeAccel, followed by higher BF% (β [SE] per 1-SD increase: 0.711 [0.152] 211 

years), higher BMI (β [SE] per 1-SD increase: 0.586 [0.102] years), smoking 212 

initiation (β [SE]: 0.519 [0.142] years), higher CRP (β [SE] per 1-SD increase: 0.349 213 

[0.095] years), childhood obesity (β [SE]: 0.229 [0.095] years), and type 2 diabetes (β 214 

[SE]: 0.125 [0.051] years). Whereas the genetically predicted higher educational 215 

attainment in years of schooling was associated with decreased PhenoAgeAccel (β 216 

[SE] per 1-SD increase: -0.718 [0.151] years; Figure 2b). Suggestive causality was 217 

identified for the association between genetically predicted higher DBP and increased 218 
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PhenoAgeAccel (β [SE] per 1-mmHg increase: 0.049 [0.024] years). No significant 219 

association was observed with PhenoAgeAccel for the other modifiable factors. 220 

Associations for the above eight modifiable factors were robust in sensitivity 221 

analyses with consistent effect directions and P <0.05 in at least one sensitivity 222 

analysis. There was no evidence of pleiotropy for these risk factors except for CRP 223 

(Pintercept <0.05; Supplementary Table 5). Potential heterogeneity was observed for 224 

educational attainment, smoking initiation, BMI, waist circumference, BF%, type 2 225 

diabetes, and CRP (Ph<0.05). One to four outliers were detected in the MR-PRESSO 226 

analyses; however, the associations remained consistent after removal of these 227 

outliers (Table 2). For SBP, with excluding the outlying SNP rs62523863, the MR-228 

PRESSO analysis revealed a potentially positive association between genetically 229 

predicted higher SBP and PhenoAgeAccel (β [SE] per 1-mmHg increase: 0.038 230 

[0.016] years). 231 

 232 

MVMR results for associations of the strongest protective and risk factors with 233 

GrimAgeAccel and PhenoAgeAccel 234 

In MVMR analyses, the association between educational attainment (the strongest 235 

protective factor) and GrimAgeAccel remained significant with adjustment for 236 

smoking initiation, alcohol intake, waist circumference, daytime napping, BF%, or 237 

BMI (Figure 3a). Likewise, the significant association between smoking initiation 238 

(the strongest risk factor) and GrimAgeAccel persisted after adjustment for education, 239 

alcohol intake, waist circumference, daytime napping, BF%, or BMI. All covariates in 240 

MVMR analyses were selected based on their considerable effects on GrimAgeAccel 241 

in terms of size (β coefficients >0.5) and significance (P <0.05 in the main analysis). 242 
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The associations of education (the strongest protective factor) and waist 243 

circumference (the strongest risk factor) with PhenoAgeAccel remained significant 244 

with adjustment for waist circumference, BF%, BMI, or smoking initiation, which 245 

had considerable causal effects on PhenoAgeAccel (β coefficients >0.5; Figure 3b). 246 

 247 

Discussion 248 

This MR study for the first time delineated potential causal relationships of 18 249 

common modifiable factors with GrimAgeAccel and PhenoAgeAccel, the robust 250 

second-generation epigenetic age acceleration indicators. We identified strong 251 

evidence for 11 and eight factors associated with GrimAgeAccel and PhenoAgeAccel, 252 

respectively. Smoking initiation exhibited the greatest effect on increased 253 

GrimAgeAccel (1.299 years), followed by higher alcohol intake, higher waist 254 

circumference, daytime napping, higher BF%, higher BMI, higher CRP, higher 255 

triglycerides, childhood obesity, and type 2 diabetes; whereas educational attainment 256 

showed the greatest effect on decreased GrimAgeAccel (-1.143 years per 1-SD 257 

increase in years of schooling). Higher waist circumference and educational 258 

attainment were the leading causal risk and protective factors associated with 259 

PhenoAgeAccel, respectively; BF%, BMI, smoking initiation, CRP, childhood 260 

obesity, and type 2 diabetes were also associated with increased PhenoAgeAccel. 261 

Multiple sensitivity analyses further strengthened the robustness of these causal 262 

relationships, and the MVMR analyses demonstrated the independent direct effects of 263 

the strongest risk and protective factors on GrimAgeAccel and PhenoAgeAccel, 264 

respectively. Suggestive causality was identified for the association between higher 265 

DBP and increased PhenoAgeAccel. 266 
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In this study, educational attainment was the major protective factor for both 267 

GrimAgeAccel and PhenoAgeAccel, and this causal effect was largely independent of 268 

other causal factors, such as smoking and adiposity-related traits. Educational 269 

attainment is a strong proxy for socioeconomic status and a more upstream 270 

determinant of health, with broad implications for a person’s life-long lifestyle 271 

behaviors and health-promoting resources [38]. A recent study using UK Biobank 272 

data has documented that each 1-year increase in genetically determined educational 273 

attainment was associated with equivalently 4.2 years of age-related increases in 274 

telomere length [39]. Telomere length and epigenetic age acceleration metrics (e.g., 275 

GrimAgeAccel and PhenoAgeAccel) point towards distinct mechanisms of the ageing 276 

process that are marked by telomeres and the DNA methylation-based epigenetic 277 

clocks, both of which are independently associated with chronological age and 278 

mortality risk [40]. Our findings, together with those of the UK Biobank, highlight the 279 

important impact of educational attainment on biological ageing rates from two 280 

different aspects of the ageing process. Therefore, public health strategies aimed at 281 

reducing educational inequalities and improving educational attainment may slow the 282 

biological ageing rate and help reduce age-related health burdens. 283 

This MR study identified several common lifestyle behaviors, including smoking 284 

initiation, alcohol intake, and daytime napping, causally associated with increased 285 

GrimAgeAccel or PhenoAgeAccel (smoking initiation only), which were consistent 286 

with previous evidence from observational studies [6,7]. Smoking methylation proxy 287 

is a component of the GrimAge clock [7], thus it is not surprising that smoking 288 

initiation exhibited a large effect on increased GrimAgeAccel in this study, and the 289 

MVMR analysis further confirmed that the effect of smoking on GrimAgeAccel was 290 

independent of other causal lifestyle behaviors and adiposity-related traits. Similarly, 291 
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genetically determined smoking has been associated with shorter telomere length in 292 

the UK Biobank [41], and evidence from the Danish Health Interview Survey 293 

suggested that the life expectancy of a heavy smoker was a little more than seven 294 

years shorter than that of a never smoker [42]. Our study also provided strong MR 295 

evidence that genetically predicted higher alcohol intake was associated with 296 

increased GrimAgeAccel. A study composed of the Hannum cohort and Family and 297 

Community Health Studies cohort found that the relationship between alcohol use and 298 

the first-generation epigenetic clocks seemed to be nonlinear [42]. However, given the 299 

dose-dependent relationship of alcohol intake with all-cause mortality and cancers 300 

[43], our findings suggest that reducing alcohol intake is necessary to decrease 301 

GrimAgeAccel and retard the overall health loss. Previous observational studies also 302 

reported positive or inverse correlations of other lifestyle behaviors such as MVPA, 303 

coffee, and sleep duration with GrimAgeAccel, PhenoAgeAccel, or mortality 304 

[11,44,45]. Nevertheless, in this study, there was little evidence supporting these 305 

associations were causal. The discrepancy between our findings and previous 306 

observations may result from the potential confounding or reverse causation in 307 

conventional observational studies. Moreover, the non-linear association patterns, as 308 

in the case of sleep duration and mortality, might also partially explain the 309 

inconsistent results [46]. Therefore, our null findings should be cautiously interpreted. 310 

Interestingly, of all cardiometabolic traits (i.e., adiposity traits, type 2 diabetes, 311 

triglycerides, and CRP) which causally increased GrimAgeAccel or PhenoAgeAccel, 312 

adiposity traits were the most dominant traits. Emerging observational studies have 313 

pronounced the positive associations of BMI with GrimAgeAccel and 314 

PhenoAgeAccel [11], and a meta-analysis of 87 observational studies showed each 5-315 

kg/m2 higher BMI corresponded to about 1 year of age-related decrease in telomere 316 
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length [46]. Our study further provided strong evidence for causal associations of 317 

various adiposity phenotypes, including waist circumference, BF%, BMI, and 318 

childhood obesity, with increased GrimAgeAccel and PhenoAgeAccel. In this study, 319 

type 2 diabetes, triglycerides, and CRP showed strong but modest effects (β 320 

coefficients ≤0.5) on GrimAgeAccel or PhenoAgeAccel, which was consistent with 321 

the findings of the UK Biobank study on telomere length [39]. 322 

This MR study yields new insights into modifiable causal factors, including 323 

education, lifestyle behaviors, and cardiometabolic traits, associated with accelerating 324 

or decelerating epigenetic ageing. This study brings us one step closer to 325 

understanding the potential contributors to the ageing process and provides promising 326 

intervention targets for healthy ageing. Given the enormous burden induced by age-327 

related morbidity and mortality, strategies to reduce educational inequalities, promote 328 

healthy lifestyles primarily through reducing smoking, alcohol intake, and daytime 329 

napping, and improve cardiometabolic traits, specifically adiposity, type 2 diabetes, 330 

triglycerides, and CRP, to slow biological ageing rate are imminent. 331 

In this study, we included independent and genome-wide significant SNPs as 332 

instruments for each of the modifiable factors to ensure the first MR assumption was 333 

fulfilled. Moreover, we applied strict criteria strengthened by the FDR-corrected 334 

significance and the cross-validations by main and sensitivity analyses to draw robust 335 

causal conclusions. However, several limitations merited consideration. First, we 336 

found potential pleiotropy from the MR-Egger intercept test for CRP. However, we 337 

conducted MR-PRESSO analysis, and the association remained consistent after 338 

removal of outlying SNPs. Second, we could not rule out the possibility that the 339 

associations of certain modifiable risk factors such as alcohol intake and sleep 340 

duration with GrimAgeAccel or PhenoAgeAccel may be non-linear. Future studies 341 
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with individual-level data are warranted to confirm the linear or non-linear 342 

relationships. Third, to ensure the consistency of genetic background, this MR study 343 

was performed only in European-ancestry participants, thus the generalization of our 344 

results to other ethnic groups should be cautious. 345 

 346 

Conclusions 347 

This MR study provided novel quantitative evidence on modifiable causal 348 

socioeconomic, lifestyle, and cardiometabolic factors for accelerated epigenetic 349 

ageing. Our findings shed light on the underlying contributors to the biological ageing 350 

process and point toward promising intervention targets to slow the biological ageing 351 

rate and promote healthy longevity.  352 
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Table 1. MR results of the associations between 18 modifiable factors and GrimAgeAccel 

Modifiable factor 

No. of 

SNP 

Main analysis Sensitivity analyses 

IVW Weighted median MR-Egger MR-PRESSO 

β (SE) P value q value β (SE) P value q value β (SE) P value q value 

No. of 

outlier β (SE) P value q value 

Socioeconomic factor               

Educational attainment 751 -1.143 (0.121) 3.31E-21 2.98E-20 -1.129 (0.172) 5.47E-11 4.92E-10 -0.829 (0.452) 0.067  0.277 4 -1.116 (0.116) 6.54E-21 5.89E-20 

Lifestyle behavior               

Smoking initiation 299 1.299 (0.107) 4.90E-34 8.82E-33 1.257 (0.157) 1.42E-15 2.56E-14 1.321 (0.446) 0.003  0.027 0 1.276 (0.103) 7.63E-29 1.37E-27 

Alcohol intake 80 0.899 (0.361) 0.013  0.026  0.380 (0.567) 0.502  0.602 0.481 (0.738) 0.516  0.771 0 0.967 (0.357) 0.008  0.018 

Coffee consumption 12 0.003 (0.005) 0.589  0.624  -0.003 (0.006) 0.615 0.692 -0.008 (0.010) 0.464 0.771 0 0.003 (0.005) 0.600  0.635 

Sleep 
              

Daytime napping 115 0.805 (0.355) 0.023  0.038  0.524 (0.514) 0.308  0.449 0.411 (1.235) 0.740  0.833 0 0.813 (0.346) 0.020  0.033 

Sleep duration 77 -0.301 (0.266) 0.257  0.356  -0.403 (0.400) 0.313  0.449 -0.077 (1.017) 0.940  0.940 0 -0.275 (0.261) 0.294  0.378 

MVPA 6 -0.186 (0.903) 0.837  0.837  -0.036 (1.198) 0.976  0.976 -9.279 (5.557) 0.170  0.510 0 -0.186 (0.763) 0.817  0.817 

Cardiometabolic trait               

Adiposity 
              

BMI 941 0.592 (0.079) 9.16E-14 5.50E-13 0.490 (0.124) 7.92E-05 3.56E-04 0.790 (0.231) 0.001  0.018 2 0.595 (0.078) 6.30E-14 3.78E-13 

Waist circumference 44 0.815 (0.184) 9.26E-06 2.78E-05 0.776 (0.272) 0.004 0.014 0.913 (0.504) 0.077 0.277 0 0.815 (0.184) 6.31E-05 1.89E-04 

BF% 641 0.748 (0.120) 4.12E-10 1.85E-09 0.740 (0.182) 4.87E-05 2.92E-04 0.843 (0.400) 0.036  0.216 3 0.796 (0.115) 1.19E-11 5.36E-11 

Childhood obesity 5 0.200 (0.075) 0.007  0.016  0.142 (0.098) 0.146  0.292 0.789 (0.554) 0.249  0.560 0 0.204 (0.057) 0.016  0.029 

Type 2 diabetes 232 0.095 (0.041) 0.020  0.036  0.084 (0.071) 0.236  0.425 0.043 (0.092) 0.644  0.773 0 0.100 (0.040) 0.013  0.026 

Lipids 
              

LDL cholesterol 145 -0.094 (0.096) 0.327 0.392  -0.064 (0.163) 0.695 0.736 0.016 (0.142) 0.908 0.940 1 -0.069 (0.094) 0.463 0.542 

HDL cholesterol 223 -0.181 (0.095) 0.056 0.084  -0.267 (0.138) 0.053 0.136 -0.078 (0.162) 0.632 0.773 2 -0.175 (0.090) 0.054 0.081 

Triglycerides 173 0.249 (0.091) 0.006 0.015  0.239 (0.144) 0.096 0.216 0.152 (0.152) 0.319 0.638 0 0.254 (0.091) 0.006  0.015 

Blood pressure 
              

SBP 222 0.013 (0.012) 0.279  0.359  0.015 (0.018) 0.421  0.541 0.029 (0.049) 0.557  0.771 0 0.013 (0.012) 0.282  0.378 

DBP 264 0.011 (0.019) 0.565  0.624  0.027 (0.027) 0.324  0.449 0.083 (0.066) 0.213  0.548 0 0.013 (0.018) 0.482  0.542 

CRP 299 0.345 (0.073) 2.31E-06 8.32E-06 0.245 (0.107) 0.022  0.066 0.060 (0.100) 0.553  0.771 1 0.348 (0.071) 1.64E-06 5.90E-06 

GrimAgeAccel represents epigenetic-age acceleration obtained using the GrimAge clock. The q value represents the false discovery rate (FDR)‐adjusted P value. β represents the associations with GrimAgeAccel of 

respectively: 1-SD increase in years of educational attainment; Ever smoked regularly compared to never smoked; 1-SD increase in log-transformed alcoholic drinks per week; 1%-change in coffee consumption; 1-unit 

increase in napping category (never, sometimes, usually); 1-hour/day increase in sleep duration; 1-SD increase in MET-minutes/week of MVPA; 1-SD increase in BMI; 1-SD increase in waist circumference; 1-SD 

increase in BF%; 1-unit increase in log-transformed odds of childhood obesity; 1-unit increase in log-transformed odds of type 2 diabetes; 1-SD increase in LDL cholesterol; 1-SD increase in HDL cholesterol; 1-SD 

increase in triglycerides; 1-mmHg increase in SBP; 1-mmHg increase in DBP; 1-SD increase in serum CRP levels. 

Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; HDL=high-density lipoprotein; IVW=Inverse variance weighted; LDL=low-density 

lipoprotein; MVPA=moderate-to vigorous physical activity; MR=Mendelian randomization; MR-PRESSO=Mendelian randomization pleiotropy residual sum and outlier; No=number; SBP=systolic blood pressure; 

SD=standard deviation; SNP=single nucleotide polymorphism.  
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Table 2. MR results of the associations between 18 modifiable factors and PhenoAgeAccel 

Modifiable factor 

No. of 

SNP 

Main analysis Sensitivity analyses 

IVW Weighted median MR-Egger MR-PRESSO 

β (SE) P value q value β (SE) P value q value β (SE) P value q value 

No. of 

outlier β (SE) P value q value 

Socioeconomic factor               

Educational attainment 751 -0.718 (0.151) 1.83E-06 1.65E-05 -0.633 (0.225) 0.005  0.030  -0.361 (0.565) 0.523  0.930  3  -0.689 (0.145) 2.52E-06 2.27E-05 

Lifestyle behavior               

Smoking initiation 299 0.519 (0.142) 2.43E-04 0.001  0.404 (0.205) 0.049  0.221  1.222 (0.589) 0.039  0.240  1  0.545 (0.135) 7.20E-05 3.24E-04 

Alcohol intake 80 0.669 (0.441) 0.130  0.213  1.134 (0.656) 0.084  0.252  1.693 (0.923) 0.070  0.252  0  0.737 (0.432) 0.092  0.151  

Coffee consumption 12 0.004 (0.008) 0.600  0.735  0.002 (0.007) 0.773  0.991  -0.003 (0.015) 0.861  0.930  0 0.004 (0.008) 0.610  0.705  

Sleep 
              

Daytime napping 115 0.115 (0.500) 0.818  0.818  0.014 (0.665) 0.984  0.991  0.152 (1.742) 0.931  0.931  0  0.083 (0.488) 0.866  0.866  

Sleep duration 77 -0.472 (0.357) 0.187  0.281  -0.526 (0.462) 0.255  0.417  2.771 (1.324) 0.040  0.240  0  -0.319 (0.357) 0.375  0.519  

MVPA 6 0.368 (1.138) 0.747  0.791  0.262 (1.347) 0.846  0.991  -2.565 (6.947) 0.731  0.930  0  0.368 (0.649) 0.596  0.705  

Cardiometabolic trait               

Adiposity 
              

BMI 941 0.586 (0.102) 1.08E-08 1.94E-07 0.680 (0.170) 6.33E-05 0.001  0.510 (0.298) 0.087  0.261  4  0.605 (0.099) 1.53E-09 2.75E-08 

Waist circumference 44 0.850 (0.269) 0.002  0.006  0.632 (0.339) 0.062  0.223  0.739 (0.740) 0.324  0.704  1 0.771 (0.249) 0.003  0.009  

BF% 641 0.711 (0.152) 2.88E-06 1.73E-05 0.734 (0.227) 0.001  0.009  1.666 (0.509) 0.001  0.018  4  0.664 (0.145) 5.75E-06 3.45E-05 

Childhood obesity 5 0.229 (0.095) 0.016  0.036  0.154 (0.123) 0.211  0.380  0.140 (0.724) 0.859  0.930  0  0.223 (0.071) 0.025  0.050  

Type 2 diabetes 232 0.125 (0.051) 0.014  0.036  0.102 (0.080) 0.205  0.380  0.056 (0.116) 0.628  0.930  0  0.120 (0.049) 0.016  0.036  

Lipids 
              

LDL cholesterol 145 0.055 (0.123) 0.653  0.735  -0.002 (0.174) 0.991  0.991  0.169 (0.181) 0.352  0.704  1  0.059 (0.123) 0.633  0.705  

HDL cholesterol 223 -0.127 (0.109) 0.243  0.336  0.068 (0.166) 0.684  0.947  0.103 (0.187) 0.583  0.930  0  -0.121 (0.109) 0.267  0.401  

Triglycerides 173 -0.058 (0.121) 0.635  0.735  0.009 (0.196) 0.964  0.991  -0.202 (0.203) 0.320  0.704  0  -0.052 (0.121) 0.666  0.705  

Blood pressure 
              

SBP 222 0.032 (0.016) 0.053  0.095  0.033 (0.023) 0.149  0.338  -0.013 (0.065) 0.840  0.930  1  0.038 (0.016) 0.015  0.036  

DBP 264 0.049 (0.024) 0.037  0.074  0.048 (0.034) 0.150  0.338  0.161 (0.084) 0.055  0.248  0  0.042 (0.023) 0.069  0.124  

CRP 298 0.349 (0.095) 2.49E-04 0.001  0.061 (0.150) 0.684  0.947  0.020 (0.132) 0.878  0.930  1  0.362 (0.093) 1.16E-04 4.18E-04 

PhenoAgeAccel represents epigenetic-age acceleration obtained using the PhenoAge clock; The q value represents the false discovery rate (FDR)‐adjusted P value. β represents the associations with PhenoAgeAccel of 

respectively: 1-SD increase in years of educational attainment; Ever smoked regularly compared to never smoked; 1-SD increase in log-transformed alcoholic drinks per week; 1%-change in coffee consumption; 1-unit 

increase in napping category (never, sometimes, usually); 1-hour/day increase in sleep duration; 1-SD increase in MET-minutes/week of MVPA; 1-SD increase in BMI; 1-SD increase in waist circumference; 1-SD 

increase in BF%; 1-unit increase in log-transformed odds of childhood obesity; 1-unit increase in log-transformed odds of type 2 diabetes; 1-SD increase in LDL cholesterol; 1-SD increase in HDL cholesterol; 1-SD 

increase in triglycerides; 1-mmHg increase in SBP; 1-mmHg increase in DBP; 1-SD increase in serum CRP levels. 

Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; HDL=high-density lipoprotein; IVW=Inverse variance weighted; LDL=low-density 

lipoprotein; MVPA=moderate-to vigorous physical activity; MR=Mendelian randomization; MR-PRESSO=Mendelian randomization pleiotropy residual sum and outlier; No=number; SBP=systolic blood pressure; 

SD=standard deviation; SNP=single nucleotide polymorphism
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Figure 1. Study design and assumptions of the MR analysis 

Assumption 1 indicates that the genetic variants proposed as instrumental variables should be robustly associated with the exposures; assumption 

2 indicates that the used instrumental variables should not be associated with potential confounders of the relationship between exposures and 

outcomes; and assumption 3 indicates that the selected instrumental variables should influence the outcomes only through the exposures, not via 

alternative pathways. 

Abbreviations: GrimAgeAccel=epigenetic-age acceleration obtained using the GrimAge clock; HDL=high-density lipoprotein; LDL=low-

density lipoprotein; MR=mendelian randomization; PhenoAgeAccel=epigenetic-age acceleration obtained using the PhenoAge clock; 

PRESSO=pleiotropy residual sum and outlier. 
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Figure 2. Overview of the findings on associations of 18 modifiable factors with GrimAgeAccel and PhenoAgeAccel 

a. Causal associations between 18 modifiable factors and GrimAgeAccel; b. Causal associations between 18 modifiable factors and 

PhenoAgeAccel. 

GrimAgeAccel represents epigenetic-age acceleration obtained using the GrimAge clock; PhenoAgeAccel represents epigenetic-age acceleration 

obtained using the PhenoAge clock; β represents the effect of each modifiable factor on epigenetic-age acceleration. Red box indicates a strong 

association with p value <0.05 and FDR q value <0.05. Blue box indicates a suggestive association with p value <0.05 and FDR q value ≥0.05. 

Grey box indicates null association with p value ≥0.05. The IVW method was used for the main analysis. Sensitivity analyses included the MR-

PRESSO, the MR-WM, and the MR-Egger methods.  

Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; HDL=high-density 

lipoprotein; IVW=inverse-variance weighted; LDL=low-density lipoprotein; MR=mendelian randomization; MVPA=moderate to vigorous 

physical activity; PRESSO=pleiotropy residual sum and outlier; SBP=systolic blood pressure; SD=standard deviation; WM=weighted median. 
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Figure 3. Multivariable MR assessing the effects of the strongest protective factor 

and risk factor on GrimAgeAccel and PhenoAgeAccel 

a. Effect of the strongest protective factor and risk factor on GrimAgeAccel; b. Effect 

of the strongest protective factor and risk factor on PhenoAgeAccel. 

Causal estimates are β (95% CI) in years. Exposure factors with β coefficients >0.5 

and P <0.05 in the main analysis as shown in Figure 2 were selected as covariates in 

the adjustment models.  

Abbreviations: BF%=body fat percentage; BMI=body mass index; CI=confidence 

intervals; MR=mendelian randomization. 
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