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Abstract 30 
Aging manifests as progressive deterioration in cellular and systemic homeostasis, requiring systems-31 
level perspectives to understand the gradual molecular dysregulation of underlying biological 32 
processes. Here, we report systems-level changes in the molecular regulation of biological processes 33 
under multiple lifespan-extending interventions in mice and across age in humans. In mouse cohorts, 34 
Differential Rank Conservation (DIRAC) analyses of liver proteomics and transcriptomics show that 35 
mechanistically distinct prolongevity interventions tighten the regulation of aging-related biological 36 
modules, including fatty acid metabolism and inflammation processes. An integrated analysis of liver 37 
transcriptomics with mouse genome-scale metabolic model supports the shifts in fatty acid 38 
metabolism. Additionally, the difference in DIRAC patterns between proteins and transcripts suggests 39 
biological modules which may be tightly regulated via cap-independent translation. In a human cohort 40 
spanning the majority of the adult lifespan, DIRAC analyses of blood proteomics and metabolomics 41 
demonstrate that regulation of biological modules does not monotonically loosen with age; instead, 42 
the regulatory patterns shift according to both chronological and biological ages. Our findings 43 
highlight the power of systems-level approaches to identifying and characterizing the biological 44 
processes involved in aging and longevity. 45 
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Introduction 47 

Aging manifests as progressive deterioration in cellular and systemic homeostasis. In humans, it is 48 
accompanied by an increased risk for chronic conditions such as diabetes, heart disease, 49 
neurodegeneration, and cancer1,2. Interventions targeting aging mechanisms could delay or moderate 50 
chronic diseases and improve health and lifespan3. However, aging involves diverse chemical and 51 
physiological components, posing a challenge to comprehensive understanding4. For instance, many 52 
studies have demonstrated key roles of nutrient-sensing pathways in aging and longevity across 53 
species, including growth hormone (GH) and insulin/insulin growth factor 1 (IGF-1), AMP-activated 54 
protein kinase (AMPK), sirtuins, and mammalian (or mechanistic) target of rapamycin (mTOR) 55 
signaling pathways5–9, but these nutrient-sensing pathways are intricately interconnected with each 56 
other. Given the complex and multifaceted nature of aging, systems-level approaches may provide 57 
different perspectives from single molecule-level approaches and deepen our understanding of the 58 
aging processes. 59 

Some nutritional and pharmacological interventions consistently extend lifespan and 60 
healthspan in mouse and other animal models3,10–12. Nutritional interventions include calorie 61 
restriction (CR)13, methionine restriction (MR)14, and ketogenic diet15,16. While the number of possible 62 
“geroprotectors” has been growing17, pharmacological interventions whose effects on lifespan 63 
extension were robustly confirmed by the National Institute on Aging (NIA) Interventions Testing 64 
Program (ITP)18 include acarbose (ACA)19–21, canagliflozin22, 17α-estradiol (17aE2)19,20,23, glycine24, 65 
nordihydroguaiaretic acid19,20,25, Protandim® (a Nrf2 inducer)20, and rapamycin (Rapa)26–28. Rapa is 66 
the only drug found to prolong lifespan in every organism studied, including yeast, worms, flies, and 67 
mammals29,30. Rapa modulates nutrient-sensing pathways by inhibiting the activity of mTOR through 68 
complex formation with FK506-binding protein 12, which globally attenuates protein translation via 69 
mTOR complex 1 (mTORC1) and ultimately reduces inflammation, increases autophagy, and 70 
improves stem cell maintenance31,32. ACA could potentially mimic some aspects of CR19; it is an oral 71 
antidiabetic drug which competitively inhibits the activity of α-glucosidase enzymes to digest 72 
polysaccharides, resulting in the deceleration of sugar uptake in the gastrointestinal tract33. ACA 73 
treatment has been shown to extend lifespan in male mice more than in female mice19–21, possibly due 74 
to sex-dependent differences observed in heart, liver, and gut metabolite profiles34,35. 17aE2 is a 75 
stereoisomer of the dominant female sex hormone 17β-estradiol, having much weaker binding affinity 76 
to the classical estrogen receptors, stronger affinity to the brain estrogen receptor, and neuroprotective 77 
properties36,37. 17aE2 treatment extends lifespan in male but not in female mice19,20,23, potentially due 78 
to male-specific reduction of age-associated neuroinflammation38 and sex-specific metabolomic 79 
responses observed in liver and plasma metabolite profiles39. Because these prolongevity drugs were 80 
tested with standardized protocols in NIA ITP and because they have differences in primary mode of 81 
action, comparisons of their effects on molecular regulation are valuable for our understanding of 82 
aging and longevity mechanisms. 83 

Differential Rank Conservation (DIRAC) method quantifies systemic variability in gene 84 
expression within a module (i.e., a gene set, typically defined with an a priori network or pathway) for 85 
a given set of identically treated samples (called “phenotype”)40. Briefly, for a given module, the 86 
DIRAC algorithm first characterizes the rank consensus of each phenotype, which is represented by 87 
binary value set for pairwise gene pairs (i, j) of the module to indicate whether the expression of i-th 88 
gene is higher than that of j-th gene in the phenotype-sharing samples. For each sample, the DIRAC 89 
algorithm next calculates the ratio of gene pairs whose relative ranking agrees with the rank consensus 90 
of the corresponding phenotype. Finally, the average of this ratio within the phenotype-sharing 91 
samples is a measure of how robustly the samples reflect the phenotypic gene expression pattern of 92 
the module. The module is considered “tightly” regulated within a phenotype when the samples vary 93 
little from their own consensus, because biological regulatory mechanisms or pressures must act 94 
consistently across the samples to produce such a high conservation pattern. In contrast, the module is 95 
considered “loosely” regulated within a phenotype when the samples vary considerably from their 96 
consensus, indicating a lack of conservation across the samples. For instance, a previous study 97 
applying DIRAC revealed the global loose regulation of BioCarta-defined modules in more malignant 98 
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phenotypes and later stages of disease progression40, indicating that a loss of tight regulation 99 
characterizes the dysregulation of biological processes in cancer. Hence, the DIRAC method can be 100 
used for identifying biological modules whose regulatory patterns are changed by prolongevity 101 
interventions or aging. 102 

In this study, we report systems-level changes in the molecular regulation of biological 103 
processes, by jointly leveraging three omics datasets of mouse cohorts including the NIA ITP-104 
confirmed prolongevity interventions and two omics datasets of a human cohort spanning the majority 105 
of the adult lifespan (Fig. 1). We apply DIRAC analysis to mouse liver protein abundance profiles, 106 
first with predefined modules derived from Gene Ontology Biological Process (GOBP) annotations 107 
and then with unbiased modules derived from Weighted Gene Co-expression Network Analysis 108 
(WGCNA)41,42, and demonstrate that three lifespan-extending drugs (ACA, 17aE2, and Rapa) 109 
promoted tighter regulation of aging-related modules, such as fatty acid metabolism and inflammation 110 
processes. As a complementary approach, mouse genome-scale metabolic model (GEM)43,44 is 111 
developed with the three drugs-including liver transcriptomics45, and exhibits that multiple 112 
prolongevity interventions shifted fatty acid metabolism. In addition, comparisons of DIRAC analyses 113 
between the liver proteomics and transcriptomics suggest that biological modules were tightly 114 
regulated by the prolongevity interventions at different levels: transcription vs. post-transcription 115 
including the cap-independent translation (CIT) of specific mRNAs46. Finally, we explore the cross-116 
sectional relationship between the tight module regulation and age in humans; DIRAC analyses of 117 
human plasma proteomics and metabolomics47,48 reveal regulatory patterns of aging-related modules 118 
according to both chronological and biological ages48. 119 

 120 

Results 121 

Prolongevity interventions tightened the regulation of a priori proteomic modules 122 

To compare the systems-level changes induced by different prolongevity interventions, we first 123 
applied DIRAC analysis to a liver proteomic dataset which was generated through a mouse 124 
prolongevity intervention experiment in the NIA Longevity Consortium (denoted “LC-M001 125 
proteomics”; Fig. 1). In this experiment, 48 mice were either untreated (Control) or subjected to one of 126 
three lifespan-extending drug treatments (ACA, 17aE2, or Rapa), and were euthanized at 12 months (n 127 
= 12 (6 female, 6 male) mice per group). The design of evaluating drug effects on healthy young adult 128 
mice was motivated by the desire to reduce confounding effects of aging and of late-life diseases. In 129 
DIRAC analysis, we pooled female and male samples per intervention to calculate robust DIRAC rank 130 
consensus from small sample size, while recognizing the false negative risks for sex-dependent 131 
changes related to the sex-dependent effects of ACA and 17aE2 on lifespan extension19–21. For 132 
biological modules used in this DIRAC analysis, we prepared 164 a priori modules which were 133 
defined by the GOBP annotations mapped to the measured proteins (see Methods; Supplementary 134 
Data 1). 135 

A DIRAC metric, rank conservation index (RCI)40, measures consistency in the relative 136 
abundance of biomolecules within a module among phenotype-sharing samples; high RCI indicates a 137 
strongly shared pattern of behavior (i.e., “tight” regulation), while low RCI indicates unpatterned 138 
behavior (i.e., “loose” regulation). ACA, 17aE2, and Rapa showed significantly higher RCI mean in 139 
the examined modules than Control (Fig. 2a), suggesting general tightening of module regulation by 140 
each of these prolongevity interventions. To identify the module changed (i.e., tightened or loosened) 141 
by any of the interventions, we assessed the intervention effect on RCI using Analysis of Variance 142 
(ANOVA) for each of the 164 modules. There were 12 significantly changed modules based on 143 
“conservatively” false discovery rate (FDR)-adjusted P < 0.05 (see Methods; cf. 51 modules exhibited 144 
nominal P < 0.05; Fig. 2b). Among these 12 changed modules, the post hoc RCI comparisons between 145 
Control and each intervention group revealed that seven, nine, and eight modules were significantly 146 
tightened by ACA, 17aE2, and Rapa, respectively (Fig. 2c), while no module was loosened. Four 147 
modules were significantly tightened under all the three interventions (Fig. 2c), which were 148 
functionally related to fatty acid β-oxidation (GO:0006635, GO:0031998) or protein-transporting to 149 
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peroxisomes (GO:0016558, GO:0006625) (Fig. 2d, Supplementary Fig. 1c). Given that the primary 150 
mode of action is different between the studied drugs, this result suggests that systems-level regulation 151 
for these biological processes may be a general mechanism for lifespan extension. 152 

Although high RCI reflects a shared pattern of relative abundances within the phenotype and 153 
implies biological regulation required for the pattern, a tightly regulated module may still exhibit 154 
different relative abundance patterns under different phenotypes. Another DIRAC metric, rank 155 
matching score (RMS)40, allows us to compare relative abundance patterns between phenotypes, by 156 
measuring the similarity of each sample to the consensus pattern of a certain phenotype rather than 157 
measuring the consistency to the consensus pattern of the sample’s own phenotype (i.e., RCI). For 158 
instance, in acetyl-CoA biosynthetic process from pyruvate (GO:0006086) where higher RCI against 159 
Control was observed significantly in ACA and 17aE2 and as a tendency in Rapa (Supplementary Fig. 160 
1a), Rapa and ACA showed significantly higher and tendentiously lower mean of RMSs, respectively, 161 
than Control under the 17aE2 rank consensus (Supplementary Fig. 1b), suggesting that Rapa changed 162 
this module similarly to 17aE2 while ACA did dissimilarly. Moreover, this Rapa’s RMS mean was 163 
comparable to 17aE2’s RMS mean under the 17aE2 rank consensus (i.e., corresponding to 17aE2’s 164 
RCI) (Supplementary Fig. 1b). These DIRAC patterns suggest two modes of tight regulation for this 165 
module: one under ACA and the other under 17aE2 and Rapa. Thus, using RMS under each group’s 166 
rank consensus, we explored the similarly tightened modules across the interventions. Among the 167 
seven, nine, and eight significantly tightened modules by ACA, 17aE2, and Rapa, three, four, and two 168 
modules were similarly changed by the other two interventions, respectively (Fig. 2c). In particular, 169 
the four consistently tightened modules across the interventions (Fig. 2c, d, Supplementary Fig. 1c) 170 
exhibited significantly higher mean of RMSs in intervention groups compared to Control under almost 171 
all the other intervention group’s rank consensus (e.g., 17aE2 and Rapa showed significantly higher 172 
RMS mean than Control under the ACA rank consensus; Fig. 2e, Supplementary Fig. 1d), suggesting 173 
that fatty acid β-oxidation and peroxisome transport were similarly tightened by mechanistically 174 
distinct prolongevity interventions and thus may be a general mechanism contributing to longevity. 175 

Taken together, these results suggest that prolongevity interventions generally tightened the 176 
regulation of the examined proteomic modules and, in the modules related to fatty acid β-oxidation 177 
and peroxisome transport, the tightened protein expression profile was similar between different 178 
drugs. 179 
 180 

Prolongevity interventions tightened the regulation of data-driven proteomic modules 181 

Given potential biases in the module definitions with GOBP terms, we inferred data-driven modules 182 
using an unsupervised clustering approach, WGCNA41,42. WGCNA identifies modules of highly 183 
interconnected biomolecules, relying on the overall correlation network computed from high-184 
dimensional data. We applied WGCNA to the LC-M001 proteomics and identified nine modules, 185 
ranging in size from 66 to 839 proteins (Fig. 3a). Each WGCNA module can be characterized by the 186 
“module eigengene” (i.e., the first principal component (PC) of the protein abundance matrix for the 187 
module)42. To identify the module associated with any of the interventions out of the nine data-driven 188 
modules, we assessed the intervention effect on the module eigengene for each module using ANOVA 189 
model with intervention, sex, and intervention–sex interaction terms. There were no significant 190 
interaction effects in any of the nine modules, and only one module, denoted Darkgreen, exhibited a 191 
significant intervention effect (P = 0.00082 after the Bonferroni adjustment). The post-hoc 192 
comparison revealed that 17aE2 and Rapa, but not ACA, showed significantly higher value of the 193 
module eigengene than Control in the Darkgreen module (Fig. 3b, c), suggesting that the expression 194 
profile of the Darkgreen module was changed specifically by 17aE2 and Rapa. 195 

WGCNA fits a “scale-free” network topology where the majority of nodes share relatively 196 
few edges with other nodes, while the central nodes that have high intramodular connectivity (called 197 
“hub” nodes) frequently take essential functions in the system49. To better understand how 17aE2 and 198 
Rapa changed the Darkgreen module structure, we assessed the relationship between the intervention 199 
effect on each protein in the Darkgreen module and their respective intramodular connectivity (see 200 
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Methods). The intervention effect on each protein showed significant positive correlation with 201 
intramodular connectivity (Spearman’s ρ = 0.50, P = 2.05 × 10−52, Fig. 3d), suggesting that 202 
intramodular hub proteins were more strongly affected by the interventions than less connected 203 
proteins. Interestingly, 18 of the top 30 hub proteins in the Darkgreen module were mitochondrial 204 
proteins, involved in tricarboxylic acid (TCA) cycle metabolism and oxidative phosphorylation (Fig. 205 
3e). Furthermore, prohibitin 1 (PHB1) and PHB2, 2 of the top 10 hub proteins, form the mitochondrial 206 
PHB complex, which is known to regulate fatty acid oxidation and assembly of mitochondrial 207 
respiratory complexes50,51, as well as to affect lifespan in C. elegans52. Collectively, our results from 208 
WGCNA revealed coordinated changes in the expression profiles of mitochondrial liver proteins that 209 
were limited to two (17aE2 and Rapa) of the three studied drugs. 210 

We subsequently re-analyzed the LC-M001 proteomics data using the DIRAC method with 211 
seven of the nine WGCNA-identified modules (see Methods; Fig. 3a, Supplementary Data 2). ACA, 212 
17aE2, and Rapa showed significantly higher RCI mean in the examined modules than Control (Fig. 213 
3f), suggesting general tightening of module regulation by each of these prolongevity interventions, 214 
consistent with the initial DIRAC result based on GOBP terms (Fig. 2a). Additionally, all the seven 215 
WGCNA modules exhibited significant intervention effects on RCI in ANOVA (FDR-adjusted P < 216 
0.05; Fig. 3g) and significantly higher RCI in any intervention group compared to Control in the post 217 
hoc RCI comparisons (Fig. 3g, h), suggesting that all the WGCNA modules were consistently 218 
tightened across ACA, 17aE2, and Rapa. Moreover, the Darkgreen module exhibited significantly 219 
higher mean of RMSs in intervention groups compared to Control under almost all the other 220 
intervention group’s rank consensus (e.g., 17aE2 and Rapa showed significantly higher RMS mean 221 
than Control under the ACA rank consensus; Fig. 3i), suggesting that the tightly regulated patterns are 222 
similar between the three drugs. At the same time, Rapa’s RMS mean was more similar to 17aE2’s 223 
RMS mean than to ACA’s RMS mean (e.g., 17aE2 showed higher RMS mean than ACA under the 224 
Rapa rank consensus) in the Darkgreen module (Fig. 3i), implying a difference in the tightly regulated 225 
pattern between ACA vs. 17aE2 and Rapa, in line with their effects on module expression profiles 226 
(Fig. 3b). Note that, if the tightly regulated pattern of ACA was completely different from those of 227 
17aE2 and Rapa, ACA could have showed lower RMS mean than Control under the 17aE2 or Rapa 228 
rank consensus (cf. Supplementary Fig. 1b). 229 

These findings suggest that the Darkgreen module was tightly regulated across all the three 230 
interventions, while also exhibiting intervention-specific effects on protein expression profiles related 231 
to mitochondrial energy metabolism. Altogether, our results indicate that the tightening of module 232 
regulation was a general signature of the prolongevity interventions within the measured proteomic 233 
space. 234 
 235 

Prolongevity interventions shifted the flux regulation in fatty acid metabolism 236 

As a complementary approach to the findings from DIRAC and WGCNA analyses, we performed in 237 
silico analysis using the mouse GEM43 to investigate metabolic shifts associated with prolongevity 238 
interventions. GEM is a mathematical framework that leverages knowledge-base cataloging 239 
information about biochemical reactions within a system (e.g., single cell, tissue, organ), including 240 
metabolites, genes encoding catalytic enzymes, and their stoichiometry44. Using optimization 241 
techniques with large-scale experimental data (e.g., transcriptomics), the solved stoichiometric 242 
coefficients of each reaction allow flux prediction for metabolic reactions in the system at 243 
equilibrium53. Thus, GEM has been used to investigate metabolic changes in various systems and 244 
specific contexts (e.g., human cancers)54. Since the detected proteins in the LC-M001 proteomics did 245 
not sufficiently cover the metabolic proteins included in the mouse GEM, we utilized a mouse liver 246 
transcriptomic dataset from a previous prolongevity intervention study45 (referred as “M001-related 247 
transcriptomics”; Fig. 1), whose experimental design resembled the LC-M001 experiment and 248 
contained ACA, 17aE2, and Rapa treatments as prolongevity interventions. In this M001-related 249 
experiment, 78 mice were prepared for either control or one of the prolongevity interventions, 250 
including two genetically modified models (the growth hormone receptor knockout mouse (GHRKO) 251 
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and the hypopituitary Snell dwarf mouse (SnellDW)), two nutritional interventions (CR and MR), and 252 
four pharmacological interventions (ACA, 17aE2, Protandim, and Rapa), and were euthanized at 253 
young adult ages depending on the intervention type (n = 3–12 mice per intervention group; see 254 
Methods). By integrating the M001-related transcriptomics with the mouse generic GEM43 for each of 255 
78 samples, we generated 78 “context-specific” metabolic networks (i.e., GEMs constrained by each 256 
sample condition), and subsequently predicted flux values of the metabolic reactions for each context-257 
specific GEM (see Methods). As a result, the flux values were successfully predicted for 7,930 258 
reactions among the 10,612 reactions defined in the generic GEM (Supplementary Data 3). 259 

To identify the reaction changed by any of the interventions, we assessed the intervention 260 
effect on the flux value using Kruskal–Wallis H-test for each of the 7,930 reactions. To mitigate the 261 
small sample size, we pooled samples per intervention in this analysis, while recognizing the false 262 
negative risks for age and sex-dependent changes related to the sex-dependent effects of ACA, 17aE2, 263 
and Protandim on lifespan extension19–21. There were 1,822 significantly changed reactions based on 264 
“conservatively” FDR-adjusted P < 0.05 (see Methods; cf. 2,156 reactions exhibited nominal P < 265 
0.05; Fig. 4a). Among these 1,822 changed reactions, the post hoc comparisons of flux values between 266 
each intervention group and its corresponding control group revealed that 9, 1, 730, 851, and 1,015 267 
reactions were significantly changed by ACA, Rapa, MR, GHRKO, and SnellDW, respectively (Fig. 268 
4a–c), while no reaction was significantly changed by 17aE2, Protandim, and CR. We observed that 269 
many of these changed reactions belonged to several specific “subsystems”, analogous to the 270 
functional pathways, in the GEM system. For instance, when we focused on the central energy 271 
metabolism, 8 of the 10 changed reactions belonged to the fatty acid oxidation subsystem and 272 
exhibited the concordant direction of flux change across interventions (Fig. 4d). However, it was 273 
possible that the frequency of observed subsystems in the changed reactions was merely dependent on 274 
the number of mapped reactions to the subsystem, which is largely different between subsystems43. 275 
Hence, to interpret which subsystems in GEM were shifted by prolongevity interventions, we further 276 
performed overrepresentation analysis on the significantly changed reactions of ACA, MR, GHRKO, 277 
and SnellDW. Among the 5, 53, 60, and 57 tested subsystems that were annotated to any of the 278 
changed reactions, 0, 5, 13, and 11 subsystems were significantly enriched in the changed reactions of 279 
ACA, MR, GHRKO, and SnellDW, respectively (FDR-adjusted P < 0.05; Fig. 4e, Supplementary Fig. 280 
2a, b, Supplementary Data 4). In particular, the biotin metabolism, cholesterol metabolism, fatty acid 281 
oxidation, and fatty acid synthesis subsystems were consistently enriched across MR, GHRKO, and 282 
SnellDW (Fig. 4e, Supplementary Fig. 2a, b), suggesting that these biological processes were shifted 283 
at the systems level by mechanistically distinct prolongevity interventions. 284 

Given that MR has been often discussed as if it was a form of CR, we addressed the 285 
difference in reaction flux between CR and MR. Among the 1,822 reactions changed by any of the 286 
interventions, the post hoc comparisons of flux values among CR, MR, and their corresponding 287 
control groups revealed that 0, 1,081, and 1,229 reactions were significantly different in CR vs. 288 
control, MR vs. control, and MR vs. CR, respectively (Supplementary Fig. 2c–f). Overrepresentation 289 
analysis revealed that 11 subsystems were significantly enriched in the different reactions between CR 290 
and MR (FDR-adjusted P < 0.05; Supplementary Fig. 2g), implying that MR shifted these subsystems 291 
at the systems level in a different manner from CR. 292 

In summary, our in silico analysis differentiated the metabolic effects of different 293 
prolongevity interventions, and implied that multiple prolongevity interventions concordantly shifted 294 
fatty acid metabolism at the systems level. 295 
 296 

Prolongevity interventions likely tightened the module regulation partly through cap-297 
independent translation 298 

To further investigate the tightening effects of prolongevity interventions on proteomic modules (Fig. 299 
2, 3), we applied DIRAC analysis to the M001-related transcriptomics45. Again, we pooled samples 300 
per intervention to calculate robust DIRAC rank consensus, and analyzed only three prolongevity 301 
interventions (ACA, Rapa, and CR) and their corresponding control (Control) based on sample size (n 302 
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= 12 (6 female, 6 male) mice per group). Using 3,747 a priori modules defined by the GOBP 303 
annotations mapped to the measured transcripts (see Methods; Supplementary Data 5), we found that 304 
ACA, Rapa, and CR showed significantly higher RCI mean in the examined modules than Control 305 
(Fig. 5a). This result suggests the general tightening of module regulation within the measured 306 
transcriptomic space, as well as within the measured proteomic space (Fig. 2a, 3f). We next assessed 307 
the intervention effect on RCI using ANOVA for each of the 3,747 modules, and identified 1,829 308 
significantly changed modules by any of the interventions based on “conservatively” FDR-adjusted P 309 
< 0.05 (see Methods; cf. 2,107 modules exhibited nominal P < 0.05; Supplementary Fig. 3a). Among 310 
these 1,829 changed modules, the post hoc RCI comparisons between Control and each intervention 311 
group revealed that 828, 432, and 1,789 modules were significantly tightened by ACA, Rapa, and CR, 312 
respectively (Supplementary Fig. 3a), while no module was loosened. Subsequently, using RMS under 313 
each group’s rank consensus, we explored the similarly tightened modules across the interventions. 314 
Among the 828, 432, and 1,789 significantly tightened modules by ACA, Rapa, and CR, 35, 19, and 315 
12 modules were similarly changed by the other two interventions, respectively (Supplementary Fig. 316 
3b). For instance, ubiquitin-dependent protein catabolic process (GO:0006511), a consistently 317 
tightened module across the interventions (Supplementary Fig. 3c), exhibited significantly higher 318 
mean of RMSs in intervention groups compared to Control under almost all the other intervention 319 
group’s rank consensus (e.g., Rapa and CR showed significantly higher RMS mean than Control 320 
under the ACA rank consensus; Supplementary Fig. 3d), suggesting that this module was similarly 321 
tightened in transcripts by mechanistically distinct prolongevity interventions. 322 

To directly compare the DIRAC results between the LC-M001 proteomics and the M001-323 
related transcriptomics, we focused on the two interventions (ACA and Rapa) and the 147 GOBP 324 
modules that were used in both omics results (Supplementary Data 6), and re-assessed the intervention 325 
effect on RCI using ANOVA for each of the 147 modules and each omics. There were 10 and 5 326 
significantly changed modules by any of the interventions in proteins and transcripts, respectively, 327 
based on “conservatively” FDR-adjusted P < 0.05 (see Methods). Among these changed modules, the 328 
post hoc RCI comparisons between Control and each intervention group revealed that 8, 6, 10, and 4 329 
modules were significantly tightened by ACA in proteins, ACA in transcripts, Rapa in proteins, and 330 
Rapa in transcripts, respectively (Fig. 5b). Interestingly, the modules that were significantly tightened 331 
by ACA and Rapa in both proteins and transcripts were three modules related to fatty acid β-oxidation 332 
(GO:0006635), retrograde transport (GO:1990126), or interleukin 7 (GO:0098761) (Fig. 5b, c). This 333 
result suggests that these modules were tightened by the prolongevity interventions via transcription-334 
level changes with concordant changes of proteomic profiles. At the same time, we also observed 335 
seven modules which were tightened specifically in proteins (Fig. 5b). In particular, tryptophan 336 
catabolic process to kynurenine (GO:0019441) exhibited significantly higher RCI across interventions 337 
compared to Control specifically in proteins (Fig. 5d), suggesting that this module was tightened by 338 
ACA and Rapa in the proteomic profile but not in the transcriptomic profile. This inconsistency may 339 
reflect post-transcriptional regulatory mechanisms that can affect protein profiles beyond 340 
transcriptional changes. For instance, since the abundance of a protein is determined by both its 341 
synthesis and degradation rates, a difference in “proteostasis”, whose loss is known as an aging 342 
signature1,55, can lead to the change in protein abundance without a change in transcript abundance. 343 

Likewise, CIT46 can be a possible post-transcriptional mechanism to explain the inconsistency 344 
between proteins and transcripts. In contrast to the standard cap-dependent translation, CIT does not 345 
require the interaction of the eukaryotic initiation factor 4E (eIF4E) complex with 5′ cap of mRNA; 346 
N6-methyladenosine (m6A) modification in 5′ untranslated regions of mRNA can trigger the 347 
recruitment of specific initiation and elongation factors, followed by the selective translation of m6A-348 
tagged mRNAs. Previous studies have shown the upregulated translation of a subset of mRNAs via 349 
CIT in long-lived endocrine mutant mice56 and similar increases of CIT in mice treated with ACA, 350 
17aE2, or Rapa57. We therefore tested if CIT could explain the difference in module regulation 351 
between proteins and transcripts, by jointly applying DIRAC analysis to the LC-M001 proteomics and 352 
another liver proteomic dataset which was generated through a mouse CIT experiment (denoted “LC-353 
M004 proteomics”; Fig. 1). In this experiment, 16 mice were treated with either solvent (Control-2) or 354 
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4EGI-1, a synthetic small compound which inhibits the eIF4E–eIF4G interaction and thereby blocks 355 
cap-dependent translation and enhances CIT58, and were euthanized at young adult ages (n = 8 (4 356 
female, 4 male) mice per group). To directly compare the DIRAC results across the LC-M001 and 357 
LC-M004 proteomics, we focused on 153 GOBP modules for this analysis, which were mapped to the 358 
measured proteins in both datasets (see Methods; Supplementary Data 7). Consistent with the elevated 359 
module tightness in ACA, 17aE2, and Rapa against their corresponding control (Control-1), 4EGI-1 360 
showed significantly higher RCI mean in the examined modules compared to Control-2 (Fig. 5e), 361 
implying general tightening of module regulation by the CIT enhancement. To reveal the similarity of 362 
module regulation between prolongevity interventions and 4EGI-1, we calculated RMSs under the 363 
rank consensus of Control-2 and 4EGI-1 for the LC-M001 groups (Control-1, ACA, 17aE2, and 364 
Rapa), and assessed the intervention effect on the RMS mean using ANOVA for each of the 153 365 
modules and each rank consensus. There were four and seven significantly changed modules by any 366 
of the interventions under the Control-2 and 4EGI-1 rank consensus, respectively, based on 367 
“conservatively” FDR-adjusted P < 0.05 (see Methods; cf. 24 and 41 modules exhibited nominal P < 368 
0.05, respectively). Among these seven changed modules under the 4EGI-1 rank consensus, the post 369 
hoc comparisons for the RMS mean between Control-1 and each intervention group revealed that two, 370 
one, and three modules were changed “dissimilarly” to the 4EGI-1 consensus by ACA, 17aE2, and 371 
Rapa, respectively (Supplementary Fig. 3e). For instance, in RIG-I signaling pathway (GO:0039529), 372 
all the ACA, 17aE2, and Rapa showed significantly lower mean of RMSs than Control-1 under the 373 
4EGI-1 consensus (Supplementary Fig. 3f). Given that this module was similarly tightened across the 374 
interventions in proteins (Supplementary Fig. 1e, f) while ACA and Rapa did not show the significant 375 
RCI difference from control in transcripts (Supplementary Fig. 3g), this result suggests that RIG-I 376 
signaling pathway may be tightened in proteins via post-transcriptional regulation other than CIT. In 377 
contrast, the post hoc RMS mean comparisons for the seven changed modules also revealed that two 378 
modules were changed “similarly” to the 4EGI-1 consensus by 17aE2 (Fig. 5f); e.g., mitochondrial 379 
ATP synthesis coupled proton transport (GO:0042776) exhibited significantly higher mean of RMSs 380 
in 17aE2 compared to Control-1 (Supplementary Fig. 3h). Because the regulatory pattern of 17aE2 in 381 
transcripts was not available and because our P-value adjustment for multiple hypotheses was 382 
conservative (see Methods), we also checked the 41 changed modules based on nominal P < 0.05 383 
under the 4EGI-1 rank consensus. The post hoc RMS mean comparisons for these 41 changed 384 
modules revealed that four and three modules were changed “similarly” to the 4EGI-1 consensus by 385 
17aE2 and Rapa, respectively (Fig. 5f). Remarkably, in coding region instability determinant (CRD)-386 
mediated mRNA stabilization (GO:0070934) and positive regulation of RNA polymerase II 387 
transcription preinitiation complex (PIC) assembly (GO:0045899), Rapa showed significantly higher 388 
mean of RMSs than Control-1 under the 4EGI-1 rank consensus (Fig. 5g, Supplementary Fig. 3i), 389 
while Rapa did not show the significant RCI difference from control in transcripts (Fig. 5h, 390 
Supplementary Fig. 3j), suggesting that regulation of these processes was modified by Rapa likely via 391 
CIT. 392 

Altogether, these findings suggest that the tightening of module regulation was a general 393 
signature of the prolongevity interventions even within the measured transcriptomic space and that the 394 
tightened modules in proteins were achieved through both transcriptional and post-transcriptional 395 
regulation, potentially including augmented CIT. 396 
 397 

Module regulation was changed across chronological and biological ages 398 

Our results observed in mice demonstrate that the molecular regulation of biological processes is 399 
modifiable at the systems level. To address the systems-level dynamics through lifetime in humans, 400 
we investigated the cross-sectional relationship between the tight module regulation and age by 401 
applying DIRAC analysis to a plasma proteomic dataset which was collected through the Arivale 402 
program47,48 (Fig. 1). This cohort consisted of community-dwelling adults ranging from 18 to 89 years 403 
old, who were not screened for any particular disease, and we stratified this cohort into deciles per sex 404 
by chronological age (referred as “CA10”; Supplementary Fig. 4a). Setting these CA10 groups as the 405 
group unit for the rank consensus, we calculated DIRAC metrics for 19 a priori modules which were 406 
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defined by the GOBP annotations mapped to the measured proteins (see Methods; Supplementary 407 
Data 8). The RCI median in the examined modules gradually decreased along an aging gradient in 408 
younger groups, while this overall trend was reversed in older groups (Fig. 6a). We randomized the 409 
sample–group correspondence to calculate an empirical null-hypothesis distribution, and confirmed 410 
that the RCI median was significantly higher than expected in almost all the CA10 groups 411 
(Supplementary Fig. 4b), suggesting that the examined modules were generally under the tight 412 
regulation especially in the youngest group (Q1) and the oldest group (Q10). Next, we compared the 413 
similarity of module regulation across chronological age using RMS under the Q1 or Q10 rank 414 
consensus. The module RMS mean showed significant negative and positive correlations with the 415 
quantile order of CA10 groups under the Q1 and Q10 rank consensus, respectively (Spearman’s ρ = 416 
−0.78 (Q1, female), −0.40 (Q1, male), 0.70 (Q10, female), 0.60 (Q10, male); Fig. 6b), suggesting that 417 
module regulation was generally more similar between closer CA10 groups and the regulatory 418 
patterns were vastly dissimilar between Q1 and Q10. To identify the module whose regulation 419 
similarity to Q1 or Q10 was associated with chronological age, we regressed the RMS under the Q1 or 420 
Q10 consensus to chronological age with Body Mass Index (BMI) and ancestry PCs as covariates for 421 
each of the 19 modules, each rank consensus, and each sex. There were 18 and 13 modules exhibiting 422 
a significant negative association under the Q1 rank consensus and 17 and 18 modules exhibiting a 423 
significant positive association under the Q10 rank consensus for female and male, respectively, based 424 
on “conservatively” FDR-adjusted P < 0.05 (see Methods; Fig. 6c). For instance, neutrophil 425 
chemotaxis (GO:0030593) exhibited significant negative and positive associations of the RMS with 426 
chronological age in both sexes under the Q1 and Q10 rank consensus, respectively (Fig. 6d), 427 
suggesting that this module was gradually changed across chronological age and its regulatory pattern 428 
was vastly dissimilar between younger and older individuals. These results suggest that the general 429 
tightness of module regulation decreased with chronological age up until midlife but then increased 430 
during older stage and that the tight patterns of module regulation were different between younger and 431 
older individuals. 432 

To validate these findings in another dimensional space, we performed DIRAC analysis on a 433 
plasma metabolomic dataset of the Arivale cohort (Fig. 1). Since the dataset availability was different 434 
between participants, we re-defined CA10 groups for this analysis (Supplementary Fig. 5a). Because 435 
functional annotations to define metabolite modules are limited, we used the nine data-driven 436 
metabolomic modules identified by WGCNA (Supplementary Fig. 5b, Supplementary Data 9). Again, 437 
the RCI median in the examined modules exhibited the “U-shaped” transition with respect to CA10 438 
group (Supplementary Fig. 5c), and the module RMS mean showed significant negative and positive 439 
correlations with the quantile order of CA10 groups under the Q1 and Q10 rank consensus, 440 
respectively (Spearman’s ρ = −0.90 (Q1, female), −0.76 (Q1, male), 0.87 (Q10, female), 0.66 (Q10, 441 
male); Supplementary Fig. 5d). Subsequently, we regressed the RMS under the Q1 or Q10 consensus 442 
to chronological age with BMI and ancestry PCs as covariates for each of the nine modules, each rank 443 
consensus, and each sex. All the nine modules exhibited significant negative and positive associations 444 
under the Q1 and Q10 rank consensus for both sexes, respectively, based on FDR-adjusted P < 0.05 445 
(Supplementary Fig. 5e, f). Therefore, in line with the examined proteomic space, the similar 446 
associations between the tightness of module regulation and chronological age were observed in the 447 
examined metabolomics space. 448 

Previously, a multiomic estimate for chronological age (biological age) has been calculated 449 
for the Arivale cohort48. Importantly, the difference between chronological and biological ages (Δ age) 450 
was a more accurate metric of wellness than chronological age (i.e., negative and positive Δ ages 451 
indicated healthier and unhealthier conditions than chronologically expected, respectively) and 452 
modifiable (i.e., lifestyle intervention decreased Δ age). Hence, we further explored the relationships 453 
between module regulation and health conditions by re-performing DIRAC analysis on the Arivale 454 
proteomics with Δ age-stratified groups; we divided the Arivale cohort into tertiles per sex by 455 
chronological age (referred as “CA3”) and further stratified each CA3 group into five subgroups by Δ 456 
age (referred as “DA5”; Fig. 6e, Supplementary Fig. 4c). Under the rank consensus of the most 457 
negative Δ age subgroup in young CA3 group (Y-subQ1) and the most positive Δ age subgroup in old 458 
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CA3 group (O-subQ5), the module RMS mean showed significant negative and positive correlations 459 
with the quantile order of DA5 subgroups in young and old CA3 groups, respectively (Spearman’s ρ = 460 
−0.42 (Y-subQ1, young female), −0.56 (Y-subQ1, young male), 0.51 (O-subQ5, old female), 0.60 (O-461 
subQ5, old male); Fig. 6f). Moreover, these negative and positive correlations between the module 462 
RMS mean and the quantile order of DA5 subgroups under the Y-subQ1 and O-subQ5 rank 463 
consensus, respectively, were observed in the other CA3 groups as a tendency or with statistical 464 
significance based on the Holm–Bonferroni adjustment (Fig. 6f). These results suggest that module 465 
regulation was generally more similar between closer DA5 groups and the regulatory patterns were 466 
vastly dissimilar between Y-subQ1 and O-subQ5. To identify the module whose regulation similarity 467 
to Y-subQ1 or O-subQ5 was associated with Δ age, we regressed the RMS under the Y-subQ1 or O-468 
subQ5 consensus to Δ age with chronological age, BMI, and ancestry PCs as covariates for each of the 469 
19 modules, each rank consensus, each sex, and each CA3 group. There were 11, 7, 6, 13, 1, and 4 470 
modules exhibiting a significant negative association under the Y-subQ1 rank consensus and 5, 10, 9, 471 
7, 1, and 10 modules exhibiting a significant positive association under the O-subQ5 rank consensus 472 
for female young, female middle, female old, male young, male middle, and male old CA3 groups, 473 
respectively, based on “conservatively” FDR-adjusted P < 0.05 (see Methods; Fig. 6g). For instance, 474 
neutrophil chemotaxis (GO:0030593) exhibited significant negative and positive associations of the 475 
RMS with Δ age in both sexes and all the CA3 groups, except for male middle CA3 group, under the 476 
Y-subQ1 and O-subQ5 rank consensus, respectively (Supplementary Fig. 4d), suggesting that this 477 
module was gradually changed across Δ age and its regulatory pattern was vastly dissimilar between 478 
biologically younger and biologically older individuals. Likewise, we re-performed DIRAC analysis 479 
on the Arivale metabolomics with Δ age-stratified groups, and observed the same association patterns 480 
between the RMS under the Y-subQ or O-subQ5 rank consensus and Δ age (Supplementary Fig. 6). 481 

Altogether, these results imply that the regulatory patterns of proteomic and metabolomic 482 
modules shifted depending on both chronological and biological ages and that the tight module 483 
regulation representatively corresponded to a healthier state in the young stage but an unhealthier state 484 
in the old stage. 485 

 486 

Discussion 487 

Studies in invertebrate organisms and mice have shown multiple ways to extend lifespan and postpone 488 
age-related diseases3,10–12. Aging can be slowed, and healthspan can be extended, by mutation of 489 
individual genes, dietary restrictions, or oral administration of compounds. Data are becoming 490 
available to determine which of the many cellular and molecular traits modified by each of these 491 
interventions are shared across slow-aging models and which are less universal. Elucidation of the 492 
physiological and cellular mechanisms of effective interventions will provide clues for possible 493 
measures to improve human health and may also give useful prognostic information. In this study, we 494 
demonstrated the following key findings: (1) prolongevity interventions generally tightened the 495 
systems-level regulation of biological processes at both transcriptional and post-transcriptional layers 496 
in mice; (2) fatty acid metabolism emerged as a common process shifted by multiple prolongevity 497 
interventions; (3) the systems-level regulation of biological processes was associated with both 498 
chronological and biological ages in humans. 499 

By leveraging mouse omics datasets and systems-level approaches, we demonstrated that 500 
prolongevity interventions modified biological processes and metabolic reactions at the systems level 501 
(Fig. 2–5). In particular, DIRAC analyses revealed that the tightening of module regulation was a 502 
general signature of the prolongevity interventions within the measured proteomic and transcriptomic 503 
spaces (Fig. 2a, 3f, 5a). Interestingly, a previous study using DIRAC revealed the general loosening of 504 
module regulation in more malignant phenotypes and later stages of cancer progression40. Given that 505 
cancer resistance and longevity share commonality in mechanisms such as DNA repair and telomere 506 
maintenance55,59, aging may be promoted, in part, by loss of tight regulation for pertinent modules, 507 
and its tightness maintenance may be a key longevity strategy. Furthermore, we identified at least 12 508 
proteomic modules (Fig. 2b, Supplementary Data 1), 1,829 transcriptomic modules (Supplementary 509 
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Fig. 3a, Supplementary Data 5), and 1,822 reactions (Fig. 4a, Supplementary Data 3) affected by any 510 
of the prolongevity interventions. These modules and reactions included the biological processes 511 
highly related to “aging hallmarks”55 and “pillars of aging”1, such as amino acid regulation, fatty acid 512 
regulation, TCA cycle, stress response, and inflammation, consistent with the proposed roles of these 513 
processes in aging6–9,55. Therefore, our current study showed the power of systems-level approaches to 514 
explore and test hypotheses about the control of aging and longevity in mammals, and provided a 515 
translational implication that potential prolongevity interventions may be identified and evaluated 516 
based on their regulatory effects on these systems. 517 

Fatty acid β-oxidation is the catabolic process of fatty acid breakdown for energy production, 518 
with mitochondria and peroxisomes being the major involved organelles60. We demonstrated that fatty 519 
acid β-oxidation was tightened in both proteins and transcripts consistently across mechanistically 520 
distinct prolongevity interventions (Fig. 2d, 5c). We also observed that the system transporting 521 
proteins into peroxisomes was tightened in proteins consistently across the interventions 522 
(Supplementary Fig. 1c), and implied the possibility that some aspects of mitochondrial functions 523 
were affected by 17aE2 and Rapa (Fig. 3e). Moreover, we showed that reactions involved in fatty acid 524 
synthesis and oxidation were concordantly shifted across MR, GHRKO, and SnellDW (Fig. 4d, e, 525 
Supplementary Fig. 2a, b). All these findings support the conclusion that fatty acid β-oxidation was 526 
directed towards tight control in a whole cellular system for longevity. At the same time, this systems-527 
level control of fatty acid β-oxidation was observed quite possibly through different mechanisms by 528 
each intervention. For example, the tightening pattern in acetyl-CoA synthesis, which is essentially 529 
connected to fatty acid β-oxidation, was similar between 17aE2 and Rapa, but different from ACA 530 
(Supplementary Fig. 1b); 17aE2 and Rapa, but not ACA, similarly modulated expression patterns of 531 
mitochondrial proteins (Fig. 3b); the prolongevity interventions other than MR, GHRKO, and 532 
SnellDW did not show the (significant) flux changes in fatty acid β-oxidation (Fig. 4d). Hence, we 533 
hypothesize that different prolongevity interventions lead to a similar rerouting of energy metabolism 534 
through fatty acid metabolism, albeit through different mechanisms. Although the findings from 535 
DIRAC, WGCNA and GEM do not indicate the functional direction for cells (e.g., tight regulation can 536 
be either augmentation or attenuation of a pathway), there are multiple reports about fatty acid 537 
oxidation in aging and longevity; AMPK, an essential kinase of the nutrient-sensing signaling 538 
pathways in longevity, inhibits fatty acid synthesis and promotes fatty acid oxidation via inhibition of 539 
acetyl-CoA carboxylase 1 (ACC1) and ACC26,61; CR increases fatty acid synthesis in adipose tissue 540 
but results in enhancing whole-body oxidation62; ketogenic diet specifically upregulates the genes 541 
involved in fatty acid oxidation in liver15; overexpression of fatty acid-binding protein (FABP) or 542 
dodecenoyl-CoA delta-isomerase (DCI), corresponding to the acceleration of fatty acid β-oxidation, 543 
increased lifespan in D. melanogaster63. Therefore, tight regulation promoting fatty acid β-oxidation 544 
could be a common signature among prolongevity strategies. On the other hand, the prominence of the 545 
nutrient-sensing or energy-producing process from liver-derived datasets might be unsurprising 546 
because the liver is a major metabolic organ. However, we also observed that prolongevity 547 
interventions tightened the modules less often associated with liver and metabolism, such as RIG-I 548 
signaling (GO:0039529; Supplementary Fig. 1e, f, 3f) and CD40 signaling (GO:0023035; 549 
Supplementary Data 1). In the mid-life human female brain, metabolic and immune systems are 550 
shifted by chronological age: glucose metabolism and fatty acid β-oxidation are attenuated and 551 
enhanced, respectively, and chronic low-grade innate and adaptive immune responses are enhanced64. 552 
Hence, the interrelationship between fatty acid metabolism and innate/adaptive inflammation is an 553 
interesting area for future investigations. 554 

Aging accompanies progressive loss of homeostasis. This intuition can be qualitatively 555 
assessed by “allosteric load” (also known as “physiological dysregulation”), and this measure 556 
increases with chronological age65–67. Hence, we anticipated that the tightness of module regulation 557 
would monotonically decrease with chronological age. However, we observed the “U-shaped” 558 
trajectory of the RCI median: the tight module regulation decreased as a function of chronological age 559 
up to mid-life, and increased from mid-life onwards (Fig. 6a, Supplementary Fig. 5c). Our consecutive 560 
analyses (Fig. 6b, f, Supplementary Fig. 5d, 6c) implied that the tight patterns of module regulation 561 
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were representatively characterized by a young healthy state (Y-subQ1) and an old unhealthy state (O-562 
subQ5). Namely, one of the interpretations is that the U-shaped trajectory was deduced from the 563 
higher variations in health state among middle-aged individuals. These findings suggest that the 564 
binary interpretation of “dysregulation” is insufficient for understanding molecular and physiological 565 
processes in aging. As a limitation, we cannot deny potential effects of survivorship bias on the state 566 
transition observed in older ages, which may have diminished the monotonic reduction pattern. A 567 
further limitation is that we cannot deduce exactly which mechanisms are responsible for regulating 568 
the systems entropy that we measure (i.e., rank conservation); these mechanisms are predominantly 569 
under autonomous intracellular controls such as biochemical and transcriptional regulations but could 570 
be affected by behavioral/neurological or external/environmental controls, which may have generated 571 
the “U-shaped” pattern. Nevertheless, we have previously reported that healthy individuals have an 572 
increasingly divergent gut microbiome compositional state with age68. A bacterial microbiome in D. 573 
melanogaster is necessary for age-dependent changing patterns in metabolism and immune 574 
response69. Hence, there may be a critical link between the aging patterns of module regulation and 575 
gut microbiome, especially in metabolomic space70, which lead to the tight module regulation in older 576 
ages. 577 

There are several limitations to this study. In DIRAC and GEM analyses, we pooled female 578 
and male samples due to a small sample size. Hence, it is highly possible that we failed to identify 579 
sex-dependent changes, especially related to the known sex-dependent effects of ACA, 17aE2, and 580 
Protandim on lifespan extension19–21. Because this study successfully validated the utility of systems-581 
level approaches and because sex dimorphism in aging and longevity remains not fully elucidated71, 582 
we plan to address this point as a continued study by leveraging the upcoming datasets that are 583 
generated from experiments with larger sample sizes. Additionally, there were marked differences in 584 
study design between the mouse and human datasets (Fig. 1); the former addressed the systems that 585 
were changed by prolongevity interventions under young adults, while the latter addressed the systems 586 
that were observed across age in an adult population. To directly link the findings from mice to 587 
humans, one could theoretically compare the DIRAC metrics between short-lived and long-lived 588 
individuals or between the individuals with or without prolongevity intervention across decades, for 589 
example, although this is not so easy in practice. In addition, the regulation for biological systems may 590 
not be conserved between mouse liver and human blood. Moreover, there were few commonly 591 
examined modules between mouse liver proteomics and human blood proteomics due to the difference 592 
in the measured proteins (Supplementary Data 1, 8). Hence, our findings in mice and humans may be 593 
entirely unrelated. However, a coherent explanation may be possible to connect our mouse and human 594 
findings. Given that the median lifespans of UM-HET3 mice in our experimental facility are 595 
approximately 886 and 863 days for females and males, respectively, the mice used in this study (12 596 
months old) completed around 42% of their potential lifespan. Assuming 80 years as a median 597 
lifespan for humans, this would correspond to roughly 34 years-old humans. Therefore, the module 598 
state tightened by the prolongevity interventions in mice (Fig. 2, 3, and 5) may be related to the young 599 
healthier state observed in humans (Y-subQ1 in Fig. 6 and Supplementary Fig. 6), in line with the 600 
clinical anticipation that appropriate interventions (e.g., prolongevity drug administration, dietary CR) 601 
can slow aging in humans, at least, at young or middle stage. Further investigations, including how 602 
prolongevity interventions affect older mice, are required to deepen our understanding of systems-603 
level regulation. 604 

  605 
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Methods 606 

Mouse liver proteomic datasets 607 

Liver samples from mice fed with lifespan-extending drugs were collected as previously described57. 608 
Briefly, 12 (6 female and 6 male) genetically heterogeneous UM-HET3 mice were prepared for each 609 
sample group: control, acarbose (ACA), 17α-estradiol (17aE2), and rapamycin (Rapa). The drugs 610 
were treated via daily feeding of the Purina 5LG6 diet with ACA (1,000 mg kg−1), 17aE2 (14.4 mg 611 
kg−1), or Rapa (14 mg kg−1) starting at 4 months. At 12 months, the mice fasted for 18 h and were 612 
euthanized for liver sampling. Excised livers were washed in phosphate-buffered saline (PBS) and 613 
snap-frozen for proteomic analysis. All procedures followed the methods recommended by the 614 
National Institute on Aging (NIA) Interventions Testing Program (ITP)18. Hereinafter, this experiment 615 
is called “LC-M001”. 616 

Liver samples from 4EGI-1-treated mice were collected as previously described56. Each 617 
group, control and 4EGI-1, consisted of 4 female and 4 male UM-HET3 mice aged 6 to 8 months old. 618 
Controls received an intraperitoneal injection of 15 µL dimethyl sulfoxide (DMSO) daily for 5 days, 619 
and treated mice received DMSO containing 4EGI-1 at 75 mg per kg body weight. After the last 620 
injection, the mice were fasted for 18 h prior to euthanasia. Excised livers were washed in PBS and 621 
snap-frozen for proteomic analysis. Hereinafter, this experiment is called “LC-M004”. 622 

The frozen livers were dissected, processed with lysis and trypsin digestion, and analyzed by 623 
mass spectrometry (MS) for quantitative protein abundance. Liver sections were placed in lysis buffer 624 
(50 mM tris(hydroxymethyl)aminomethane (Tris)-HCl pH 8.0 and 5% sodium dodecyl sulfate (SDS)) 625 
and homogenized using a Precellys® 24 tissue homogenizer (Bertin Technologies SAS, Montigny-le-626 
Bretonneux, France). For each sample, protein concentrations were determined by a bicinchoninic 627 
acid (BCA) assay. 300 µg of solubilized protein extract in 5% SDS was purified to remove SDS using 628 
Midi-S-Trap™ sample processing technology (ProtiFi, New York, USA), and digested with trypsin at 629 
37 °C for 4 h. The extracted tryptic peptides were subjected to reverse phase liquid chromatography 630 
tandem mass spectrometry (LC-MS/MS), using an Easy-nLC 1000 (Thermo Fisher Scientific, 631 
Massachusetts, USA) with a 50 cm fused silica capillary (75 µm inner diameter) packed with C18 632 
(ReproSil-Pur 1.9 µm; Dr. Maisch GMBH, Ammerbuch, Germany) heated to 45 °C. The mobile phase 633 
gradient consisted of 5–35% acetonitrile and 0.1% formic acid over 3 h for the LC-M001 samples or 634 
over 2 h for the LC-M004 samples. The LC-M001 samples were analyzed on a Q Exactive-HF mass 635 
spectrometer (Thermo Fisher Scientific) in data-dependent acquisition (DDA) mode with an MS scan 636 
mass range of 375–1375 m/z and a resolution of 60,000. MS/MS scans were acquired with TopN = 15 637 
using 15,000 resolution, with an isolation width of 1.8 m/z, AGC set to 100,000, and 100 ms injection 638 
time. NCE was set to 27, and dynamic exclusion was set to 20 s. The LC-M004 samples were 639 
analyzed on an Orbitrap Fusion Lumos (Thermo Fisher Scientific) in DDA mode with an MS scan 640 
mass range of 375–1375 m/z and a resolution of 60,000. MS/MS scans were acquired with TopN = 12 641 
using 15,000 resolution with an isolation width of 1.8 m/z, AGC set to 40,000, and 30 ms injection 642 
time. NCE was set to 30, and a dynamic exclusion was set to 30 s. 643 

MS data analysis was conducted using the Trans-Proteomic Pipeline72. Peptide identification 644 
was performed by database searching with Comet73 using the mouse reference proteome 645 
UP000000589 (UniProt, downloaded on June 11, 2019) filtered to one protein sequence per gene. 646 
Peptide sequences were validated with PeptideProphet74 and iProphet75. Protein inference was 647 
performed with ProteinProphet76. Protein quantification was performed using the top-3 method77,78 on 648 
quantities obtained from the extracted ion chromatograms of the precursor signals of the identified 649 
proteotypic peptides. 650 
 651 

Mouse liver transcriptomic dataset 652 

The processed dataset of mouse liver transcriptomics was kindly provided by Vadim N. Gladyshev 653 
(Harvard Medical School). Complete descriptions are found in the original paper45. Briefly, the 654 
original experiment was designed to investigate eight prolongevity interventions: two genetically 655 
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modified models (the growth hormone receptor knockout mouse (GHRKO) and the hypopituitary 656 
Snell dwarf mouse (SnellDW)), two nutritional interventions (calorie restriction (CR) and methionine 657 
restriction (MR)), and four pharmacological interventions (ACA, 17aE2, Protandim®, and Rapa). 658 
Three 5 months-old male mice were prepared for each sample group in genetically modified models: 659 
SnellDW control (SnellWT), SnellDW, GHRKO control (GHRWT), and GHRKO. Three UM-HET3 660 
mice were prepared for each of the 22 sex- and age-distinguished sample groups in nutritional and 661 
pharmacological interventions: 6 months-old female of control, CR, ACA, 17aE2, Protandim, and 662 
Rapa; 12 months-old female of control, CR, ACA, and Rapa; 6 months-old male of control, CR, ACA, 663 
17aE2, Protandim, and Rapa; 12 months-old male of control, CR, ACA, and Rapa; 14 months-old 664 
male of MR control and MR. The nutritional and pharmacological interventions were treated via daily 665 
feeding of the Purina 5LG6 diet with CR (40% less than control) starting at 4 months, with MR 666 
(0.12% w/w methionine; cf. 0.86% w/w methionine in MR control) starting at 2 months, or with ACA 667 
(1,000 mg kg−1), 17aE2 (14.4 mg kg−1), Protandim (1,200 mg kg−1), or Rapa (42 or 14 mg kg−1 for 6 668 
or 12 months-old, respectively) starting at 4 months. The liver samples were processed for paired-end 669 
RNA sequencing using NovaSeq 6000 sequencing system (Illumina, California, USA). The processed 670 
reads after the quality filtering and adapter removal were mapped to gene and counted. After filtering 671 
out genes with low number of reads, the count data of the filtered genes was passed to the relative log 672 
expression (RLE) normalization. 673 
 674 

Human plasma proteomic and metabolomic datasets 675 

The original human plasma proteomic and metabolomic datasets relied on a cohort consisting of over 676 
5,000 individuals who participated in the Arivale Scientific Wellness program (Arivale, Washington, 677 
USA). Complete descriptions are found in the previous papers47,48,70. Briefly, an individual was 678 
eligible for enrollment if the individual was over 18 years old, not pregnant, and a resident of any US 679 
state except New York; participants were primarily recruited from Washington, California, and 680 
Oregon. In this program, multiomic data was collected, including human genomes, longitudinal 681 
measurements of clinical lab tests, proteomics, metabolomics, gut microbiomes, and wearable devices, 682 
and health/lifestyle questionnaires. Peripheral venous blood draws for all measurements were 683 
performed by trained phlebotomists at LabCorp (Laboratory Corporation of America Holdings, North 684 
Carolina, USA) or Quest (Quest Diagnostics, New Jersey, USA) service centers. Proteomic data was 685 
generated using proximity extension assay (PEA) for plasma derived from whole blood samples with 686 
several Olink Target panels (Olink Proteomics, Uppsala, Sweden), and measurements with the 687 
Cardiovascular II, Cardiovascular III and Inflammation panels were used in the present study since the 688 
other panels were not necessarily applied to all samples. Metabolomic data was generated using ultra-689 
high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for plasma 690 
derived from whole blood samples by Metabolon (North Carolina, USA). This study was conducted 691 
with deidentified data of the participants who had consented to the use of their anonymized data in 692 
research. All procedures were approved by the Western Institutional Review Board (WIRB) with 693 
Institutional Review Board (IRB) (Study Number: 20170658 at Institute for Systems Biology and 694 
1178906 at Arivale). 695 

In this study, we selected the participants for whom the multiomic biological age48 and 696 
general covariates (Body Mass Index (BMI) and ancestry principal components (PCs)) had been 697 
calculated, and retrieved the baseline proteomic or metabolomic dataset (i.e., the first time point 698 
measurement for each participant). Analytes which were missing in more than 10% of participants 699 
were removed, and participants who had missing values for more than 10% of the remaining analytes 700 
were removed. Missing values were imputed with random forest using Python missingpy library 701 
(version 0.2.0). Some proteins were measured on multiple Olink panels; these values were averaged to 702 
produce one value per protein. The final preprocessed proteomic and metabolomic datasets were 263 703 
proteins × 2,714 participants and 739 metabolites × 1,899 participants, respectively. 704 
 705 

Weighted Gene Coexpression Network Analysis 706 
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Weighted Gene Coexpression Network Analysis (WGCNA) was performed using R WGCNA 707 
package (version 1.69) according to the WGCNA methodlogy42. Analytes were initially filtered based 708 
on missing values with the default threshold setting (50%), and the remained analytes were used to 709 
generate the coexpression network. Network generation was performed using Spearman’s correlation 710 
and the signed-hybrid approach within the WGCNA package. The β parameter to approximate a scale-711 
free topology was defined with 7 for the LC-M001 proteomics and 11 for the Arivale metabolomics, 712 
using the pickSoftThreshold function. Module identification was subsequently performed using the 713 
topological overlap matrix and the default hierarchical clustering approach with dynamic tree cut. 714 
Consequently, nine modules were identified for the LC-M001 proteomics (Fig. 3a) and the Arivale 715 
metabolomics (Supplementary Fig. 5b). The identified modules were summarized with “module 716 
eigengene”: the q-module eigengene E(q) corresponds to the first PC of the expression matrix of 717 
proteins in that module. In addition, intramodular connectivity (i.e., the sum of the adjacency to the 718 
other nodes within the module) was calculated for each protein of the modules. 719 
 720 

Differential Rank Conservation analysis 721 

– Preprocessing 722 

To apply Differential Rank Conservation (DIRAC) analysis, missingness in the mouse datasets was 723 
conservatively resolved by filtering out the analytes that were not detected in one or more samples; the 724 
final number of analytes was 2,231 proteins for DIRAC analysis of the LC-M001 proteomics, 2,112 725 
proteins for DIRAC analysis of the LC-M001 and LC-M004 proteomics, and 11,192 transcripts for 726 
DIRAC analysis of the M001-related transcriptomics. Missingness in the human datasets was resolved 727 
by imputation during the aforementioned cohort-defining pipeline. In this study, the analyte values 728 
were normalized using “robust Z-score” (i.e., Z-score using median and median absolute deviation 729 
(MAD) instead of mean and SD, respectively) for each sample, and further normalized using robust Z-730 
score for each analyte based on the median and MAD of the control group (mouse datasets) or the 731 
whole population (human datasets). In mouse datasets, samples with different conditions in sex and 732 
age but the same intervention were handled as a single sample group to calculate robust DIRAC rank 733 
consensus from small sample size, while recognizing the false negative risks for potential sex or age-734 
dependent changes. 735 

– Module set preparation 736 

For each protein in the preprocessed datasets, the Gene Ontology Biological Process (GOBP) 737 
annotations were retrieved using the European Molecular Biology Laboratory’s European 738 
Bioinformatics Institute (EMBL-EBI) QuickGO application programming interface (API) with a 739 
query of UniProt ID (January 26, 2021 for mouse datasets; June 1, 2022 for human dataset). For each 740 
gene in the preprocessed dataset, the GOBP annotations were retrieved using R org.Mm.eg.db 741 
package (version 3.12.0) with a query of the Ensembl ID. Each GOBP term defines a priori module 742 
consisting of all annotated proteins/genes in the corresponding species (i.e., backgrounds). To 743 
maintain the biological meaning of annotation, the modules were further selected if at least half of the 744 
members in the module, with a minimum of four members, were quantified in the preprocessed 745 
datasets; the final a priori module set was 164 modules for DIRAC analysis of the LC-M001 746 
proteomics (Supplementary Data 1), 153 modules for DIRAC analysis of the LC-M001 and LC-M004 747 
proteomics (Supplementary Data 7), and 3,747 modules for DIRAC analysis of the M001-related 748 
transcriptomics (Supplementary Data 5). Due to the small number of quantified proteins in the 749 
preprocessed Arivale proteomics, the selection criterion was relaxed to 30% of the proteins in each 750 
module but still at least four proteins; the final a priori module set was 19 modules for DIRAC 751 
analysis of the Arivale proteomics (Supplementary Data 8). 752 

Data-driven modules were prepared by applying WGCNA to each of the LC-M001 753 
proteomics and the Arivale metabolomics, as described above. Because missingness was differently 754 
handled between DIRAC analysis and WGCNA, each WGCNA-identified module could have the 755 
analytes that were not retained in the preprocessed datasets for DIRAC analysis (Fig. 3a, 756 
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Supplementary Fig. 5b). Hence, the WGCNA modules were further selected if at least half of the 757 
members in the module, with a minimum of four members, were retained in the preprocessed datasets; 758 
the final data-driven module set was seven modules for DIRAC analysis of the LC-M001 proteomics 759 
(Supplementary Data 2) and nine modules for DIRAC analysis of the Arivale metabolomics 760 
(Supplementary Data 9). 761 

– DIRAC calculation 762 

The DIRAC algorithm40 was reimplemented in Python (version 3.7.6 or 3.9.7). Briefly, pairwise 763 
comparisons of analyte values within a module are initially performed for each sample, generating a 764 
“ranking/ordering dataframe” which contains binary values about whether analytei value is larger than 765 
analytej value. Next, consensus of the binary values is calculated per analytei–analytej pair for each 766 
sample group (called “phenotype” in the original paper) by majority vote, generating a binary 767 
“ranking/ordering template dataframe” which corresponds to the “rank” consensus in the DIRAC 768 
algorithm. Then, each analytei–analytej pair in the ranking/ordering dataframe is judged whether it 769 
matches or mismatches with a consensus in the ranking/ordering template dataframe. Rank matching 770 
score (RMS) for each module against each consensus is obtained per sample by calculating a ratio of 771 
the number of matched pairs. Finally, RMSs for each module against each consensus is summarized 772 
with the arithmetic mean per sample group. When the mean of RMSs in a sample group is based on 773 
the consensus of the sample group itself, it corresponds to rank conservation index (RCI); that is, RCI 774 
is a special case of the RMS mean. 775 
 776 

Genome-scale metabolic model reconstruction 777 

For each of the samples in the M001-related transcriptomics, a “context-specific” (i.e., sample-778 
specific) metabolic network model was reconstructed from a mouse genome-scale metabolic model 779 
(GEM), iMM186543, which is a knowledge-based multi-compartment model consisting of 1,865 780 
metabolic genes, 10,612 reactions, and 5,839 metabolites. According to the gene–protein–reaction 781 
(GPR) associations, the RLE values were integrated with the generic iMM1865 for each sample using 782 
the integrative metabolic analysis tool (iMAT) algorithm79. Subsequently, to predict the flux values of 783 
reactions at steady state, flux variability analysis (FVA) was performed for each context-specific 784 
GEM using the COBRA toolbox (version 3.0)80. FVA evaluates the flux range for each reaction by 785 
optimizing all the potential flux distributions to minimize or maximize a pre-defined objective 786 
function under the solution space (i.e., under the context-specific constraints), which is known as the 787 
LP (Linear Programming) and MILP (Mixed Integer Linear Programming) problems. In this study, the 788 
biomass reaction (BIOMASS_reaction) defined in the generic iMM1865 was used as the objective 789 
function to be maximized, and FVA was performed for 90% of the optimal solution using the fastFVA 790 
function. COBRA toolbox was implemented in MATLAB (R2019a), and academic licenses of Gurobi 791 
optimizer (version 7.5) and IBM CPLEX (version 12.7.1) were used to solve LP and MILP. As a 792 
result, the flux ranges were successfully predicted for 7,930 reactions among the 10,612 reactions 793 
defined in the generic GEM, and the maximum value was representatively used as the predicted flux 794 
value in this study (Supplementary Data 3). 795 
 796 

Statistical analysis 797 

Almost all processing and null hypothesis testing were performed using R (version 4.1.1) with R 798 
tidyverse (version 1.3.1), multcomp (version 1.4.19), dunn.test (version 1.3.5), and clusterProfiler 799 
(version 4.2.2)81 packages, while correlation tests, ordinary least squares (OLS) regression analyses, 800 
and preprocessing for them were performed using Python (version 3.7.6 or 3.9.7) with Python NumPy 801 
(version 1.18.5 or 1.21.3), pandas (version 1.0.5 or 1.3.4), SciPy (version 1.4.1 or 1.7.1) and 802 
statsmodels (version 0.11.1 or 0.13.0) libraries. P < 0.05 was considered statistically significant in all 803 
analyses. Group statistics (e.g., sample size, mean, SEM) and test summary (e.g., test statistic, exact 804 
P-value) are found in Supplementary Data 1–9. 805 
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For comparing overall RCI distributions, differences in the mean of RCIs between control and 806 
each intervention were assessed using two-sided Dunnett’s test (Fig. 2a, 3f, 5a) or repeated two-sided 807 
Student’s t-tests with the multiple hypothesis adjustment by the Holm–Bonferroni method (Fig. 5e). 808 
For identifying the module changed by any of the interventions, the intervention effect on RCI (i.e., 809 
the mean of RMSs under the rank consensus of own sample group) was assessed using Analysis of 810 
Variance (ANOVA; RMS ~ intervention) for each module (Fig. 2b, 2c, 3g, Supplementary Fig. 3a, 811 
3b) or each module and each omics (Fig. 5b), while adjusting multiple hypotheses with the 812 
Benjamini–Hochberg method. Note that GOBP modules are partly dependent on each other because 813 
the same gene/protein can be shared between GOBP terms; hence, this simple adjustment approach 814 
could inflate false negatives, and is regarded as a conservative approach. Additionally note that sex 815 
was not included in the ANOVA models since RMS and RCI themselves were calculated from the 816 
rank consensus of pooled groups, as described above. For subsequently clarifying which intervention 817 
changed (tightened or loosened) the module, the post hoc comparisons for RCI between control and 818 
each intervention were assessed using two-sided Dunnett’s test (Fig. 2b–d, 3g, 3h, 5h, Supplementary 819 
Fig. 1a, 1c, 1e, 3a–c, 3g, 3j) or repeated two-sided Student’s t-tests with the multiple hypothesis 820 
adjustment by the Holm–Bonferroni method (Fig. 5b–d). For examining the similarity of module 821 
regulation among interventions (Fig. 2c, 2e, 3i, Supplementary Fig. 1b, 1d, 1f, 3b, 3d), differences in 822 
the mean of RMSs between control and each intervention were assessed for each rank consensus using 823 
two-sided Dunnett’s test. Note that the sample group corresponding to the rank consensus group was 824 
excluded from these tests, because its mean of RMSs (i.e., RCI) is expected to follow different 825 
distribution from the other sample groups’ one. For identifying the module whose regulation similarity 826 
to the LC-M004 sample groups (Control-2, 4EGI-1) was different among the LC-M001 sample groups 827 
(Control-1, ACA, 17aE2, Rapa), the intervention effect on the RMS mean was assessed using 828 
ANOVA (RMS ~ intervention) for each module and each rank consensus, while adjusting multiple 829 
hypotheses with the Benjamini–Hochberg method (i.e., a conservative approach, as described above). 830 
For subsequently clarifying which intervention (similarly or dissimilarly) changed the module (Fig. 5f, 831 
5g, Supplementary Fig. 3e, 3f, 3h, 3i), the post hoc comparisons for the RMS mean between Control-1 832 
and each intervention (ACA, 17aE2, Rapa) were assessed using repeated two-sided Student’s t-tests 833 
with the multiple hypothesis adjustment by the Holm–Bonferroni method. For examining whether the 834 
RCI median was dependent on the characteristics of each group (Supplementary Fig. 4b), two-sided 835 
statistical significance of the RCI median was assessed using a permutation test where an empirical 836 
null-hypothesis distribution of the RCI median was estimated from 20,000 DIRAC re-calculations 837 
with the shuffles of sample–group correspondence, while adjusting multiple hypotheses with the 838 
Holm–Bonferroni method. For examining overall relationship between the similarity of module 839 
regulation and stratified group, Spearman’s correlation between the mean of RMSs and the quantile 840 
order of stratified groups was assessed for each sex and each rank consensus (Fig. 6b, Supplementary 841 
Fig. 5d) or each sex, each chronological age tertile (CA3) group, and each rank consensus (Fig. 6f, 842 
Supplementary Fig. 6c), while adjusting multiple hypotheses with the Holm–Bonferroni method. For 843 
identifying the module whose regulation similarity was associated with chronological age (Fig. 6c, 6d, 844 
Supplementary Fig. 5e, 5f), RMS was regressed to chronological age with BMI and ancestry PC1–5 as 845 
covariates (RMS ~ chronological age + log(BMI) + PC1 + PC2 + PC3 + PC4 + PC5) for each module, 846 
each sex, and each rank consensus, while adjusting multiple hypotheses with the Benjamini–Hochberg 847 
method (i.e., a conservative approach for GOBP modules, as described above). For identifying the 848 
module whose regulation similarity was associated with Δ age (Fig. 6g, Supplementary Fig. 4d, 6d, 849 
6e), RMS was regressed to Δ age with chronological age, BMI, and ancestry PC1–5 as covariates 850 
(RMS ~ Δ age + chronological age + log(BMI) + PC1 + PC2 + PC3 + PC4 + PC5) for each module, 851 
each sex, each CA3 group, and each rank consensus, while adjusting multiple hypotheses with the 852 
Benjamini–Hochberg method (i.e., a conservative approach for GOBP modules, as described above). 853 

For identifying the WGCNA module changed by any of the interventions, the intervention 854 
effect on the module eigengene was assessed using ANOVA (E(q) ~ intervention + sex + intervention 855 
× sex) for each module, while adjusting multiple hypotheses with the Bonferroni method. For 856 
subsequently clarifying which intervention changed the module eigengene (Fig. 3b), the post hoc 857 
comparisons for the E(q) mean between control and each intervention were assessed using two-sided 858 
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Dunnett’s test. For examining the relationship between the intervention effect on each protein in the 859 
module and their respective intramodular connectivity (Fig. 3d), the main effect of intervention on 860 
each protein k was calculated using ANOVA (Proteink(q) ~ intervention + sex + intervention × sex), 861 
and then Spearman’s correlation between the calculated main effect of intervention and intramodular 862 
connectivity was assessed. 863 

For identifying the reaction whose flux was changed by any of the interventions (Fig. 4a), the 864 
intervention effect on the flux value was assessed using Kruskal–Wallis H-test (flux value ~ 865 
intervention) for each reaction, while adjusting multiple hypotheses with the Benjamini–Hochberg 866 
method. Note that reactions in GEM are partly dependent on each other because the same 867 
gene/protein/metabolite can be shared between the reactions; hence, this simple adjustment approach 868 
could inflate false negatives, and is regarded as a conservative approach. Additionally note that 869 
samples were pooled per intervention to increase the statistical power from small sample size, while 870 
recognizing the false negative risks for potential sex or age-dependent changes. For subsequently 871 
clarifying which intervention changed the reaction flux (Fig. 4b–d), the post hoc comparisons for the 872 
flux value median between control and each intervention were assessed using two-sided Dunn’s test 873 
with the multiple hypothesis adjustment by the Holm–Bonferroni method. For examining the 874 
difference between CR and MR (Supplementary Fig. 2c–f), the additional post hoc comparisons were 875 
assessed between CR and its control, between MR and its control, and between CR and MR. For 876 
examining which subsystems in GEM were shifted by ACA, MR, GHRKO, and SnellDW (Fig. 4e, 877 
Supplementary Fig. 2a, 2b) or differently shifted between CR and MR (Supplementary Fig. 2g), 878 
enrichment in the significantly changed reactions was assessed using overrepresentation test for each 879 
of the subsystems that were annotated to any of the significantly changed reactions, while adjusting 880 
multiple hypotheses with the Benjamini–Hochberg method. 881 
 882 

Data visualization 883 

Almost all results were visualized using Python (version 3.7.6 or 3.9.7) with Python matplotlib 884 
(version 3.1.3 or 3.4.3), seaborn (version 0.10.1 or 0.11.2), venn (version 0.1.3) libraries, while the 885 
results of enrichment analyses were visualized using R (version 4.1.1) with R ggplot2 (version 3.3.6) 886 
and enrichplot (version 1.14.2) packages. The results were summarized as the mean with 95% 887 
confidence interval (CI) or the boxplot, as indicated in each figure legend. Note that this 95% CI of 888 
mean or median was simultaneously calculated during visualization using the seaborn barplot or 889 
boxplot API, respectively; hence, this CI is not exactly same with that used in statistical analysis but 890 
for presentation purpose only. Hierarchical clustering was simultaneously performed during 891 
visualization using seaborn clustermap API with the Ward’s linkage method for Euclidean distance. 892 
For the values used in Fig. 4a, the group mean of flux values for each reaction was centered by 893 
subtracting the group mean of the corresponding control, and then scaled by the maximum absolute 894 
value across intervention groups using MaxAbsScaler of Python scikit-learn library (version 1.0.1). In 895 
the scatterplots with regression lines, the adjusted sample RMS with the covariates was calculated as 896 
the mean ± residual using the OLS linear regression for each plot that was the same used in statistical 897 
analysis except for dropping the independent variable (i.e., chronological age in Fig. 6d, 898 
Supplementary Fig. 5f; Δ age in Supplementary Fig. 4d, 6e), and the regression line with 95% CI was 899 
simultaneously computed during visualization using the seaborn regplot API. 900 
 901 

Data availability 902 

The MS data of the LC-M001 and LC-M004 proteomics have been deposited to the ProteomeXchange 903 
Consortium via the PRIDE partner repository (PXD035255)82. Note that this data will be available 904 
after journal publication; until then, requests should be directed to the corresponding authors. The 905 
processed data of M001-related transcriptomics was kindly provided by Vadim N. Gladyshev 906 
(Harvard Medical School), and raw data is available on the NCBI’s Gene Expression Omnibus (GEO) 907 
repository (GSE131901). The Arivale datasets can be accessed by qualified researchers for research 908 
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purposes. Requests should be sent to data-access@isbscience.org. The de-identified data will be 909 
available to the qualified researchers on submission and approval of a research plan. 910 
 911 

Code availability 912 

Code used in this study is freely available in GitHub (https://github.com/longevity-consortium). 913 
  914 
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Figures 1109 

 1110 
Figure 1. Study design overview. 1111 

Schematic representation of this study. Utilizing five omics datasets and three systems-level analyses, 1112 
this study addresses systems-level changes in the molecular regulation of biological processes under 1113 
multiple prolongevity interventions in mice and across age in humans. LC: Longevity Consortium, a 1114 
project supported by the National Institute on Aging (NIA). Dataset 2 was generated in the previous 1115 
study45. Datasets 4 and 5 were collected through the previous studies47,48. 1116 
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 1118 
Figure 2. Prolongevity interventions tightened the regulation of a priori proteomic modules. 1119 

a–e Differential Rank Conservation (DIRAC) analysis of the LC-M001 liver proteomics using Gene 1120 
Ontology Biological Process (GOBP)-defined modules (see Supplementary Data 1 for complete 1121 
results). a, b Overall distribution of module rank conservation index (RCI). Data (a): the 25th 1122 
percentile (Q1, box bottom), median (center line, notch: 95% confidence interval (CI) for the median), 1123 
and the 75th percentile (Q3, box top); whiskers span [max(xmin, Q1 − 1.5 × IQR), min(xmax, Q3 + 1.5 × 1124 
IQR)], where xmin and xmax are the minimum and maximum, respectively, in the observed values and 1125 
IQR = Q3 − Q1; n = 164 modules. ***P < 0.001 by two-sided Dunnett’s test. Top color columns in b 1126 
highlight the modules that exhibited nominal or “conservatively” false discovery rate (FDR)-adjusted 1127 
P < 0.05 (see Methods) for the main effect of intervention on each module RCI by Analysis of 1128 
Variance (ANOVA) and that exhibited significantly higher RCI in intervention group than control 1129 
group (i.e., “tightened” module; P < 0.05 by post hoc two-sided Dunnett’s test). c Venn diagrams of 1130 
the significantly tightened modules by each intervention (conservatively FDR-adjusted P < 0.05). For 1131 
the tightened modules in each intervention group, sub-venn diagram indicates the modules for which 1132 
the other intervention groups exhibited significantly higher or lower mean of rank matching scores 1133 
(RMSs) under the rank consensus than control group (i.e., “similarly” or “dissimilarly” changed 1134 
module to the consensus group, respectively; P < 0.05 by two-sided Dunnett’s test). n/a: logically not 1135 
available. d, e Sample RMS distributions for an example of the tightened modules (GO:0031998, 1136 
regulation of fatty acid β-oxidation). Dashed line in e indicates the mean of RMSs for the sample 1137 
group corresponding to the rank consensus (i.e., RCI). Data: the mean (dot) with 95% CI (bar); n = 12 1138 
mice. *P < 0.05, **P < 0.01, ***P < 0.001 by two-sided Dunnett’s test. 1139 
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 1141 
Figure 3. Prolongevity interventions tightened the regulation of data-driven proteomic modules. 1142 

a–e Weighted Gene Co-expression Network Analysis (WGCNA) of the LC-M001 liver proteomics. a 1143 
The number of proteins in each WGCNA-identified module. WGCNA: proteins used in WGCNA, 1144 
DIRAC: proteins retained after the processing for Differential Rank Conservation (DIRAC) analysis 1145 
(f–i). b Sample eigenvalue distributions for the Darkgreen module. Data: the 25th percentile (Q1, box 1146 
bottom), median (center line), and the 75th percentile (Q3, box top); whiskers span [max(xmin, Q1 − 1.5 1147 
× IQR), min(xmax, Q3 + 1.5 × IQR)], where xmin and xmax are the minimum and maximum, respectively, 1148 
in the observed values and IQR = Q3 − Q1; n = 12 mice. *P < 0.05, **P < 0.01 by two-sided Dunnett’s 1149 
test. c Principal component (PC) analysis of each sample’s Darkgreen-module protein levels. The 1150 
percentage of the axis title indicates the explained variance by the PC. d Relationship between the 1151 
intervention effect on each protein in the Darkgreen module and their respective intramodular 1152 
connectivity. The P-value of y-axis corresponds to the main effect of intervention on each protein 1153 
level by Analysis of Variance (ANOVA). Each boxplot metric is the same with b. e Top 30 hub 1154 
proteins within the Darkgreen module. Green, gray, and white colors correspond to mitochondrial, 1155 
cytosolic metabolism-related, and other proteins, respectively. f–i DIRAC analysis of the LC-M001 1156 
liver proteomics using WGCNA-identified modules (see Supplementary Data 2 for complete results). 1157 
f, g Overall distribution of module rank conservation index (RCI). Data (f): each boxplot metric is the 1158 
same with b; n = 7 modules. ***P < 0.001 by two-sided Dunnett’s test. Top color columns in g 1159 
highlight the modules that exhibited false discovery rate (FDR)-adjusted P < 0.05 for the main effect 1160 
of intervention on each module RCI by ANOVA and that exhibited significantly higher RCI in 1161 
intervention group than control group (i.e., “tightened” module; P < 0.05 by post hoc two-sided 1162 
Dunnett’s test). h, i Sample rank matching score (RMS) distributions for the Darkgreen module. 1163 
Dashed line in i indicates the mean of RMSs for the sample group corresponding to the rank 1164 
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consensus (i.e., RCI). Data: the mean (dot) with 95% CI (bar); n = 12 mice. *P < 0.05, **P < 0.01, 1165 
***P < 0.001 by two-sided Dunnett’s test. 1166 
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 1168 
Figure 4. Prolongevity interventions shifted the flux regulation in fatty acid metabolism. 1169 

a–e An integrated analysis of the M001-related liver transcriptomics45 with mouse genome-scale 1170 
metabolic model (GEM; see Supplementary Data 3 and 4 for complete results). CR: calorie restriction; 1171 
MR: methionine restriction; GHR: growth hormone receptor; WT: wild-type; KO: knockout; Control 1172 
1: control for Acarbose, 17α-Estradiol, Protandim, Rapamycin, and CR diet; Control 2: control for 1173 
MR diet. a Change in the group mean of flux values for each reaction. The presented group mean 1174 
value was centered and scaled (see Methods); i.e., its positive value corresponds to an increase in the 1175 
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mean of flux values compared to corresponding control group, and vice versa. Among 7,930 reactions 1176 
whose flux values were successfully predicted across all samples (78 mice), presented are the 2,156 1177 
reactions that exhibited nominal or “conservatively” false discovery rate (FDR)-adjusted P < 0.05 (see 1178 
Methods) for the main effect of intervention on each flux median by Kruskal–Wallis H-test and that 1179 
exhibited significantly different flux median in intervention group from control group (i.e., “changed” 1180 
reaction; P < 0.05 by post hoc two-sided Dunn’s test with the Holm–Bonferroni adjustment). These 1181 
significantly changed modules are highlighted in the top color columns per intervention group, except 1182 
for 17α-Estradiol, Protandim, and CR diet due to no significantly changed reactions by them. b, c 1183 
Venn diagrams of the significantly changed reactions by each intervention (conservatively FDR-1184 
adjusted P < 0.05). d Changed reactions within the central energy metabolism. The 25 reaction IDs 1185 
highlighted in the diagram are the reactions that had the predicted flux values across all samples. Flux 1186 
value distributions are presented for the 10 reactions that exhibited nominal P < 0.05 by the 1187 
aforementioned Kruskal–Wallis H-test. Data: the 25th percentile (Q1, box bottom), median (center 1188 
line), and the 75th percentile (Q3, box top); whiskers span [max(xmin, Q1 − 1.5 × IQR), min(xmax, Q3 + 1189 
1.5 × IQR)], where xmin and xmax are the minimum and maximum, respectively, in the observed values 1190 
and IQR = Q3 − Q1; n = 12 (Control 1, Acarbose, Rapamycin, CR diet), 6 (17α-Estradiol, Protandim), 1191 
3 (the others) mice. *P < 0.05, **P < 0.01 by two-sided Dunn’s test with the Holm–Bonferroni 1192 
adjustment. e Shifted subsystems by MR diet. Significance of the shifted subsystems was assessed 1193 
using enrichment analysis on the significantly changed reactions (conservatively FDR-adjusted P < 1194 
0.05) while adjusting multiple hypotheses with the Benjamini–Hochberg method. Only the subsystems 1195 
that exhibited nominal P < 0.05 are presented. AdjPval: FDR-adjusted P-value from the enrichment 1196 
analysis. 1197 
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 1199 
Figure 5. Prolongevity interventions likely tightened the module regulation partly through cap-1200 
independent translation. 1201 

a Differential Rank Conservation (DIRAC) analysis of the M001-related liver transcriptomics using 1202 
Gene Ontology Biological Process (GOBP)-defined modules (see Supplementary Data 5 for complete 1203 
results). Presented is overall distribution of module rank conservation index (RCI). CR: calorie 1204 
restriction. Data: the 25th percentile (Q1, box bottom), median (center line, notch: 95% confidence 1205 
interval (CI) for the median), and the 75th percentile (Q3, box top); whiskers span [max(xmin, Q1 − 1.5 1206 
× IQR), min(xmax, Q3 + 1.5 × IQR)], where xmin and xmax are the minimum and maximum, respectively, 1207 
in the observed values and IQR = Q3 − Q1; n = 3,747 modules. ***P < 0.001 by two-sided Dunnett’s 1208 
test. b–d Comparison of DIRAC results between the LC-M001 liver proteomics and the M001-related 1209 
liver transcriptomics (see Supplementary Data 6 for complete results). b Venn diagram of the modules 1210 
that exhibited “conservatively” false discovery rate (FDR)-adjusted P < 0.05 (see Methods) for the 1211 
main effect of intervention on each module RCI by Analysis of Variance (ANOVA) and that exhibited 1212 
significantly higher RCI in intervention group than control group (i.e., “tightened” module; P < 0.05 1213 
by post hoc two-sided Student’s t-tests with the Holm–Bonferroni adjustment). P: proteomics, T: 1214 
transcriptomics. c, d Sample rank matching score (RMS) distributions for an example of the tightened 1215 
modules in both proteins and transcripts (c; GO:0006635, fatty acid β-oxidation) or the tightened 1216 
modules only in proteins (d; GO:0019441, tryptophan catabolic process to kynurenine). Data: the 1217 
mean (dot) with 95% CI (bar); n = 12 mice. **P < 0.01, ***P < 0.001 by two-sided Student’s t-tests 1218 
with the Holm–Bonferroni adjustment. e–g DIRAC analysis of the LC-M001 and LC-M004 liver 1219 
proteomics using GOBP-defined modules (see Supplementary Data 7 for complete results). Control 1: 1220 
control for Acarbose, 17α-Estradiol, and Rapamycin; Control 2: control for 4EGI-1. e Overall 1221 
distribution of module RCI. Data: each boxplot metric is the same with a; n = 153 modules. ***P < 1222 
0.001 by two-sided Student’s t-tests with the Holm–Bonferroni adjustment. f Venn diagram of the 1223 
modules that exhibited nominal or “conservatively” FDR-adjusted P < 0.05 (see Methods) for the 1224 
main effect of intervention on each module mean of RMSs under 4EGI-1 rank consensus by ANOVA 1225 
and that exhibited significantly higher mean of RMSs in intervention group than control group (i.e., 1226 
“similarly” changed module to the 4EGI-1 group; P < 0.05 by post hoc two-sided Student’s t-tests 1227 
with the Holm–Bonferroni adjustment). The number in square brackets corresponds to the similarly 1228 
changed modules (nominal P-value < 0.05). g, h Sample RMS distributions for an example of the 1229 
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similarly tightened modules (GO:0070934, coding region instability determinant (CRD)-mediated 1230 
mRNA stabilization) in proteins (g) or transcripts (h). Dashed line in g indicates the mean of RMSs 1231 
for the sample group corresponding to the rank consensus (i.e., RCI). Data: the mean (dot) with 95% 1232 
CI (bar); n = 8 (Control-2, 4EGI-1), 12 (the others) mice. **P < 0.01 by two-sided Student’s t-tests 1233 
with the Holm–Bonferroni adjustment (g) or Dunnett’s test (h). 1234 
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 1236 
Figure 6. Module regulation was changed across chronological and biological ages. 1237 

a–g Differential Rank Conservation (DIRAC) analysis of the Arivale plasma proteomics, with the 1238 
stratified groups by chronological age (a–d) or Δ age (e–g), using Gene Ontology Biological Process 1239 
(GOBP)-defined modules (see Supplementary Data 8 for complete results). a Overall distribution of 1240 
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module rank conservation index (RCI). Data: the 25th percentile (Q1, box bottom), median (center line, 1241 
notch: 95% confidence interval (CI) for the median), and the 75th percentile (Q3, box top); whiskers 1242 
span [max(xmin, Q1 − 1.5 × IQR), min(xmax, Q3 + 1.5 × IQR)], where xmin and xmax are the minimum 1243 
and maximum, respectively, in the observed values and IQR = Q3 − Q1; n = 19 modules. b Overall 1244 
distributions of module mean of rank matching scores (RMSs) under the rank consensus of the 1245 
youngest (Q1) or oldest (Q10) group. Data: each boxplot metric is the same with a; n = 19 modules. 1246 
P-value for Spearman’s correlation was adjusted across sexes with the Holm–Bonferroni method. c 1247 
Association between module similarity to the Q1 or Q10 group and chronological age. For each 1248 
module, each rank consensus, and each sex, significance of the association was assessed using 1249 
ordinary least squares (OLS) linear regression with Body Mass Index (BMI) and ancestry principal 1250 
components (PCs) as covariates while “conservatively” adjusting multiple hypotheses with the 1251 
Benjamini–Hochberg method (see Methods). d An example of the significant association in c 1252 
(GO:0030593, neutrophil chemotaxis). In each subplot, the adjusted sample RMS with the covariates 1253 
(i.e., mean ± residual) is plotted, and the colored line and background correspond to the OLS linear 1254 
regression line with 95% CI and the range of rank consensus group, respectively. e Distribution of Δ 1255 
age in the Δ age-stratified groups (see Supplementary Fig. 4c for the chronological age distribution). 1256 
The numbers in the subplots indicate the minimum–median–maximum of each group. f Overall 1257 
distributions of module mean of RMSs under the rank consensus of the chronologically and 1258 
biologically youngest (Y-subQ1) or oldest (O-subQ5) group. Data: each boxplot metric is the same 1259 
with a; n = 19 modules. Spearman’s correlation was assessed for each of chronological age tertile 1260 
(CA3) groups, and its P-value was adjusted across CA3 groups and sexes with the Holm–Bonferroni 1261 
method. g Association between module similarity to the Y-subQ1 or O-subQ5 group and Δ age. For 1262 
each module, each rank consensus, each sex, and each CA3 group, significance of the association was 1263 
assessed using OLS linear regression with chronological age, BMI, and ancestry PCs as covariates 1264 
while “conservatively” adjusting multiple hypotheses with the Benjamini–Hochberg method (see 1265 
Methods). 1266 
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