- 1 Title:
- 2 Biomechanical Risk Factors for Anterior Cruciate Ligament Injury in Young Female
- 3 Basketball Players: A pilot Study
- 4
- 5 Abstract:
- 6 Objectives: This study was aimed to reveal the differences in knee valgus angle at landing as a
- 7 static indicator and wobbling movement of the knee during landing as a dynamic indicator
- 8 between ACL injury and uninjured athletes.
- 9 Methods: This study was case-control study. There were 6 female basketball players with
- 10 ACL injuries and 38 female basketball players without them, whose knee kinematics were
- 11 measured using 2-dimensional video cameras during single-leg jump landings. The task was
- 12 performed from 30cm-box. Knee kinematics and wobbling of the knee which was calculated
- 13 by relative frontal motion to the flexion movement were compared between knees with ACL-
- 14 injured and uninjured.

Results: Six athletes who had confirmed ACL injuries, did not demonstrate significantly different knee valgus angle at initial contact and maximum knee flexion during landing, compared to 38 uninjured athletes. The knee valgus angles at initial contact for injured and

18	uninjured athletes were 12.3° and 14.8° ($p = 0.15$), respectively. Five of six anterior cruciate
19	ligament injured knees presented knee wobbling during landing. Relative frontal motion at
20	18° knee flexion was significantly greater in athletes with ACL-injured ($p = 0.02$).
21	Conclusions: 84% of ACL injury presented with the knee wobbling and the frontal knee
22	motion was greater with low knee flexion during knee wobbling, while the knee valgus angle
23	was not significantly different. This study suggests that knee wobbling may be a
24	biomechanical and dynamic risk factor for ACL injury in female basketball players.
25	
26	Key Terms: anterior cruciate ligament injury, knee, biomechanics, female athlete, basketball
27	
28	Summary Box
29	What is already known on this topic - summarise the state of scientific knowledge on this
30	subject before you did your study and why this study needed to be done
31	Biomechanical risk factor for ACL injury was revealed as dynamic knee valgus and low knee
32	flexion which increases ACL strain. However, previous study focused only static index which
33	are knee angle at initial contact or maximum. This study aimed to establish new dynamic
34	index for screening of ACL injury.

35 What this study adds – summarise what we now know as a result of this study that we did not

36 know before

- 37 Although a previous study identified knee valgus angle and knee valgus moment as predictors
- 38 of ACL injury, many athletes who demonstrates knee valgus motion does not suffer ACL
- 39 injury. Cadaveric studies show that ACL strain did not increase when knee valgus occurred
- 40 with slowed knee flexion movement. We identified an abnormal knee movement involving
- 41 the dynamic knee valgus with low knee flexion, which we call "knee wobbling."
- 42 How this study might affect research, practice or policy summarise the implications of this
- 43 study
- 44 ACL injury has been difficult to predict; however, we found that knee wobbling, which is new
- 45 parameter of abnormal knee movement, including rapid knee valgus/varus, is a potential
- 46 predictor of ACL injury.

47

49 INTRODUCTION

50	Anterior cruciate ligament (ACL) injury is a severe sports injury ¹ . Annually,
51	250,000 cases of ACL injury are reported in the United States ² alone. The medical cost for
52	one case is approximately \$17,000 ³ . Nationwide, the cost of reconstructive surgery and
53	rehabilitation for treatment of ACL injuries represents an economic loss of approximately
54	\$4.2 billion annually. The incidence of ACL injury is especially higher among female
55	adolescents ⁴ . Female athletes frequently suffer ACL injuries in noncontact situations that are
56	typically caused by an external load upon the knee joint during a landing, slowing, or
57	pivoting ^{5,6} . Despite efforts at prevention internationally, the incidence of ACL injury in female
58	athletes has not decreased ⁷ . There is still no consensus on why the incidence of ACL injury
59	among female athletes is so high, although gender differences, including anatomical,
60	hormonal, and neuromuscular factors are thought to affect the incidence of ACL injury ⁸ .
61	There is no incontrovertible evidence showing that anatomical or hormonal factors directly or
62	indirectly lead to incidence of ACL injury. Only neuromuscular factors are modifiable as
63	preventative methods, which led researchers to screen athletes with biomechanical testing.
64	Many neuromuscular risk factors associated with ACL injury have been proposed, including
65	an increase in the valgus knee angle ¹⁰ , tibial internal rotation ¹¹ , anterior tibial shear force, ¹²

66	hip joint valgus ¹³ , and adduction ¹⁴ or a decrease in the knee joint flexion angle ¹² or trunk
67	bending angle ¹⁵ during athletics. However, Bahr et al. ⁹ claimed that no screening test can
68	predict ACL injury and that no intervention study supports the efficacy of screening. This
69	would be caused since ACL injury occurs with dynamic loads and factors. Establishing
70	dynamic parameters is required for more effective screening methods in order to identify
71	high-risk athletes.
72	
73	Previous screening methods focused only on an increasing valgus angle in
74	snapshots. The knee valgus angle at IC during a drop vertical jump (DVJ) was reportedly
75	significantly higher in those with an ACL injury than those without ¹⁰ . However, many
76	uninjured subjects presented the same amount of knee valgus angle; therefore, there were

77 many false positive subjects in the study¹⁰. Krosshaug et al.¹⁸ showed that knee valgus angle

78 during DVJ did not predict ACL injury. These studies analyzed only a snapshot of knee

79 movement during landing, and dynamic knee motion during single leg activity has not been

80 investigated. ACL injury often occurs during deceleration with slight knee flexion (<25°),

81 valgus, and with internal or external rotation^{16,17}. From an analysis of knee kinematics at the

time of ACL injury in female athletes, using a model-based image matching technique, Koga

83	et al. ¹⁶ showed that the knee valgus angle increased by 12°, while the knee flexion angle
84	increased by only 1° between the initial contact (IC) of the foot during the movement that
85	caused the ACL injury and 40 ms after IC. This study showed that both increasing knee
86	valgus angle and disappearing flexion movement occurred simultaneously at ACL injury.
87	Detecting the combined phenomenon would be necessary for considering risk factors of ACL
88	injury. Only one study examined dynamic knee movement as an index for fluency of knee
89	motion during single leg hops ¹⁹ . Roos et al. ¹⁹ showed that knee fluency, meaning without
90	dynamic knee valgus or varus movement, was decreased in ACL-deficient knees more than
91	ACL-intact and ACL-reconstructed knees. Accordingly, combined slight knee flexion and
92	dynamic valgus would be considered a risk factor. However, no study has established the
93	assessment of the dynamic parameter and has identified the association between the new
94	parameter and ACL injury as a potential risk factor.
95	

Better screening methods also need to reproduce the injury mechanism with singleleg tasks. Single-leg activities should be investigated, because many ACL injuries occur
during high-impact activity with one leg⁶. However, DVJs with both legs have been utilized in
the majority of previous studies. Although some previous studies that utilized single-leg

100	landings, these studies showed only maximum knee valgus or flexion angle ^{20,21} . This is not
101	adequate to assess dynamic knee control during single-leg activities. In our preliminary study,
102	24 female athletes performed single-leg jump landings (SLJL). This was an appropriate task
103	for single-leg, high-impact activities. Repeated valgus/varus knee motion (knee wobbling)
104	was observed, and this may be used as an index of dynamic parameters. We speculate that
105	knee wobbling at low knee flexion during SLJL is an unstable dynamic knee movement that
106	may be associated with ACL injury. The objective of this pilot study was to determine
107	differences in knee valgus angle and dynamic knee joint motion during single-leg landings in
108	female basketball players, comparing ACL-injured and uninjured athletes by following them
109	for 3 years. The hypotheses of this study were that (1) there is no difference in the knee valgus
110	angle between ACL-injured and ACL-uninjured knees during single-leg landings, and (2)
111	knee wobbling movement is more frequent in ACL-injured knees than ACL-uninjured knees.
112	We utilized a case-control design to compare knee kinematics between the ACL-injured and
113	uninjured groups by recording kinematic data during SLJL in female basketball athletes at
114	baseline, and by gathering data about non-contact ACL injuries during up to three years of
115	follow-up.

117 METHODS

118 Subjects

119	This is a case-control study (Level of Evidence: 3). The study commenced after
120	obtaining approval of the ethics committee of Institutional Review Board of our institution
121	and informed, written consent of all subjects and their parents. Recruitment was conducted
122	from 2010 to 2013. Inclusion criteria were: (1) athletes participating in basketball team sports
123	(competition level); (2) 12-18 years old; (3) female; (4) healthy. Subjects who had any
124	neurological diseases, orthopedic diseases, or communication disorders at the time of data
125	measurement were excluded from the study. Forty-four subjects of two groups agreed to
126	participate in this study. After recruitment and measurement, information on the incidence of
127	non-contact ACL injuries was collected for two or three years. At follow-up, six ACL injuries
128	had occurred. All ACL injuries were diagnosed by an orthopedic surgeon based on magnetic
129	resonance imaging (MRI) findings. ACL injuries that occurred with no contact with another
130	person or object at the time of injury were defined as non-contact ACL injuries. Participants
131	were instructed to report all knee injuries to their coaches and the coaches were instructed to
132	relay the information to the investigators. One investigator continued to contact coaches.
133	Participants played only basketball during the follow-up period.

134

135 **Data Acquisition**

136	Subjects wore T-shirts and spats and each subject had six reflective markers
137	attached to her body for video analyses. The reflective markers were 10 mm in diameter and
138	were attached at the greater trochanter, the middle of the patella, and the lateral malleolus on
139	both legs. Subjects performed SLJL with both legs, landing with one leg after a maximum
140	vertical jump from a single-leg standing position on the floor. Two digital video cameras
141	(Casio Computer Co., Ltd., Japan) were used at 30 Hz. Cameras were located in the front and
142	ipsilateral side, 350 cm from the subject and 93 cm from the floor. The knee valgus and
143	flexion angle during SLJL were measured for lower limb kinematics in each frame. The
144	reliability of knee valgus angle for a two-dimensional video analysis at 30 was sufficient to
145	correlate with motion capture during this SLJL ²² .
146	
147	Data Processing

We used an Ulead Video Studio 11 (Corel Japan Ltd., Japan) to convert video
images into static images at 30 frames/s, and computed the knee valgus and flexion angle in
each frame. We then used ImageJ 1.86 (National Institutes of Health, United States) to

151	measure each joint angle on static images. The knee valgus and flexion angle were obtained
152	by deducting the angle formed by a line connecting the greater trochanter, the middle of the
153	patella and the lateral malleolus from 180°. The analyzed phase during SLJL was between IC
154	to maximal knee flexion (MKF). IC was defined as the point when a part of the foot touched
155	the floor, while the MKF was defined as when the knee flexion angle reached its maximum
156	value. All measurements and data analysis were performed by different trained investigators.
157	
158	Relative frontal motion (RFM) was used as an index of knee valgus/varus
159	movement relative to flexion movement during landing. More precisely, RFM was calculated
160	by the amount of valgus/varus movement in the frontal plane during 1/30 second divided by
161	the amount of flexion movement in the sagittal plane (Figure 1). In order to calculate knee
162	movement at low knee flexion, the knee flexion and valgus angle at IC was set as 0° . Then,
163	the predictive valgus angle at 6°, 12°, 18°, 24° and 30° for standardized knee flexion angle
164	was calculated based on two time points. Positive RFM indicated valgus movement, while
165	negative RFM denoted varus. Positive and negative RFM on successive jumps were
166	interpreted as knee wobbling (Figure 2a). The number of RFM's between IC and MKF was
167	counted. On the other hand, those with only positive or negative RFM's were excluded

168 (Figure 2b). The method we developed during a previous study for detecting knee

169 valgus/varus movement with RFM was further validated in the present study²³.

171

173 This graph shows one kinematic dataset from a single-leg landing. RFM was calculated as the

amount of valgus/varus movement in the frontal plane (a) divided by the amount of flexion in

175 the sagittal plane (b) during 1/30 second.

178 Figure 2. Kinematic data showing repeated knee wobbling and no knee wobbling.

179 (a) Repeated positive and negative RFMs were present. This RFM crossed the zero line

180 between Frames 4 and 5 and between Frames 5 and 6. (b) An example of kinematic data with

181 no knee wobbling. Only positive RFM values are present. This RFM never crossed the zero

182 line.

183

184

185

187 Statistical Analyses

188	Subjects were divided into two groups: ACL-injured and uninjured groups. We
189	computed the mean and standard deviation (SD) of valgus knee angle and flexion angle at IC
190	and MKF and the data presented a normal distribution. T-tests with Bonferroni adjustment
191	were used as parametric tests to compare groups. Chi-square tests were used to assess
192	differences in knee wobbling between ACL-injured and uninjured knees. We used Predictive
193	Analytics Software (PASW) Statistics 18 (Statistical Product and Service Solutions (SPSS),
194	Inc., United States) for statistical analysis, and set the significance level at $\alpha < 0.05$.
195	
100	
196	RESULTS
196 197	RESULTS Six athletes suffered ACL injury after the three-year follow-up period. Table 1
196 196 197 198	RESULTS Six athletes suffered ACL injury after the three-year follow-up period. Table 1 shows the profiles of the six subjects with ACL injuries. There were no significant differences
196 196 197 198 199	RESULTS Six athletes suffered ACL injury after the three-year follow-up period. Table 1 shows the profiles of the six subjects with ACL injuries. There were no significant differences between the six ACL-injured and 38 uninjured subjects in terms of age (ACL-injured: 15.5 ±
196 197 198 199 200	RESULTS Six athletes suffered ACL injury after the three-year follow-up period. Table 1 shows the profiles of the six subjects with ACL injuries. There were no significant differences between the six ACL-injured and 38 uninjured subjects in terms of age (ACL-injured: $15.5 \pm$ 1.2 years; uninjured: 16.1 ± 0.3 years; $p = 0.28$), height (ACL-injured: 163.6 ± 4.8 cm;
196 197 198 199 200 201	RESULTS Six athletes suffered ACL injury after the three-year follow-up period. Table 1 shows the profiles of the six subjects with ACL injuries. There were no significant differences between the six ACL-injured and 38 uninjured subjects in terms of age (ACL-injured: $15.5 \pm$ 1.2 years; uninjured: 16.1 ± 0.3 years; $p = 0.28$), height (ACL-injured: 163.6 ± 4.8 cm; uninjured: 159.5 ± 5.8 cm; $p = 0.11$), weight (ACL-injured: 51.7 ± 6.5 kg; uninjured: $52.7 \pm$

ACL-injured subject	Age range at time of injury (years)	Injury scene
Case 1	16-18	Game
Case 2	16-18	Practice
Case 3	16-18	Game
Case 4	16-18	Game
Case 5	16-18	Recreation
Case 6	12-15	Game

204

Table 2. Physical characteristics of subjects with and without ACL injuries

	ACL-injured subjects	Uninjured subjects	p value
n (persons)	6	38	
Age (years) ^a	15.5 ± 1.2	16.1 ± 0.3	0.28
Height (cm) ^a	163.6 ± 4.8	159.9 ± 5.8	0.11
Weight (kg) ^a	51.7 ± 6.5	52.7 ± 6.0	0.71
0			

^a: Mean value ± standard deviation

206	Inter-group comparisons of kinematics during SLJL were performed on the two
207	groups: 6 knees with ACL injuries belonging to 6 subjects and 76 uninjured knees belonging
208	to 38 subjects. Ten uninjured knees were difficult to analyze due to missing markers and were
209	excluded from this study. No differences were detected between the six ACL-injured and 66
210	uninjured knees in terms of knee valgus, flexion at IC, or MKF (Table 3). Accordingly, no
211	difference in knee joint motion was discernible between the ACL-injured and uninjured knees.
212	

Table 3. Valgus knee angle and flexion angles at initial contact and maximal knee flexion

	Analysis point	ACL-injured knees (6 knees)	Uninjured knees (66 knees)	<i>p</i> value
Valgus (°)	IC MKF	$\begin{array}{c} 12.3\pm2.4\\ 29.3\pm9.8 \end{array}$	$\begin{array}{c} 14.8\pm4.1\\ 27.8\pm10.0\end{array}$	0.15 0.73
Flexion (°)	IC MKF	$\begin{array}{c} 34.0\pm5.3\\ 86.0\pm10.5\end{array}$	37.0 ± 5.3 82.7 ± 8.5	0.19 0.38

Mean value ± standard deviation IC: initial contact MKF: Maximal knee flexion

214	Wobbling of the knee was observed in many subjects in both ACL-injured and
215	uninjured knees during SLJL. Although there is no significant difference by chi-square test (p
216	= 0.55), the rate of occurrence of knee wobbling was larger in five of the six ACL-injured
217	knees than 41 of the 66 uninjured knees, in at least one jump. No significant difference in
218	relative frontal motion (RFM) was detected between ACL-injured and uninjured knees (Table
219	4). The RFM's for ACL-injured knees and uninjured knees at 12° , 18° , 24° , and 30° of knee
220	flexion were 0.09 ± 0.43 and 0 ± 0.25 ($p = 0.66$), 0.42 ± 0.52 and 0.10 ± 0.31 ($p = 0.02$), 0.23
221	\pm 0.37 and 0.13 \pm 0.31 (p = 0.45), 0.16 \pm 0.46 and 0.13 \pm 0.48 (p = 0.88), respectively.
222	Therefore, the RFM was significantly greater only at 18° in ACL-injured knees.
223	

	Table 4. RI	FM at each knee fle	xion angle	
	Analysis point	ACL-injured	Uninjured	
	(knee flexion	knees	knees	p value
	angle)	(6 knees)	(66 knees)	
	12°	0.09 ± 0.43	0 ±0.25	0.66
DEM ^a	18°	0.42 ± 0.52	0.10 ± 0.31	0.02
IXI'IVI	24°	0.23 ± 0.37	0.13 ± 0.31	0.45
	30°	0.16 ± 0.46	0.13 ± 0.48	0.88

^a: Mean value ± standard deviation RFM: relative frontal motion

225 **DISCUSSION**

226	The objective of this study was to determine the difference in valgus knee angle and
227	knee joint motion between knees that had sustained ACL injuries and those that had not,
228	during SLJL in middle school and high school female basketball players during three years.
229	The knee valgus angle at IC and MKF did not differ significantly between ACL-injured knees
230	and uninjured knees, and abnormal knee joint motion was present in most ACL-injured knees
231	and uninjured knees, but especially in ACL-injured knees.
232	
233	A combination of low knee flexion and valgus motion was observed in ACL-injured
234	knees ²⁴ . Therefore, screening tasks for ACL injury risks should induce such movement.
235	Valgus angle at landing has been the parameter most evaluated as a potential risk factor ^{10,16,17} .
236	A previous study indicated that an increase in the knee valgus angle and valgus moment
237	during landing are considered risk factors for non-contact ACL injury ¹⁰ . However, many
238	uninjured subjects presented the same knee valgus angle as the injured subjects ¹⁰ . In the
239	current study, the knee valgus angle showed no difference between ACL-injured and
240	uninjured knees in either IC or MKF. Thus, we concluded that the knee valgus angle alone
241	during landing is insufficient to portend ACL injury. Another parameter examined was knee

242	flexion angle at IC during landing. The knee flexion angle at the time of ACL injury was
243	between 5 and 25° during single-leg landing or deceleration ²⁵ . The current study found that
244	the knee flexion angle at IC during SLJL was 34.0° for ACL-injured knees and 37.0° for
245	uninjured knees. In a previous study using a motion capture system, the knee flexion angle at
246	IC during a bilateral vertical drop was reportedly 31° ²⁶ . Therefore, knee flexion was greater
247	during single-leg landing than bilateral-leg landing. Despite the high flexion angle at landing
248	during SLJL, landing movement with one leg would be more appropriate as a screening task
249	to detect risk factors than that with both legs during a landing task considering that ACL
250	injury occurs during single-leg activities.
251	

RFM may serve as an index of dynamic knee motion in the frontal and sagittal planes. Previous studies screened knee kinematics using only snapshots at IC or MKF¹⁰. The RFM used in this study was the amount of change in the frontal plane angle during 1/30 s divided by the amount of change in the sagittal plane angle. The greater RFM at 18° in ACLinjured knees suggests a sudden valgus or varus and slow flexion movement. Therefore, RFM clearly demonstrated the quality of dynamic valgus/varus movement during landing when compared with snapshots of knee angle at IC or MKF. Decreasing knee flexion movement

259	during landing should be taken into consideration to detect high-risk athletes. A cadaveric
260	study showed that the combined knee valgus external torque at slight knee flexion angle
261	induced excessive ACL strain. In the current study, five of the six ACL-injured knees showed
262	knee wobbling, which led us to consider this as a risk factor for ACL injury. The cause of this
263	abnormal knee movement is unknown, and the mechanism of knee wobbling and the
264	association between wobbling and ACL injury should be studied in the future. Since the
265	flexion angle exceed 30° during the SLJL, knee wobbling over a smaller flexion range should
266	be induced and evaluated in future studies.
267	

268 This study had several limitations. First, we used video cameras for kinematic analyses. Nagano et al.²⁷ performed a study to obtain correlations based on regression analysis 269 270 between two-dimensional and three-dimensional knee kinematics and there was a moderate 271association between the two methods. Since two-dimensional evaluation is a simple, low-cost 272technique, we believe that it is a more useful method than three-dimensional analysis when 273conducting a large-scale study of risk factors. Also, RFM was calculated based on the amount 274of change and it is not dependent on the method of capture. Second, conclusions of this study 275cannot be generally applied to males or to athletes involved in other sports. However, this

Third, although the sample size was not large, the post-hoc power was medium to high, w were 0.41 for t-tests and 0.50 for chi-square tests. In the future, there needs to be a la study with high accuracy, including athletes involved in other high-risk sports, for exam soccer or football.
 were 0.41 for t-tests and 0.50 for chi-square tests. In the future, there needs to be a la study with high accuracy, including athletes involved in other high-risk sports, for exan soccer or football.
 study with high accuracy, including athletes involved in other high-risk sports, for exan soccer or football.
280 soccer or football.281
281
282 Conclusion
283 No differences in the knee valgus or flexion angles at IC or MKF during the S
was detected between the ACL-injured and uninjured knees. Knee wobbling may be r

- risk factor for ACL injury. Future studies should evaluate knee kinematics in a smaller knee
- 287 flexion range during movement using a different screening task.

288

290 REFERENCES

291	1.	Silvers HJ, Mandelbaum BR. Prevention of anterior cruciate ligament
292		injury in the female athlete. Br J Sports Med. 2007;41 Suppl 1:i52-59.
293	2.	Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing
294		noncontact anterior cruciate ligament injuries: a review of the Hunt Valley
295		II meeting, January 2005. Am J Sports Med. 2006;34(9):1512-1532.
296	3.	Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in
297		female athletes. Decreased impact forces and increased hamstring torques.
298		Am J Sports Med. 1996;24(6):765-773.
299	4.	Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament
300		injuries: risk factors and prevention strategies. J Am Acad Orthop Surg.
301		2000;8(3):141-150.
302	5.	Besier TF, Lloyd DG, Cochrane JL, Ackland TR. External loading of the
303		knee joint during running and cutting maneuvers. Med Sci Sports Exerc.
304		2001;33(7):1168-1175.
305	6.	Boden BP, Dean GS, Feagin JA, Jr., Garrett WE, Jr. Mechanisms of

306 anterior cruciate ligament injury. *Orthopedics.* 2000;23(6):573-578.

307	7.	Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15
308		sports: national collegiate athletic association injury surveillance system
309		data update (2004-2005 through 2012-2013). Clin J Sport Med.
310		2016;26(6):518-523.
311	8.	Hewett TE. Neuromuscular and hormonal factors associated with knee
312		injuries in female athletes. Strategies for intervention. Sports Med.
313		2000;29(5):313-327.
314	9.	Bahr R. Why screening tests to predict injury do not work-and probably
315		never will: a critical review. Br J Sports Med. 2016;50(13):776-780.
316	10.	Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of
317		neuromuscular control and valgus loading of the knee predict anterior
318		cruciate ligament injury risk in female athletes: a prospective study. Am ${\cal J}$
319		Sports Med. 2005;33(4):492-501.
320	11.	Markolf KL, O'Neill G, Jackson SR, McAllister DR. Effects of applied
321		quadriceps and hamstrings muscle loads on forces in the anterior and
322		posterior cruciate ligaments. Am J Sports Med. 2004;32(5):1144-1149.
323	12.	DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W. Aggressive

- 324 quadriceps loading can induce noncontact anterior cruciate ligament injury.
- 325 *Am J Sports Med.* 2004;32(2):477-483.
- 326 13. McLean SG, Huang X, Su A, Van Den Bogert AJ. Sagittal plane
- 327 biomechanics cannot injure the ACL during sidestep cutting. *Clin Biomech*
- 328 (Bristol, Avon). 2004;19(8):828-838.
- 329 14. Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and
- 330 electromyographic activity between men and women during the single-

331 legged squat. Am J Sports Med. 2003;31(3):449-456.

- 332 15. Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion
- 333 during non-contact anterior cruciate ligament injury in female athletes:
- 334 lateral trunk and knee abduction motion are combined components of the
- 335 injury mechanism. *Br J Sports Med.* 2009;43(6):417-422.
- 336 16. Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior
- 337 cruciate ligament injuries: knee joint kinematics in 10 injury situations
- 338 from female team handball and basketball. Am J Sports Med.
 339 2010;38(11):2218-2225.
- 340 17. Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior

341	cruciate ligament injury in basketball: video analysis of 39 cases. Am J
342	Sports Med. 2007;35(3):359-367.

- 343 18. Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a
- 344 poor screening test for ACL injuries in female elite soccer and handball
- 345 players: a prospective cohort study of 710 athletes. Am J Sports Med.
- 346 2016;44(4):874-883.
- 347 19. Roos PE, Button K, Sparkes V, van Deursen RW. Altered biomechanical
- 348 strategies and medio-lateral control of the knee represent incomplete
- 349 recovery of individuals with injury during single leg hop. J Biomech.
- 350 2014;47(3):675-680.
- 351 20. Taylor JB, Ford KR, Nguyen AD, Shultz SJ. Biomechanical Comparison of
- 352 Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane.
- 353 Orthop J Sports Med. 2016;4(6):2325967116655158.
- 354 21. Jones PA, Herrington LC, Munro AG, Graham-Smith P. Is there a
- 355 relationship between landing, cutting, and pivoting tasks in terms of the
- 356 characteristics of dynamic valgus? *Am J Sports Med.* 2014;42(9):2095-2102.
- 357 22. McLean SG, Walker K, Ford KR, et al. Evaluation of a two dimensional

analysis method as a screening and evaluation tool for anterior cruciate

359		ligament injury. <i>Br J Sports Med.</i> 2005;39(6):355-362.
360	23.	Aoki A, Kubota S, Morinaga K, et al. Detection of knee wobbling as a
361		screen to identify athletes who may be at high risk for ACL injury. Int
362		Biomech. 2021;8(1):30-41.
363	24.	Mokhtarzadeh H, Ng A, Yeow CH, et al. Restrained tibial rotation may
364		prevent ACL injury during landing at different flexion angles. Knee.
365		2015;22(1):24-29.
366	25.	Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for
367		anterior cruciate ligament injuries in team handball: a systematic video
368		analysis. Am J Sports Med. 2004;32(4):1002-1012.
369	26.	Kristianslund E, Krosshaug T. Comparison of drop jumps and sport-
370		specific sidestep cutting: implications for anterior cruciate ligament injury
371		risk screening. Am J Sports Med. 2013;41(3):684-688.
372	27.	Nagano Y, Sakagami M, Ida H, Akai M, Fukubayashi T. Statistical
373		modelling of knee valgus during a continuous jump test. Sports Biomech.

374 2008;7(3):342-350.

358

375

376

377 Figure Legends

- 378 Figure 1. Determination of relative frontal motion (RFM)
- 379 This graph shows one kinematic dataset from a single-leg landing. RFM was calculated as the
- amount of valgus/varus movement in the frontal plane (a) divided by the amount of flexion in
- the sagittal plane (b) during 1/30 second.

382

- 383 Figure 2. Kinematic data showing repeated knee wobbling and no knee wobbling.
- 384 (a) Repeated positive and negative RFMs were present. This RFM crossed the zero line
- between Frames 4 and 5 and between Frames 5 and 6. (b) An example of kinematic data with
- 386 no knee wobbling. Only positive RFM values are present. This RFM never crossed the zero

387 line.